This commit is contained in:
parent
caa4b529e4
commit
132f0dd36a
9 changed files with 1854 additions and 0 deletions
|
@ -32,6 +32,7 @@ editor.workspace = true
|
|||
fs.workspace = true
|
||||
futures.workspace = true
|
||||
google_ai = { workspace = true, features = ["schemars"] }
|
||||
google_vertex_ai = { workspace = true, features = ["schemars"] }
|
||||
gpui.workspace = true
|
||||
gpui_tokio.workspace = true
|
||||
http_client.workspace = true
|
||||
|
|
|
@ -14,6 +14,7 @@ use crate::provider::bedrock::BedrockLanguageModelProvider;
|
|||
use crate::provider::cloud::CloudLanguageModelProvider;
|
||||
use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
|
||||
use crate::provider::google::GoogleLanguageModelProvider;
|
||||
use crate::provider::google_vertex::GoogleVertexLanguageModelProvider;
|
||||
use crate::provider::lmstudio::LmStudioLanguageModelProvider;
|
||||
use crate::provider::mistral::MistralLanguageModelProvider;
|
||||
use crate::provider::ollama::OllamaLanguageModelProvider;
|
||||
|
@ -66,6 +67,11 @@ fn register_language_model_providers(
|
|||
GoogleLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
);
|
||||
registry.register_provider(
|
||||
// NEW REGISTRATION BY DIAB
|
||||
GoogleVertexLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
);
|
||||
registry.register_provider(
|
||||
MistralLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
|
|
|
@ -4,6 +4,7 @@ pub mod cloud;
|
|||
pub mod copilot_chat;
|
||||
pub mod deepseek;
|
||||
pub mod google;
|
||||
pub mod google_vertex;
|
||||
pub mod lmstudio;
|
||||
pub mod mistral;
|
||||
pub mod ollama;
|
||||
|
|
952
crates/language_models/src/provider/google_vertex.rs
Normal file
952
crates/language_models/src/provider/google_vertex.rs
Normal file
|
@ -0,0 +1,952 @@
|
|||
use anyhow::{Context as _, Result, anyhow};
|
||||
use collections::BTreeMap;
|
||||
use credentials_provider::CredentialsProvider;
|
||||
use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
|
||||
use google_vertex_ai::{
|
||||
FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
|
||||
ThinkingConfig, UsageMetadata,
|
||||
};
|
||||
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
|
||||
use http_client::HttpClient;
|
||||
use language_model::{
|
||||
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
||||
LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
|
||||
LanguageModelToolUseId, MessageContent, StopReason,
|
||||
};
|
||||
use language_model::{
|
||||
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
||||
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
|
||||
LanguageModelRequest, RateLimiter, Role,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use settings::{Settings, SettingsStore};
|
||||
use std::pin::Pin;
|
||||
use std::sync::{
|
||||
Arc,
|
||||
atomic::{self, AtomicU64},
|
||||
};
|
||||
use strum::IntoEnumIterator;
|
||||
use ui::{Icon, IconName, List, Tooltip, prelude::*};
|
||||
use util::ResultExt;
|
||||
|
||||
use crate::AllLanguageModelSettings;
|
||||
use crate::ui::InstructionListItem;
|
||||
|
||||
const PROVIDER_ID: &str = "google-vertex-ai";
|
||||
const PROVIDER_NAME: &str = "Google Vertex AI";
|
||||
|
||||
#[derive(Default, Clone, Debug, PartialEq)]
|
||||
pub struct GoogleVertexSettings {
|
||||
pub api_url: String,
|
||||
pub project_id: String, // ADDED
|
||||
pub location_id: String, // ADDED
|
||||
pub available_models: Vec<AvailableModel>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
|
||||
#[serde(tag = "type", rename_all = "lowercase")]
|
||||
pub enum ModelMode {
|
||||
#[default]
|
||||
Default,
|
||||
Thinking {
|
||||
/// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
|
||||
budget_tokens: Option<u32>,
|
||||
},
|
||||
}
|
||||
|
||||
impl From<ModelMode> for GoogleModelMode {
|
||||
