This commit is contained in:
joe.schwerdtner 2025-07-21 12:11:59 +02:00
parent caa4b529e4
commit 132f0dd36a
9 changed files with 1854 additions and 0 deletions

View file

@ -32,6 +32,7 @@ editor.workspace = true
fs.workspace = true
futures.workspace = true
google_ai = { workspace = true, features = ["schemars"] }
google_vertex_ai = { workspace = true, features = ["schemars"] }
gpui.workspace = true
gpui_tokio.workspace = true
http_client.workspace = true

View file

@ -14,6 +14,7 @@ use crate::provider::bedrock::BedrockLanguageModelProvider;
use crate::provider::cloud::CloudLanguageModelProvider;
use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
use crate::provider::google::GoogleLanguageModelProvider;
use crate::provider::google_vertex::GoogleVertexLanguageModelProvider;
use crate::provider::lmstudio::LmStudioLanguageModelProvider;
use crate::provider::mistral::MistralLanguageModelProvider;
use crate::provider::ollama::OllamaLanguageModelProvider;
@ -66,6 +67,11 @@ fn register_language_model_providers(
GoogleLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
// NEW REGISTRATION BY DIAB
GoogleVertexLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
MistralLanguageModelProvider::new(client.http_client(), cx),
cx,

View file

@ -4,6 +4,7 @@ pub mod cloud;
pub mod copilot_chat;
pub mod deepseek;
pub mod google;
pub mod google_vertex;
pub mod lmstudio;
pub mod mistral;
pub mod ollama;