fn from(value: ModelMode) -> Self {
|
||||
match value {
|
||||
ModelMode::Default => GoogleModelMode::Default,
|
||||
ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<GoogleModelMode> for ModelMode {
|
||||
fn from(value: GoogleModelMode) -> Self {
|
||||
match value {
|
||||
GoogleModelMode::Default => ModelMode::Default,
|
||||
GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
||||
pub struct AvailableModel {
|
||||
name: String,
|
||||
display_name: Option<String>,
|
||||
max_tokens: u64,
|
||||
mode: Option<ModelMode>,
|
||||
}
|
||||
|
||||
pub struct GoogleVertexLanguageModelProvider {
|
||||
http_client: Arc<dyn HttpClient>,
|
||||
state: gpui::Entity<State>,
|
||||
}
|
||||
|
||||
pub struct State {
|
||||
api_key: Option<String>,
|
||||
api_key_from_env: bool,
|
||||
_subscription: Subscription,
|
||||
}
|
||||
|
||||
impl State {
|
||||
fn is_authenticated(&self) -> bool {
|
||||
self.api_key.is_some()
|
||||
}
|
||||
|
||||
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
|
||||
let credentials_provider = <dyn CredentialsProvider>::global(cx);
|
||||
// Ensure api_url, project_id, and location_id are available for credentials deletion
|
||||
let settings = AllLanguageModelSettings::get_global(cx)
|
||||
.google_vertex
|
||||
.clone();
|
||||
|
||||
cx.spawn(async move |this, cx| {
|
||||
credentials_provider
|
||||
.delete_credentials(&settings.api_url, &cx) // Use api_url
|
||||
.await
|
||||
.log_err();
|
||||
this.update(cx, |this, cx| {
|
||||
this.api_key = None;
|
||||
this.api_key_from_env = false;
|
||||
cx.notify();
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
|
||||
log::info!("Authenticating Google Vertex AI...");
|
||||
|
||||
if self.is_authenticated() {
|
||||
return Task::ready(Ok(()));
|
||||
}
|
||||
|
||||
// The Tokio runtime provided by `gpui::spawn` is not sufficient for `tokio::process`
|
||||
// or `tokio::task::spawn_blocking`. We must fall back to the standard library's threading
|
||||
// to run the synchronous `gcloud` command, and use a channel to communicate the
|
||||
// result back to our async context.
|
||||
cx.spawn(async move |this, cx| {
|
||||
let (tx, rx) = futures::channel::oneshot::channel();
|
||||
|
||||
std::thread::spawn(move || {
|
||||
let result = std::process::Command::new("gcloud")
|
||||
.args(&["auth", "application-default", "print-access-token"])
|
||||
.output()
|
||||
.map_err(|e| {
|
||||
AuthenticateError::Other(anyhow!("Failed to execute gcloud command: {}", e))
|
||||
});
|
||||
|
||||
// Send the result back to the async task, ignoring if the receiver was dropped.
|
||||
let _ = tx.send(result);
|
||||
});
|
||||
|
||||
// Await the result from the channel.
|
||||
// First, explicitly handle the channel's `Canceled` error.
|
||||
// Then, use `?` to propagate the `AuthenticateError` from the command execution.
|
||||
let token_output = rx.await.map_err(|_cancelled| {
|
||||
AuthenticateError::Other(anyhow!("Authentication task was cancelled"))
|
||||
})??;
|
||||
|
||||
// Retrieve the access token from the gcloud command output.
|
||||
// Ensure UTF-8 decoding and trim whitespace.
|
||||
let access_token = String::from_utf8(token_output.stdout)
|
||||
.map_err(|e| {
|
||||
AuthenticateError::Other(anyhow!("Invalid UTF-8 in gcloud output: {}", e))
|
||||
})?
|
||||
.trim()
|
||||
.to_string();
|
||||
|
||||
// Check the exit status of the gcloud command.
|
||||
if !token_output.status.success() {
|
||||
let stderr = String::from_utf8_lossy(&token_output.stderr).into_owned();
|
||||
return Err(AuthenticateError::Other(anyhow!(
|
||||
"gcloud command failed: {}",
|
||||
stderr
|
||||
)));
|
||||
}
|
||||
|
||||
let api_key = access_token; // Use the retrieved token as the API key.
|
||||
let from_env = false; // This token is dynamically fetched, not from env or keychain.