View file

@ -0,0 +1,952 @@
use anyhow::{Context as _, Result, anyhow};
use collections::BTreeMap;
use credentials_provider::CredentialsProvider;
use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
use google_vertex_ai::{
FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
ThinkingConfig, UsageMetadata,
};
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
LanguageModelToolUseId, MessageContent, StopReason,
};
use language_model::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, RateLimiter, Role,
};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::pin::Pin;
use std::sync::{
Arc,
atomic::{self, AtomicU64},
};
use strum::IntoEnumIterator;
use ui::{Icon, IconName, List, Tooltip, prelude::*};
use util::ResultExt;
use crate::AllLanguageModelSettings;
use crate::ui::InstructionListItem;
const PROVIDER_ID: &str = "google-vertex-ai";
const PROVIDER_NAME: &str = "Google Vertex AI";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct GoogleVertexSettings {
pub api_url: String,
pub project_id: String, // ADDED
pub location_id: String, // ADDED
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(tag = "type", rename_all = "lowercase")]
pub enum ModelMode {
#[default]
Default,
Thinking {
/// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
budget_tokens: Option<u32>,
},
}
impl From<ModelMode> for GoogleModelMode {
fn from(value: ModelMode) -> Self {
match value {
ModelMode::Default => GoogleModelMode::Default,
ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
}
}
}
impl From<GoogleModelMode> for ModelMode {
fn from(value: GoogleModelMode) -> Self {
match value {
GoogleModelMode::Default => ModelMode::Default,
GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
}
}
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
name: String,
display_name: Option<String>,
max_tokens: u64,
mode: Option<ModelMode>,
}
pub struct GoogleVertexLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
api_key: Option<String>,
api_key_from_env: bool,
_subscription: Subscription,
}
impl State {
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
// Ensure api_url, project_id, and location_id are available for credentials deletion
let settings = AllLanguageModelSettings::get_global(cx)
.google_vertex
.clone();
cx.spawn(async move |this, cx| {
credentials_provider
.delete_credentials(&settings.api_url, &cx) // Use api_url
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = None;
this.api_key_from_env = false;
cx.notify();
})
})
}
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
log::info!("Authenticating Google Vertex AI...");
if self.is_authenticated() {
return Task::ready(Ok(()));
}
// The Tokio runtime provided by `gpui::spawn` is not sufficient for `tokio::process`
// or `tokio::task::spawn_blocking`. We must fall back to the standard library's threading
// to run the synchronous `gcloud` command, and use a channel to communicate the
// result back to our async context.
cx.spawn(async move |this, cx| {
let (tx, rx) = futures::channel::oneshot::channel();
std::thread::spawn(move || {
let result = std::process::Command::new("gcloud")
.args(&["auth", "application-default", "print-access-token"])
.output()
.map_err(|e| {
AuthenticateError::Other(anyhow!("Failed to execute gcloud command: {}", e))
});
// Send the result back to the async task, ignoring if the receiver was dropped.
let _ = tx.send(result);
});
// Await the result from the channel.
// First, explicitly handle the channel's `Canceled` error.
// Then, use `?` to propagate the `AuthenticateError` from the command execution.
let token_output = rx.await.map_err(|_cancelled| {
AuthenticateError::Other(anyhow!("Authentication task was cancelled"))
})??;
// Retrieve the access token from the gcloud command output.
// Ensure UTF-8 decoding and trim whitespace.
let access_token = String::from_utf8(token_output.stdout)
.map_err(|e| {
AuthenticateError::Other(anyhow!("Invalid UTF-8 in gcloud output: {}", e))
})?
.trim()
.to_string();
// Check the exit status of the gcloud command.
if !token_output.status.success() {
let stderr = String::from_utf8_lossy(&token_output.stderr).into_owned();
return Err(AuthenticateError::Other(anyhow!(
"gcloud command failed: {}",
stderr
)));
}
let api_key = access_token; // Use the retrieved token as the API key.
let from_env = false; // This token is dynamically fetched, not from env or keychain.
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
this.api_key_from_env = from_env;
cx.notify();
})?;
Ok(())
})
}
}
impl GoogleVertexLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let state = cx.new(|cx| State {
api_key: None,
api_key_from_env: false,
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
cx.notify();
}),
});
Self { http_client, state }
}
fn create_language_model(&self, model: google_vertex_ai::Model) -> Arc<dyn LanguageModel> {
Arc::new(GoogleVertexLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
})
}
}
impl LanguageModelProviderState for GoogleVertexLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for GoogleVertexLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiGoogle
}
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(google_vertex_ai::Model::default()))
}
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(google_vertex_ai::Model::default_fast()))
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
// Add base models from google_vertex_ai::Model::iter()
for model in google_vertex_ai::Model::iter() {
if !matches!(model, google_vertex_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &AllLanguageModelSettings::get_global(cx)
.google_vertex
.available_models
{
models.insert(
model.name.clone(),
google_vertex_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
mode: model.mode.unwrap_or_default().into(),
},
);
}
models
.into_values()
.map(|model| {
Arc::new(GoogleVertexLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
.into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.reset_api_key(cx))
}
}
pub struct GoogleVertexLanguageModel {
id: LanguageModelId,
model: google_vertex_ai::Model,
state: gpui::Entity<State>,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl GoogleVertexLanguageModel {
fn stream_completion(
&self,
request: google_vertex_ai::GenerateContentRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
> {
let http_client = self.http_client.clone();
let Ok((access_token_option, api_url, project_id, location_id)) =
cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).google_vertex;
(
state.api_key.clone(), // This is the access token for Vertex AI
settings.api_url.clone(),
settings.project_id.clone(), // ADDED
settings.location_id.clone(), // ADDED
)
})
else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let access_token =
access_token_option.context("Missing Google API key (access token)")?;
let request = google_vertex_ai::stream_generate_content(
http_client.as_ref(),
&api_url,
&project_id, // ADDED
&location_id, // ADDED
&access_token,