|
||||
|
||||
this.update(cx, |this, cx| {
|
||||
this.api_key = Some(api_key);
|
||||
this.api_key_from_env = from_env;
|
||||
cx.notify();
|
||||
})?;
|
||||
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl GoogleVertexLanguageModelProvider {
|
||||
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
|
||||
let state = cx.new(|cx| State {
|
||||
api_key: None,
|
||||
api_key_from_env: false,
|
||||
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
|
||||
cx.notify();
|
||||
}),
|
||||
});
|
||||
|
||||
Self { http_client, state }
|
||||
}
|
||||
|
||||
fn create_language_model(&self, model: google_vertex_ai::Model) -> Arc<dyn LanguageModel> {
|
||||
Arc::new(GoogleVertexLanguageModel {
|
||||
id: LanguageModelId::from(model.id().to_string()),
|
||||
model,
|
||||
state: self.state.clone(),
|
||||
http_client: self.http_client.clone(),
|
||||
request_limiter: RateLimiter::new(4),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModelProviderState for GoogleVertexLanguageModelProvider {
|
||||
type ObservableEntity = State;
|
||||
|
||||
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
|
||||
Some(self.state.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModelProvider for GoogleVertexLanguageModelProvider {
|
||||
fn id(&self) -> LanguageModelProviderId {
|
||||
LanguageModelProviderId(PROVIDER_ID.into())
|
||||
}
|
||||
|
||||
fn name(&self) -> LanguageModelProviderName {
|
||||
LanguageModelProviderName(PROVIDER_NAME.into())
|
||||
}
|
||||
|
||||
fn icon(&self) -> IconName {
|
||||
IconName::AiGoogle
|
||||
}
|
||||
|
||||
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
||||
Some(self.create_language_model(google_vertex_ai::Model::default()))
|
||||
}
|
||||
|
||||
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
||||
Some(self.create_language_model(google_vertex_ai::Model::default_fast()))
|
||||
}
|
||||
|
||||
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
|
||||
let mut models = BTreeMap::default();
|
||||
|
||||
// Add base models from google_vertex_ai::Model::iter()
|
||||
for model in google_vertex_ai::Model::iter() {
|
||||
if !matches!(model, google_vertex_ai::Model::Custom { .. }) {
|
||||
models.insert(model.id().to_string(), model);
|
||||
}
|
||||
}
|
||||
|
||||
// Override with available models from settings
|
||||
for model in &AllLanguageModelSettings::get_global(cx)
|
||||
.google_vertex
|
||||
.available_models
|
||||
{
|
||||
models.insert(
|
||||
model.name.clone(),
|
||||
google_vertex_ai::Model::Custom {
|
||||
name: model.name.clone(),
|
||||
display_name: model.display_name.clone(),
|
||||
max_tokens: model.max_tokens,
|
||||
mode: model.mode.unwrap_or_default().into(),
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
models
|
||||
.into_values()
|
||||
.map(|model| {
|
||||
Arc::new(GoogleVertexLanguageModel {
|
||||
id: LanguageModelId::from(model.id().to_string()),
|
||||
model,
|
||||
state: self.state.clone(),
|
||||
http_client: self.http_client.clone(),
|
||||
request_limiter: RateLimiter::new(4),
|
||||
}) as Arc<dyn LanguageModel>
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn is_authenticated(&self, cx: &App) -> bool {
|
||||
self.state.read(cx).is_authenticated()
|
||||
}
|
||||
|
||||
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
|
||||
self.state.update(cx, |state, cx| state.authenticate(cx))
|
||||
}
|
||||
|
||||
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
|
||||
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
|
||||
.into()
|
||||
}
|
||||
|
||||
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
|
||||
self.state.update(cx, |state, cx| state.reset_api_key(cx))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GoogleVertexLanguageModel {
|
||||
id: LanguageModelId,
|
||||
model: google_vertex_ai::Model,
|
||||
state: gpui::Entity<State>,
|
||||
http_client: Arc<dyn HttpClient>,
|
||||
request_limiter: RateLimiter,
|
||||
}
|
||||
|
||||
impl GoogleVertexLanguageModel {
|
||||
fn stream_completion(
|
||||
&self,
|
||||
request: google_vertex_ai::GenerateContentRequest,
|
||||
cx: &AsyncApp,
|
||||
) -> BoxFuture<
|
||||
'static,
|
||||
Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
|
||||
> {
|
||||
let http_client = self.http_client.clone();
|
||||
|
||||
let Ok((access_token_option, api_url, project_id, location_id)) =
|
||||
cx.read_entity(&self.state, |state, cx| {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).google_vertex;
|
||||
(
|
||||
state.api_key.clone(), // This is the access token for Vertex AI
|
||||
settings.api_url.clone(),
|
||||
settings.project_id.clone(), // ADDED
|
||||
settings.location_id.clone(), // ADDED
|
||||
)
|
||||
})
|
||||
else {
|
||||
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
|
||||
};
|
||||
|
||||
async move {
|
||||
let access_token =
|
||||
access_token_option.context("Missing Google API key (access token)")?;
|
||||
|
||||
let request = google_vertex_ai::stream_generate_content(
|
||||
http_client.as_ref(),
|
||||
&api_url,
|
||||
&project_id, // ADDED
|
||||
&location_id, // ADDED
|
||||
&access_token,
|
||||
request,
|
||||
);
|
||||
request.await.context("failed to stream completion")
|
||||
}
|
||||
.boxed()
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModel for GoogleVertexLanguageModel {
|
||||
fn id(&self) -> LanguageModelId {
|
||||
self.id.clone()
|
||||
}
|
||||
|
||||
fn name(&self) -> LanguageModelName {
|
||||
LanguageModelName::from(self.model.display_name().to_string())
|
||||
}
|
||||
|
||||
fn provider_id(&self) -> LanguageModelProviderId {
|
||||
LanguageModelProviderId(PROVIDER_ID.into())
|
||||
}
|
||||
|
||||
fn provider_name(&self) -> LanguageModelProviderName {
|
||||
LanguageModelProviderName(PROVIDER_NAME.into())
|
||||
}
|
||||
|
||||
fn supports_tools(&self) -> bool {
|
||||
self.model.supports_tools()
|
||||
}
|
||||
|
||||
fn supports_images(&self) -> bool {
|
||||
self.model.supports_images()
|
||||
}
|
||||
|
||||
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
|
||||
match choice {
|
||||
LanguageModelToolChoice::Auto
|
||||
| LanguageModelToolChoice::Any
|
||||
| LanguageModelToolChoice::None => true,
|
||||
}
|
||||
}
|
||||
|
||||
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
|
||||
LanguageModelToolSchemaFormat::JsonSchemaSubset
|
||||
}
|
||||
|
||||
fn telemetry_id(&self) -> String {
|
||||
format!("google_vertex/{}", self.model.request_id())
|
||||
}
|
||||
|
||||
fn max_token_count(&self) -> u64 {
|
||||
self.model.max_token_count()
|
||||
}
|
||||
|
||||
fn max_output_tokens(&self) -> Option<u64> {
|
||||
self.model.max_output_tokens()
|
||||
}
|
||||
|
||||
fn count_tokens(
|
||||
&self,
|
||||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<u64>> {
|
||||
let model_id = self.model.request_id().to_string();
|
||||
let request = into_vertex_ai(request, model_id.clone(), self.model.mode());
|
||||
let http_client = self.http_client.clone();
|
||||
|
||||
// Synchronously read the state and settings.
|
||||
// `read_entity` executes the closure and returns its result directly.
|
||||
let (access_token_option, api_url, project_id, location_id) =
|
||||
cx.read_entity(&self.state, |state, cx| {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).google_vertex;
|
||||
(
|
||||
state.api_key.clone(), // This is the access token for Vertex AI (Option<String>)
|
||||
settings.api_url.clone(), // String
|
||||
settings.project_id.clone(), // String
|
||||
settings.location_id.clone(), // String
|
||||
)
|
||||
}); // No .unwrap_or_default() here, as read_entity directly returns the tuple
|
||||
|
||||
async move {
|
||||
// Check if the access token is present. If not, return an error.
|
||||
let access_token = access_token_option
|
||||
.context("Missing Google API key (access token). Please authenticate.")?;
|
||||
|
||||
let response = google_vertex_ai::count_tokens(
|
||||
http_client.as_ref(),
|
||||
&api_url,
|
||||
&project_id,
|
||||
&location_id,
|
||||
&access_token,
|
||||
google_vertex_ai::CountTokensRequest {
|
||||
generate_content_request: request,
|
||||
},
|
||||
)
|
||||
.await?;
|
||||
Ok(response.total_tokens)
|
||||
}
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn stream_completion(
|
||||
&self,
|
||||
request: LanguageModelRequest,
|
||||
cx: &AsyncApp,
|
||||
) -> BoxFuture<
|
||||
'static,
|
||||
Result<
|
||||
futures::stream::BoxStream<
|
||||
'static,
|
||||
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
|
||||
>,
|
||||
LanguageModelCompletionError,
|
||||
>,
|
||||
> {
|
||||
let request = into_vertex_ai(
|
||||
request,
|
||||
self.model.request_id().to_string(),
|
||||
self.model.mode(),
|
||||
);
|
||||
let request = self.stream_completion(request, cx);
|
||||
let future = self.request_limiter.stream(async move {
|
||||
let response = request
|
||||
.await
|
||||
.map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
|
||||
Ok(GoogleVertexEventMapper::new().map_stream(response))
|
||||
});
|
||||
async move { Ok(future.await?.boxed()) }.boxed()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_vertex_ai(
|
||||
mut request: LanguageModelRequest,