request,
);
request.await.context("failed to stream completion")
}
.boxed()
}
}
impl LanguageModel for GoogleVertexLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn supports_tools(&self) -> bool {
self.model.supports_tools()
}
fn supports_images(&self) -> bool {
self.model.supports_images()
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto
| LanguageModelToolChoice::Any
| LanguageModelToolChoice::None => true,
}
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
LanguageModelToolSchemaFormat::JsonSchemaSubset
}
fn telemetry_id(&self) -> String {
format!("google_vertex/{}", self.model.request_id())
}
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn max_output_tokens(&self) -> Option<u64> {
self.model.max_output_tokens()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
let model_id = self.model.request_id().to_string();
let request = into_vertex_ai(request, model_id.clone(), self.model.mode());
let http_client = self.http_client.clone();
// Synchronously read the state and settings.
// `read_entity` executes the closure and returns its result directly.
let (access_token_option, api_url, project_id, location_id) =
cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).google_vertex;
(
state.api_key.clone(), // This is the access token for Vertex AI (Option<String>)
settings.api_url.clone(), // String
settings.project_id.clone(), // String
settings.location_id.clone(), // String
)
}); // No .unwrap_or_default() here, as read_entity directly returns the tuple
async move {
// Check if the access token is present. If not, return an error.
let access_token = access_token_option
.context("Missing Google API key (access token). Please authenticate.")?;
let response = google_vertex_ai::count_tokens(
http_client.as_ref(),
&api_url,
&project_id,
&location_id,
&access_token,
google_vertex_ai::CountTokensRequest {
generate_content_request: request,
},
)
.await?;
Ok(response.total_tokens)
}
.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
futures::stream::BoxStream<
'static,
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
>,
LanguageModelCompletionError,
>,
> {
let request = into_vertex_ai(
request,
self.model.request_id().to_string(),
self.model.mode(),
);
let request = self.stream_completion(request, cx);
let future = self.request_limiter.stream(async move {
let response = request
.await
.map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
Ok(GoogleVertexEventMapper::new().map_stream(response))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
pub fn into_vertex_ai(
mut request: LanguageModelRequest,
model_id: String,
mode: GoogleModelMode,
) -> google_vertex_ai::GenerateContentRequest {
fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
content
.into_iter()
.flat_map(|content| match content {
language_model::MessageContent::Text(text) => {
if !text.is_empty() {
vec![Part::TextPart(google_vertex_ai::TextPart { text })]
} else {
vec![]
}
}
language_model::MessageContent::Thinking {
text: _,
signature: Some(signature),
} => {
if !signature.is_empty() {
vec![Part::ThoughtPart(google_vertex_ai::ThoughtPart {
thought: true,
thought_signature: signature,
})]
} else {
vec![]
}
}
language_model::MessageContent::Thinking { .. } => {
vec![]
}
language_model::MessageContent::RedactedThinking(_) => vec![],
language_model::MessageContent::Image(image) => {
vec![Part::InlineDataPart(google_vertex_ai::InlineDataPart {
inline_data: google_vertex_ai::GenerativeContentBlob {
mime_type: "image/png".to_string(), // Assuming PNG for simplicity, could derive from format
data: image.source.to_string(), // Assuming base64 encoded for simplicity
},
})]
}
language_model::MessageContent::ToolUse(tool_use) => {
vec![Part::FunctionCallPart(google_vertex_ai::FunctionCallPart {
function_call: google_vertex_ai::FunctionCall {
name: tool_use.name.to_string(),
args: tool_use.input,
},
})]
}
language_model::MessageContent::ToolResult(tool_result) => {
match tool_result.content {
language_model::LanguageModelToolResultContent::Text(text) => {
vec![Part::FunctionResponsePart(
google_vertex_ai::FunctionResponsePart {
function_response: google_vertex_ai::FunctionResponse {
name: tool_result.tool_name.to_string(),
// The API expects a valid JSON object
response: serde_json::json!({
"output": text
}),
},
},
)]
}
language_model::LanguageModelToolResultContent::Image(image) => {
vec![
Part::FunctionResponsePart(
google_vertex_ai::FunctionResponsePart {
function_response: google_vertex_ai::FunctionResponse {
name: tool_result.tool_name.to_string(),
// The API expects a valid JSON object
response: serde_json::json!({
"output": "Tool responded with an image"
}),
},
},
),
Part::InlineDataPart(google_vertex_ai::InlineDataPart {
inline_data: google_vertex_ai::GenerativeContentBlob {
mime_type: "image/png".to_string(),
data: image.source.to_string(),
},
}),
]
}
}
}
})
.collect()
}
let system_instructions = if request
.messages
.first()
.map_or(false, |msg| matches!(msg.role, Role::System))
{
let message = request.messages.remove(0);
Some(SystemInstruction {
parts: map_content(message.content),
})
} else {
None
};
google_vertex_ai::GenerateContentRequest {
model: google_vertex_ai::ModelName { model_id },
system_instruction: system_instructions,
contents: request
.messages
.into_iter()
.filter_map(|message| {
let parts = map_content(message.content);
if parts.is_empty() {
None
} else {
Some(google_vertex_ai::Content {
parts,
role: match message.role {
Role::User => google_vertex_ai::Role::User,
Role::Assistant => google_vertex_ai::Role::Model,
Role::System => google_vertex_ai::Role::User, // Google AI doesn't have a distinct system role; often maps to user for initial context
},
})
}
})
.collect(),
generation_config: Some(google_vertex_ai::GenerationConfig {
candidate_count: Some(1),
stop_sequences: Some(request.stop),
max_output_tokens: None,
temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
thinking_config: match mode {
GoogleModelMode::Thinking { budget_tokens } => {
budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
}
GoogleModelMode::Default => None,
},
top_p: None,
top_k: None,
}),
safety_settings: None, // Safety settings are handled at a different layer or can be configured.
tools: (request.tools.len() > 0).then(|| {
vec![google_vertex_ai::Tool {
function_declarations: request
.tools
.into_iter()
.map(|tool| FunctionDeclaration {
name: tool.name,
description: tool.description,
parameters: tool.input_schema,
})
.collect(),
}]
}),
tool_config: request
.tool_choice
.map(|choice| google_vertex_ai::ToolConfig {
function_calling_config: google_vertex_ai::FunctionCallingConfig {
mode: match choice {
LanguageModelToolChoice::Auto => {
google_vertex_ai::FunctionCallingMode::Auto
}
LanguageModelToolChoice::Any => google_vertex_ai::FunctionCallingMode::Any,
LanguageModelToolChoice::None => {
google_vertex_ai::FunctionCallingMode::None
}
},
allowed_function_names: None,
},
}),
}
}
pub struct GoogleVertexEventMapper {