|
||||
model_id: String,
|
||||
mode: GoogleModelMode,
|
||||
) -> google_vertex_ai::GenerateContentRequest {
|
||||
fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
|
||||
content
|
||||
.into_iter()
|
||||
.flat_map(|content| match content {
|
||||
language_model::MessageContent::Text(text) => {
|
||||
if !text.is_empty() {
|
||||
vec![Part::TextPart(google_vertex_ai::TextPart { text })]
|
||||
} else {
|
||||
vec![]
|
||||
}
|
||||
}
|
||||
language_model::MessageContent::Thinking {
|
||||
text: _,
|
||||
signature: Some(signature),
|
||||
} => {
|
||||
if !signature.is_empty() {
|
||||
vec![Part::ThoughtPart(google_vertex_ai::ThoughtPart {
|
||||
thought: true,
|
||||
thought_signature: signature,
|
||||
})]
|
||||
} else {
|
||||
vec![]
|
||||
}
|
||||
}
|
||||
language_model::MessageContent::Thinking { .. } => {
|
||||
vec![]
|
||||
}
|
||||
language_model::MessageContent::RedactedThinking(_) => vec![],
|
||||
language_model::MessageContent::Image(image) => {
|
||||
vec![Part::InlineDataPart(google_vertex_ai::InlineDataPart {
|
||||
inline_data: google_vertex_ai::GenerativeContentBlob {
|
||||
mime_type: "image/png".to_string(), // Assuming PNG for simplicity, could derive from format
|
||||
data: image.source.to_string(), // Assuming base64 encoded for simplicity
|
||||
},
|
||||
})]
|
||||
}
|
||||
language_model::MessageContent::ToolUse(tool_use) => {
|
||||
vec![Part::FunctionCallPart(google_vertex_ai::FunctionCallPart {
|
||||
function_call: google_vertex_ai::FunctionCall {
|
||||
name: tool_use.name.to_string(),
|
||||
args: tool_use.input,
|
||||
},
|
||||
})]
|
||||
}
|
||||
language_model::MessageContent::ToolResult(tool_result) => {
|
||||
match tool_result.content {
|
||||
language_model::LanguageModelToolResultContent::Text(text) => {
|
||||
vec![Part::FunctionResponsePart(
|
||||
google_vertex_ai::FunctionResponsePart {
|
||||
function_response: google_vertex_ai::FunctionResponse {
|
||||
name: tool_result.tool_name.to_string(),
|
||||
// The API expects a valid JSON object
|
||||
response: serde_json::json!({
|
||||
"output": text
|
||||
}),
|
||||
},
|
||||
},
|
||||
)]
|
||||
}
|
||||
language_model::LanguageModelToolResultContent::Image(image) => {
|
||||
vec![
|
||||
Part::FunctionResponsePart(
|
||||
google_vertex_ai::FunctionResponsePart {
|
||||
function_response: google_vertex_ai::FunctionResponse {
|
||||
name: tool_result.tool_name.to_string(),
|
||||
// The API expects a valid JSON object
|
||||
response: serde_json::json!({
|
||||
"output": "Tool responded with an image"
|
||||
}),
|
||||
},
|
||||
},
|
||||
),
|
||||
Part::InlineDataPart(google_vertex_ai::InlineDataPart {
|
||||
inline_data: google_vertex_ai::GenerativeContentBlob {
|
||||
mime_type: "image/png".to_string(),
|
||||
data: image.source.to_string(),
|
||||
},
|
||||
}),
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
let system_instructions = if request
|
||||
.messages
|
||||
.first()
|
||||
.map_or(false, |msg| matches!(msg.role, Role::System))
|
||||
{
|
||||
let message = request.messages.remove(0);
|
||||
Some(SystemInstruction {
|
||||
parts: map_content(message.content),
|
||||
})
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
google_vertex_ai::GenerateContentRequest {
|
||||
model: google_vertex_ai::ModelName { model_id },
|
||||
system_instruction: system_instructions,
|
||||
contents: request
|
||||
.messages
|
||||
.into_iter()
|
||||
.filter_map(|message| {
|
||||
let parts = map_content(message.content);
|
||||
if parts.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(google_vertex_ai::Content {
|
||||
parts,
|
||||
role: match message.role {
|
||||
Role::User => google_vertex_ai::Role::User,
|
||||
Role::Assistant => google_vertex_ai::Role::Model,
|
||||
Role::System => google_vertex_ai::Role::User, // Google AI doesn't have a distinct system role; often maps to user for initial context
|
||||
},
|
||||
})
|
||||
}
|
||||
})
|
||||
.collect(),
|
||||
generation_config: Some(google_vertex_ai::GenerationConfig {
|
||||
candidate_count: Some(1),
|
||||
stop_sequences: Some(request.stop),
|
||||
max_output_tokens: None,
|
||||
temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
|
||||
thinking_config: match mode {
|
||||
GoogleModelMode::Thinking { budget_tokens } => {
|
||||
budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
|
||||
}
|
||||
GoogleModelMode::Default => None,
|
||||
},
|
||||
top_p: None,
|
||||
top_k: None,
|
||||
}),
|
||||
safety_settings: None, // Safety settings are handled at a different layer or can be configured.