usage: UsageMetadata,
stop_reason: StopReason,
}
impl GoogleVertexEventMapper {
pub fn new() -> Self {
Self {
usage: UsageMetadata::default(),
stop_reason: StopReason::EndTurn,
}
}
pub fn map_stream(
mut self,
events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
{
events
.map(Some)
.chain(futures::stream::once(async { None }))
.flat_map(move |event| {
futures::stream::iter(match event {
Some(Ok(event)) => self.map_event(event),
Some(Err(error)) => {
vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
}
None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
})
})
}
pub fn map_event(
&mut self,
event: GenerateContentResponse,
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
let mut events: Vec<_> = Vec::new();
let mut wants_to_use_tool = false;
if let Some(usage_metadata) = event.usage_metadata {
update_usage(&mut self.usage, &usage_metadata);
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
convert_usage(&self.usage),
)))
}
if let Some(candidates) = event.candidates {
for candidate in candidates {
if let Some(finish_reason) = candidate.finish_reason.as_deref() {
self.stop_reason = match finish_reason {
"STOP" => StopReason::EndTurn,
"MAX_TOKENS" => StopReason::MaxTokens,
_ => {
log::error!("Unexpected google_vertex finish_reason: {finish_reason}");
StopReason::EndTurn
}
};
}
candidate
.content
.parts
.into_iter()
.for_each(|part| match part {
Part::TextPart(text_part) => {
events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
}
Part::InlineDataPart(_) => {}
Part::FunctionCallPart(function_call_part) => {
wants_to_use_tool = true;
let name: Arc<str> = function_call_part.function_call.name.into();
let next_tool_id =
TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
let id: LanguageModelToolUseId =
format!("{}-{}", name, next_tool_id).into();
events.push(Ok(LanguageModelCompletionEvent::ToolUse(
LanguageModelToolUse {
id,
name,
is_input_complete: true,
raw_input: function_call_part.function_call.args.to_string(),
input: function_call_part.function_call.args,
},
)));
}
Part::FunctionResponsePart(_) => {}
Part::ThoughtPart(part) => {
events.push(Ok(LanguageModelCompletionEvent::Thinking {
text: "(Encrypted thought)".to_string(), // TODO: Can we populate this from thought summaries?
signature: Some(part.thought_signature),
}));
}
});
}
}
// Even when Gemini wants to use a Tool, the API
// responds with `finish_reason: STOP`
if wants_to_use_tool {
self.stop_reason = StopReason::ToolUse;
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
}
events
}
}
pub fn count_google_tokens(
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
// We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
// So we have to use tokenizer from tiktoken_rs to count tokens.
cx.background_spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.string_contents()),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
})
.boxed()
}
fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
if let Some(prompt_token_count) = new.prompt_token_count {
usage.prompt_token_count = Some(prompt_token_count);
}
if let Some(cached_content_token_count) = new.cached_content_token_count {
usage.cached_content_token_count = Some(cached_content_token_count);
}
if let Some(candidates_token_count) = new.candidates_token_count {
usage.candidates_token_count = Some(candidates_token_count);
}
if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
}
if let Some(thoughts_token_count) = new.thoughts_token_count {
usage.thoughts_token_count = Some(thoughts_token_count);
}
if let Some(total_token_count) = new.total_token_count {
usage.total_token_count = Some(total_token_count);
}
}
fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
let input_tokens = prompt_tokens - cached_tokens;
let output_tokens = usage.candidates_token_count.unwrap_or(0);
language_model::TokenUsage {
input_tokens,
output_tokens,
cache_read_input_tokens: cached_tokens,
cache_creation_input_tokens: 0,
}
}
struct ConfigurationView {
state: gpui::Entity<State>,
load_credentials_task: Option<Task<()>>,
}
impl ConfigurationView {
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
cx.observe(&state, |_, _, cx| {
cx.notify();
})
.detach();
let load_credentials_task = Some(cx.spawn_in(window, {
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
// We don't log an error, because "not signed in" is also an error.
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
state,
load_credentials_task,
}
}
fn authenticate_gcloud(&mut self, window: &mut Window, cx: &mut Context<Self>) {
println!("Authenticating with gcloud...");
let state = self.state.clone();
self.load_credentials_task = Some(cx.spawn_in(window, {
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
cx.notify();
}
fn reset_gcloud_auth(&mut self, window: &mut Window, cx: &mut Context<Self>) {
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
})
.detach_and_log_err(cx);
cx.notify();
}
}
impl Render for ConfigurationView {
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let is_authenticated = self.state.read(cx).is_authenticated();
if self.load_credentials_task.is_some() {
div()
.child(Label::new("Attempting to authenticate with gcloud..."))
.into_any()
} else if !is_authenticated {
v_flex()
.size_full()
.child(Label::new("Please authenticate with Google Cloud to use this provider."))
.child(
List::new()
.child(InstructionListItem::text_only(
"1. Ensure Google Cloud SDK is installed and configured.",
))
.child(InstructionListItem::text_only(
"2. Run 'gcloud auth application-default login' in your terminal.",
))
.child(InstructionListItem::text_only(
"3. Configure your desired Google Cloud Project ID and Location ID in Zed's settings.json file under 'language_models.google_vertex'.",
))
)
.child(
h_flex()
.w_full()
.my_2()
.child(
Button::new("authenticate-gcloud", "Authenticate with gcloud")
.label_size(LabelSize::Small)
.icon_size(IconSize::Small)
.on_click(cx.listener(|this, _, window, cx| this.authenticate_gcloud(window, cx))),
),
)
.child(
Label::new(
"This will attempt to acquire an access token using your
gcloud application-default credentials. You might need to run
'gcloud auth application-default login' manually first."
)
.size(LabelSize::Small).color(Color::Muted),
)
.into_any()
} else {
h_flex()
.mt_1()
.p_1()
// .justify_between() // Removed, button is handled separately
.rounded_md()
.border_1()
.border_color(cx.theme().colors().border)
.bg(cx.theme().colors().background)
.child(
h_flex()
.gap_1()
.child(Icon::new(IconName::Check).color(Color::Success))
.child(Label::new("Authenticated with gcloud.")),
)
.child(
Button::new("reset-gcloud-auth", "Clear Token")
.label_size(LabelSize::Small)
.icon(Some(IconName::Trash))
.icon_size(IconSize::Small)
.icon_position(IconPosition::Start)
.tooltip(Tooltip::text("Clear the in-memory access token. You will need to re-authenticate to use the provider."))
.on_click(cx.listener(|this, _, window, cx| this.reset_gcloud_auth(window, cx))),
)
.into_any()
}
}
}

View file

@ -11,6 +11,7 @@ use crate::provider::{
cloud::{self, ZedDotDevSettings},
deepseek::DeepSeekSettings,
google::GoogleSettings,
google_vertex::GoogleVertexSettings,
lmstudio::LmStudioSettings,
mistral::MistralSettings,
ollama::OllamaSettings,
@ -31,6 +32,7 @@ pub struct AllLanguageModelSettings {
pub bedrock: AmazonBedrockSettings,
pub deepseek: DeepSeekSettings,
pub google: GoogleSettings,
pub google_vertex: GoogleVertexSettings,
pub lmstudio: LmStudioSettings,
pub mistral: MistralSettings,
pub ollama: OllamaSettings,
@ -47,6 +49,7 @@ pub struct AllLanguageModelSettingsContent {
pub bedrock: Option<AmazonBedrockSettingsContent>,
pub deepseek: Option<DeepseekSettingsContent>,
pub google: Option<GoogleSettingsContent>,
pub google_vertex: Option<GoogleVertexSettingsContent>,
pub lmstudio: Option<LmStudioSettingsContent>,
pub mistral: Option<MistralSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
@ -115,6 +118,14 @@ pub struct GoogleSettingsContent {
pub available_models: Option<Vec<provider::google::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct GoogleVertexSettingsContent {
pub api_url: Option<String>,
pub project_id: Option<String>, // ADDED
pub location_id: Option<String>, // ADDED
pub available_models: Option<Vec<provider::google_vertex::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct XAiSettingsContent {
pub api_url: Option<String>,
@ -291,6 +302,26 @@ impl settings::Settings for AllLanguageModelSettings {
.as_ref()
.and_then(|s| s.available_models.clone()),
);
// Google Vertex AI
merge(
&mut settings.google_vertex.api_url,
value.google_vertex.as_ref().and_then(|s| s.api_url.clone()),
);
merge(
&mut settings.google_vertex.project_id,
value
.google_vertex
.as_ref()
.and_then(|s| s.project_id.clone()),
);
merge(
&mut settings.google_vertex.location_id,
value
.google_vertex
.as_ref()
.and_then(|s| s.location_id.clone()),
);
}
Ok(settings)