|
||||
tools: (request.tools.len() > 0).then(|| {
|
||||
vec![google_vertex_ai::Tool {
|
||||
function_declarations: request
|
||||
.tools
|
||||
.into_iter()
|
||||
.map(|tool| FunctionDeclaration {
|
||||
name: tool.name,
|
||||
description: tool.description,
|
||||
parameters: tool.input_schema,
|
||||
})
|
||||
.collect(),
|
||||
}]
|
||||
}),
|
||||
tool_config: request
|
||||
.tool_choice
|
||||
.map(|choice| google_vertex_ai::ToolConfig {
|
||||
function_calling_config: google_vertex_ai::FunctionCallingConfig {
|
||||
mode: match choice {
|
||||
LanguageModelToolChoice::Auto => {
|
||||
google_vertex_ai::FunctionCallingMode::Auto
|
||||
}
|
||||
LanguageModelToolChoice::Any => google_vertex_ai::FunctionCallingMode::Any,
|
||||
LanguageModelToolChoice::None => {
|
||||
google_vertex_ai::FunctionCallingMode::None
|
||||
}
|
||||
},
|
||||
allowed_function_names: None,
|
||||
},
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GoogleVertexEventMapper {
|
||||
usage: UsageMetadata,
|
||||
stop_reason: StopReason,
|
||||
}
|
||||
|
||||
impl GoogleVertexEventMapper {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
usage: UsageMetadata::default(),
|
||||
stop_reason: StopReason::EndTurn,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map_stream(
|
||||
mut self,
|
||||
events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
|
||||
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
|
||||
{
|
||||
events
|
||||
.map(Some)
|
||||
.chain(futures::stream::once(async { None }))
|
||||
.flat_map(move |event| {
|
||||
futures::stream::iter(match event {
|
||||
Some(Ok(event)) => self.map_event(event),
|
||||
Some(Err(error)) => {
|
||||
vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
|
||||
}
|
||||
None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
pub fn map_event(
|
||||
&mut self,
|
||||
event: GenerateContentResponse,
|
||||
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
||||
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
|
||||
|
||||
let mut events: Vec<_> = Vec::new();
|
||||
let mut wants_to_use_tool = false;
|
||||
if let Some(usage_metadata) = event.usage_metadata {
|
||||
update_usage(&mut self.usage, &usage_metadata);
|
||||
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
|
||||
convert_usage(&self.usage),
|
||||
)))
|
||||
}
|
||||
if let Some(candidates) = event.candidates {
|
||||
for candidate in candidates {
|
||||
if let Some(finish_reason) = candidate.finish_reason.as_deref() {
|
||||
self.stop_reason = match finish_reason {
|
||||
"STOP" => StopReason::EndTurn,
|
||||
"MAX_TOKENS" => StopReason::MaxTokens,
|
||||
_ => {
|
||||
log::error!("Unexpected google_vertex finish_reason: {finish_reason}");
|
||||
StopReason::EndTurn
|
||||
}
|
||||
};
|
||||
}
|
||||
candidate
|
||||
.content
|
||||
.parts
|
||||
.into_iter()
|
||||
.for_each(|part| match part {
|
||||
Part::TextPart(text_part) => {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
|
||||
}
|
||||
Part::InlineDataPart(_) => {}
|
||||
Part::FunctionCallPart(function_call_part) => {
|
||||
wants_to_use_tool = true;
|
||||
let name: Arc<str> = function_call_part.function_call.name.into();
|
||||
let next_tool_id =
|
||||
TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
|
||||
let id: LanguageModelToolUseId =
|
||||
format!("{}-{}", name, next_tool_id).into();
|
||||
|
||||
events.push(Ok(LanguageModelCompletionEvent::ToolUse(
|
||||
LanguageModelToolUse {
|
||||
id,
|
||||
name,
|
||||
is_input_complete: true,
|
||||
raw_input: function_call_part.function_call.args.to_string(),
|
||||
input: function_call_part.function_call.args,
|
||||
},
|
||||
)));
|
||||
}
|
||||
Part::FunctionResponsePart(_) => {}
|
||||
Part::ThoughtPart(part) => {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Thinking {
|
||||
text: "(Encrypted thought)".to_string(), // TODO: Can we populate this from thought summaries?
|
||||
signature: Some(part.thought_signature),
|
||||
}));
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Even when Gemini wants to use a Tool, the API
|
||||
// responds with `finish_reason: STOP`
|
||||
if wants_to_use_tool {
|
||||
self.stop_reason = StopReason::ToolUse;
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
||||
}
|
||||
events
|
||||
}
|
||||
}
|
||||
|
||||
pub fn count_google_tokens(
|
||||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<u64>> {
|
||||
// We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
|
||||
// So we have to use tokenizer from tiktoken_rs to count tokens.
|
||||
cx.background_spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
|
||||
if let Some(prompt_token_count) = new.prompt_token_count {
|
||||
usage.prompt_token_count = Some(prompt_token_count);
|
||||
}
|
||||
if let Some(cached_content_token_count) = new.cached_content_token_count {
|
||||
usage.cached_content_token_count = Some(cached_content_token_count);
|
||||
}
|
||||
if let Some(candidates_token_count) = new.candidates_token_count {
|
||||
usage.candidates_token_count = Some(candidates_token_count);
|
||||
}
|
||||
if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
|
||||
usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
|
||||
}
|
||||
if let Some(thoughts_token_count) = new.thoughts_token_count {
|
||||
usage.thoughts_token_count = Some(thoughts_token_count);
|
||||
}
|
||||
if let Some(total_token_count) = new.total_token_count {
|
||||
usage.total_token_count = Some(total_token_count);
|
||||
}
|
||||
}
|
||||
|
||||
fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
|
||||
let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
|
||||
let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
|
||||
let input_tokens = prompt_tokens - cached_tokens;
|
||||
let output_tokens = usage.candidates_token_count.unwrap_or(0);
|
||||
|
||||
language_model::TokenUsage {
|
||||
input_tokens,
|
||||
output_tokens,
|
||||
cache_read_input_tokens: cached_tokens,
|
||||
cache_creation_input_tokens: 0,
|
||||
}
|
||||
}
|
||||
|
||||
struct ConfigurationView {
|
||||
state: gpui::Entity<State>,
|
||||
load_credentials_task: Option<Task<()>>,
|
||||
}
|
||||
|
||||
impl ConfigurationView {
|
||||
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
|
||||
cx.observe(&state, |_, _, cx| {
|
||||
cx.notify();
|
||||
})
|
||||
.detach();
|
||||
|
||||
let load_credentials_task = Some(cx.spawn_in(window, {
|
||||
let state = state.clone();
|
||||
async move |this, cx| {
|
||||
if let Some(task) = state
|
||||
.update(cx, |state, cx| state.authenticate(cx))
|
||||
.log_err()
|
||||
{
|
||||
// We don't log an error, because "not signed in" is also an error.
|
||||
let _ = task.await;
|
||||
}
|
||||
this.update(cx, |this, cx| {
|
||||
this.load_credentials_task = None;
|
||||
cx.notify();
|
||||
})
|
||||
.log_err();
|
||||
}
|
||||
}));
|
||||
|
||||
Self {
|
||||
state,
|
||||
load_credentials_task,
|
||||
}
|
||||
}
|
||||
|
||||
fn authenticate_gcloud(&mut self, window: &mut Window, cx: &mut Context<Self>) {
|
||||
println!("Authenticating with gcloud...");
|
||||
|
||||
let state = self.state.clone();
|
||||
self.load_credentials_task = Some(cx.spawn_in(window, {
|
||||
async move |this, cx| {
|
||||
if let Some(task) = state
|
||||
.update(cx, |state, cx| state.authenticate(cx))
|
||||
.log_err()
|
||||
{
|
||||
let _ = task.await;
|
||||
}
|
||||
this.update(cx, |this, cx| {
|
||||
this.load_credentials_task = None;
|
||||
cx.notify();
|
||||
})
|
||||
.log_err();
|
||||
}
|
||||
}));
|
||||
cx.notify();
|
||||
}
|
||||
|
||||
fn reset_gcloud_auth(&mut self, window: &mut Window, cx: &mut Context<Self>) {
|
||||
let state = self.state.clone();
|
||||
cx.spawn_in(window, async move |_, cx| {
|
||||
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
|
||||
})
|
||||
.detach_and_log_err(cx);
|
||||
|
||||
cx.notify();
|
||||
}
|
||||
}
|
||||
|
||||
impl Render for ConfigurationView {
|
||||
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
|
||||
let is_authenticated = self.state.read(cx).is_authenticated();
|
||||
|
||||
if self.load_credentials_task.is_some() {
|
||||
div()
|
||||
.child(Label::new("Attempting to authenticate with gcloud..."))
|
||||
.into_any()
|
||||
} else if !is_authenticated {
|
||||
v_flex()
|
||||
.size_full()
|
||||
.child(Label::new("Please authenticate with Google Cloud to use this provider."))
|
||||
.child(
|
||||
List::new()
|
||||
.child(InstructionListItem::text_only(
|
||||
"1. Ensure Google Cloud SDK is installed and configured.",
|
||||
))
|
||||
.child(InstructionListItem::text_only(
|
||||
"2. Run 'gcloud auth application-default login' in your terminal.",
|
||||
))
|
||||
.child(InstructionListItem::text_only(
|
||||
"3. Configure your desired Google Cloud Project ID and Location ID in Zed's settings.json file under 'language_models.google_vertex'.",
|
||||
))
|
||||
)
|
||||
.child(
|
||||
h_flex()
|
||||
.w_full()
|
||||
.my_2()
|
||||
.child(
|
||||
Button::new("authenticate-gcloud", "Authenticate with gcloud")
|
||||
.label_size(LabelSize::Small)
|
||||
.icon_size(IconSize::Small)
|
||||
.on_click(cx.listener(|this, _, window, cx| this.authenticate_gcloud(window, cx))),
|
||||
),
|
||||
)
|
||||
.child(
|
||||
Label::new(
|
||||
"This will attempt to acquire an access token using your
|
||||
gcloud application-default credentials. You might need to run
|
||||
'gcloud auth application-default login' manually first."
|
||||
)
|
||||
.size(LabelSize::Small).color(Color::Muted),
|
||||
)
|
||||
.into_any()
|
||||
} else {
|
||||
h_flex()
|
||||
.mt_1()
|
||||
.p_1()
|
||||
// .justify_between() // Removed, button is handled separately
|
||||
.rounded_md()
|
||||
.border_1()
|
||||
.border_color(cx.theme().colors().border)
|
||||
.bg(cx.theme().colors().background)
|
||||
.child(
|
||||
h_flex()
|
||||
.gap_1()
|
||||
.child(Icon::new(IconName::Check).color(Color::Success))
|
||||
.child(Label::new("Authenticated with gcloud.")),
|
||||
)
|
||||
.child(
|
||||
Button::new("reset-gcloud-auth", "Clear Token")
|
||||
.label_size(LabelSize::Small)
|
||||
.icon(Some(IconName::Trash))
|
||||
.icon_size(IconSize::Small)
|
||||
.icon_position(IconPosition::Start)
|
||||
.tooltip(Tooltip::text("Clear the in-memory access token. You will need to re-authenticate to use the provider."))
|
||||
.on_click(cx.listener(|this, _, window, cx| this.reset_gcloud_auth(window, cx))),
|
||||
)
|
||||
.into_any()
|
||||
}
|
||||
}
|
||||
}
|
|
@ -11,6 +11,7 @@ use crate::provider::{
|
|||
cloud::{self, ZedDotDevSettings},
|
||||
deepseek::DeepSeekSettings,
|
||||
google::GoogleSettings,
|
||||
google_vertex::GoogleVertexSettings,
|
||||
lmstudio::LmStudioSettings,
|
||||
mistral::MistralSettings,
|
||||
ollama::OllamaSettings,
|
||||
|
@ -31,6 +32,7 @@ pub struct AllLanguageModelSettings {
|
|||
pub bedrock: AmazonBedrockSettings,
|
||||
pub deepseek: DeepSeekSettings,
|
||||
pub google: GoogleSettings,
|
||||
pub google_vertex: GoogleVertexSettings,
|
||||
pub lmstudio: LmStudioSettings,
|
||||
pub mistral: MistralSettings,
|
||||
pub ollama: OllamaSettings,
|
||||
|
@ -47,6 +49,7 @@ pub struct AllLanguageModelSettingsContent {
|
|||
pub bedrock: Option<AmazonBedrockSettingsContent>,
|
||||
pub deepseek: Option<DeepseekSettingsContent>,
|
||||
pub google: Option<GoogleSettingsContent>,
|
||||
pub google_vertex: Option<GoogleVertexSettingsContent>,
|
||||
pub lmstudio: Option<LmStudioSettingsContent>,
|
||||
pub mistral: Option<MistralSettingsContent>,
|
||||
pub ollama: Option<OllamaSettingsContent>,
|
||||
|
@ -115,6 +118,14 @@ pub struct GoogleSettingsContent {
|
|||
pub available_models: Option<Vec<provider::google::AvailableModel>>,
|
||||
}
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
pub struct GoogleVertexSettingsContent {
|
||||
pub api_url: Option<String>,
|
||||
pub project_id: Option<String>, // ADDED
|
||||
pub location_id: Option<String>, // ADDED
|
||||
pub available_models: Option<Vec<provider::google_vertex::AvailableModel>>,
|
||||
}
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
pub struct XAiSettingsContent {
|
||||
pub api_url: Option<String>,
|
||||
|
@ -291,6 +302,26 @@ impl settings::Settings for AllLanguageModelSettings {
|
|||
.as_ref()
|
||||
.and_then(|s| s.available_models.clone()),
|
||||
);
|
||||
|
||||
// Google Vertex AI
|
||||
merge(
|
||||
&mut settings.google_vertex.api_url,
|
||||
value.google_vertex.as_ref().and_then(|s| s.api_url.clone()),
|
||||
);
|
||||
merge(
|
||||
&mut settings.google_vertex.project_id,
|
||||
value
|
||||
.google_vertex
|
||||
.as_ref()
|
||||
.and_then(|s| s.project_id.clone()),
|
||||
);
|
||||
merge(
|
||||
&mut settings.google_vertex.location_id,
|
||||
value
|
||||
.google_vertex
|
||||
.as_ref()
|
||||
.and_then(|s| s.location_id.clone()),
|
||||
);
|
||||
}
|
||||
|
||||
Ok(settings)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue