vercel: Reuse existing OpenAI code (#33362)
Follow up to #33292 Since Vercel's API is OpenAI compatible, we can reuse a bunch of code. Release Notes: - N/A
This commit is contained in:
parent
c979452c2d
commit
18f1221a44
6 changed files with 30 additions and 674 deletions
3
Cargo.lock
generated
3
Cargo.lock
generated
|
@ -17431,11 +17431,8 @@ name = "vercel"
|
|||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"anyhow",
|
||||
"futures 0.3.31",
|
||||
"http_client",
|
||||
"schemars",
|
||||
"serde",
|
||||
"serde_json",
|
||||
"strum 0.27.1",
|
||||
"workspace-hack",
|
||||
]
|
||||
|
|
|
@ -888,7 +888,12 @@ impl LanguageModel for CloudLanguageModel {
|
|||
Ok(model) => model,
|
||||
Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
|
||||
};
|
||||
let request = into_open_ai(request, &model, None);
|
||||
let request = into_open_ai(
|
||||
request,
|
||||
model.id(),
|
||||
model.supports_parallel_tool_calls(),
|
||||
None,
|
||||
);
|
||||
let llm_api_token = self.llm_api_token.clone();
|
||||
let future = self.request_limiter.stream(async move {
|
||||
let PerformLlmCompletionResponse {
|
||||
|
|
|
@ -344,7 +344,12 @@ impl LanguageModel for OpenAiLanguageModel {
|
|||
LanguageModelCompletionError,
|
||||
>,
|
||||
> {
|
||||
let request = into_open_ai(request, &self.model, self.max_output_tokens());
|
||||
let request = into_open_ai(
|
||||
request,
|
||||
self.model.id(),
|
||||
self.model.supports_parallel_tool_calls(),
|
||||
self.max_output_tokens(),
|
||||
);
|
||||
let completions = self.stream_completion(request, cx);
|
||||
async move {
|
||||
let mapper = OpenAiEventMapper::new();
|
||||
|
@ -356,10 +361,11 @@ impl LanguageModel for OpenAiLanguageModel {
|
|||
|
||||
pub fn into_open_ai(
|
||||
request: LanguageModelRequest,
|
||||
model: &Model,
|
||||
model_id: &str,
|
||||
supports_parallel_tool_calls: bool,
|
||||
max_output_tokens: Option<u64>,
|
||||
) -> open_ai::Request {
|
||||
let stream = !model.id().starts_with("o1-");
|
||||
let stream = !model_id.starts_with("o1-");
|
||||
|
||||
let mut messages = Vec::new();
|
||||
for message in request.messages {
|
||||
|
@ -435,13 +441,13 @@ pub fn into_open_ai(
|
|||
}
|
||||
|
||||
open_ai::Request {
|
||||
model: model.id().into(),
|
||||
model: model_id.into(),
|
||||
messages,
|
||||
stream,
|
||||
stop: request.stop,
|
||||
temperature: request.temperature.unwrap_or(1.0),
|
||||
max_completion_tokens: max_output_tokens,
|
||||
parallel_tool_calls: if model.supports_parallel_tool_calls() && !request.tools.is_empty() {
|
||||
parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
|
||||
// Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
|
||||
Some(false)
|
||||
} else {
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
use anyhow::{Context as _, Result, anyhow};
|
||||
use collections::{BTreeMap, HashMap};
|
||||
use collections::BTreeMap;
|
||||
use credentials_provider::CredentialsProvider;
|
||||
|
||||
use futures::Stream;
|
||||
use futures::{FutureExt, StreamExt, future::BoxFuture};
|
||||
use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
|
||||
use http_client::HttpClient;
|
||||
|
@ -10,16 +8,13 @@ use language_model::{
|
|||
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
||||
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
|
||||
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
|
||||
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
|
||||
RateLimiter, Role, StopReason,
|
||||
LanguageModelToolChoice, RateLimiter, Role,
|
||||
};
|
||||
use menu;
|
||||
use open_ai::{ImageUrl, ResponseStreamEvent, stream_completion};
|
||||
use open_ai::ResponseStreamEvent;
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use settings::{Settings, SettingsStore};
|
||||
use std::pin::Pin;
|
||||
use std::str::FromStr as _;
|
||||
use std::sync::Arc;
|
||||
use strum::IntoEnumIterator;
|
||||
use vercel::Model;
|
||||
|
@ -200,14 +195,12 @@ impl LanguageModelProvider for VercelLanguageModelProvider {
|
|||
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
|
||||
let mut models = BTreeMap::default();
|
||||
|
||||
// Add base models from vercel::Model::iter()
|
||||
for model in vercel::Model::iter() {
|
||||
if !matches!(model, vercel::Model::Custom { .. }) {
|
||||
models.insert(model.id().to_string(), model);
|
||||
}
|
||||
}
|
||||
|
||||
// Override with available models from settings
|
||||
for model in &AllLanguageModelSettings::get_global(cx)
|
||||
.vercel
|
||||
.available_models
|
||||
|
@ -278,7 +271,8 @@ impl VercelLanguageModel {
|
|||
|
||||
let future = self.request_limiter.stream(async move {
|
||||
let api_key = api_key.context("Missing Vercel API Key")?;
|
||||
let request = stream_completion(http_client.as_ref(), &api_url, &api_key, request);
|
||||
let request =
|
||||
open_ai::stream_completion(http_client.as_ref(), &api_url, &api_key, request);
|
||||
let response = request.await?;
|
||||
Ok(response)
|
||||
});
|
||||
|
@ -354,264 +348,21 @@ impl LanguageModel for VercelLanguageModel {
|
|||
LanguageModelCompletionError,
|
||||
>,
|
||||
> {
|
||||
let request = into_vercel(request, &self.model, self.max_output_tokens());
|
||||
let request = crate::provider::open_ai::into_open_ai(
|
||||
request,
|
||||
self.model.id(),
|
||||
self.model.supports_parallel_tool_calls(),
|
||||
self.max_output_tokens(),
|
||||
);
|
||||
let completions = self.stream_completion(request, cx);
|
||||
async move {
|
||||
let mapper = VercelEventMapper::new();
|
||||
let mapper = crate::provider::open_ai::OpenAiEventMapper::new();
|
||||
Ok(mapper.map_stream(completions.await?).boxed())
|
||||
}
|
||||
.boxed()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_vercel(
|
||||
request: LanguageModelRequest,
|
||||
model: &vercel::Model,
|
||||
max_output_tokens: Option<u64>,
|
||||
) -> open_ai::Request {
|
||||
let stream = !model.id().starts_with("o1-");
|
||||
|
||||
let mut messages = Vec::new();
|
||||
for message in request.messages {
|
||||
for content in message.content {
|
||||
match content {
|
||||
MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
|
||||
add_message_content_part(
|
||||
open_ai::MessagePart::Text { text: text },
|
||||
message.role,
|
||||
&mut messages,
|
||||
)
|
||||
}
|
||||
MessageContent::RedactedThinking(_) => {}
|
||||
MessageContent::Image(image) => {
|
||||
add_message_content_part(
|
||||
open_ai::MessagePart::Image {
|
||||
image_url: ImageUrl {
|
||||
url: image.to_base64_url(),
|
||||
detail: None,
|
||||
},
|
||||
},
|
||||
message.role,
|
||||
&mut messages,
|
||||
);
|
||||
}
|
||||
MessageContent::ToolUse(tool_use) => {
|
||||
let tool_call = open_ai::ToolCall {
|
||||
id: tool_use.id.to_string(),
|
||||
content: open_ai::ToolCallContent::Function {
|
||||
function: open_ai::FunctionContent {
|
||||
name: tool_use.name.to_string(),
|
||||
arguments: serde_json::to_string(&tool_use.input)
|
||||
.unwrap_or_default(),
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
|
||||
messages.last_mut()
|
||||
{
|
||||
tool_calls.push(tool_call);
|
||||
} else {
|
||||
messages.push(open_ai::RequestMessage::Assistant {
|
||||
content: None,
|
||||
tool_calls: vec![tool_call],
|
||||
});
|
||||
}
|
||||
}
|
||||
MessageContent::ToolResult(tool_result) => {
|
||||
let content = match &tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => {
|
||||
vec![open_ai::MessagePart::Text {
|
||||
text: text.to_string(),
|
||||
}]
|
||||
}
|
||||
LanguageModelToolResultContent::Image(image) => {
|
||||
vec![open_ai::MessagePart::Image {
|
||||
image_url: ImageUrl {
|
||||
url: image.to_base64_url(),
|
||||
detail: None,
|
||||
},
|
||||
}]
|
||||
}
|
||||
};
|
||||
|
||||
messages.push(open_ai::RequestMessage::Tool {
|
||||
content: content.into(),
|
||||
tool_call_id: tool_result.tool_use_id.to_string(),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
open_ai::Request {
|
||||
model: model.id().into(),
|
||||
messages,
|
||||
stream,
|
||||
stop: request.stop,
|
||||
temperature: request.temperature.unwrap_or(1.0),
|
||||
max_completion_tokens: max_output_tokens,
|
||||
parallel_tool_calls: if model.supports_parallel_tool_calls() && !request.tools.is_empty() {
|
||||
// Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
|
||||
Some(false)
|
||||
} else {
|
||||
None
|
||||
},
|
||||
tools: request
|
||||
.tools
|
||||
.into_iter()
|
||||
.map(|tool| open_ai::ToolDefinition::Function {
|
||||
function: open_ai::FunctionDefinition {
|
||||
name: tool.name,
|
||||
description: Some(tool.description),
|
||||
parameters: Some(tool.input_schema),
|
||||
},
|
||||
})
|
||||
.collect(),
|
||||
tool_choice: request.tool_choice.map(|choice| match choice {
|
||||
LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
|
||||
LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
|
||||
LanguageModelToolChoice::None => open_ai::ToolChoice::None,
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
fn add_message_content_part(
|
||||
new_part: open_ai::MessagePart,
|
||||
role: Role,
|
||||
messages: &mut Vec<open_ai::RequestMessage>,
|
||||
) {
|
||||
match (role, messages.last_mut()) {
|
||||
(Role::User, Some(open_ai::RequestMessage::User { content }))
|
||||
| (
|
||||
Role::Assistant,
|
||||
Some(open_ai::RequestMessage::Assistant {
|
||||
content: Some(content),
|
||||
..
|
||||
}),
|
||||
)
|
||||
| (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
|
||||
content.push_part(new_part);
|
||||
}
|
||||
_ => {
|
||||
messages.push(match role {
|
||||
Role::User => open_ai::RequestMessage::User {
|
||||
content: open_ai::MessageContent::from(vec![new_part]),
|
||||
},
|
||||
Role::Assistant => open_ai::RequestMessage::Assistant {
|
||||
content: Some(open_ai::MessageContent::from(vec![new_part])),
|
||||
tool_calls: Vec::new(),
|
||||
},
|
||||
Role::System => open_ai::RequestMessage::System {
|
||||
content: open_ai::MessageContent::from(vec![new_part]),
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct VercelEventMapper {
|
||||
tool_calls_by_index: HashMap<usize, RawToolCall>,
|
||||
}
|
||||
|
||||
impl VercelEventMapper {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
tool_calls_by_index: HashMap::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map_stream(
|
||||
mut self,
|
||||
events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
|
||||
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
|
||||
{
|
||||
events.flat_map(move |event| {
|
||||
futures::stream::iter(match event {
|
||||
Ok(event) => self.map_event(event),
|
||||
Err(error) => vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))],
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
pub fn map_event(
|
||||
&mut self,
|
||||
event: ResponseStreamEvent,
|
||||
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
||||
let Some(choice) = event.choices.first() else {
|
||||
return Vec::new();
|
||||
};
|
||||
|
||||
let mut events = Vec::new();
|
||||
if let Some(content) = choice.delta.content.clone() {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
||||
}
|
||||
|
||||
if let Some(tool_calls) = choice.delta.tool_calls.as_ref() {
|
||||
for tool_call in tool_calls {
|
||||
let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
|
||||
|
||||
if let Some(tool_id) = tool_call.id.clone() {
|
||||
entry.id = tool_id;
|
||||
}
|
||||
|
||||
if let Some(function) = tool_call.function.as_ref() {
|
||||
if let Some(name) = function.name.clone() {
|
||||
entry.name = name;
|
||||
}
|
||||
|
||||
if let Some(arguments) = function.arguments.clone() {
|
||||
entry.arguments.push_str(&arguments);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match choice.finish_reason.as_deref() {
|
||||
Some("stop") => {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
||||
}
|
||||
Some("tool_calls") => {
|
||||
events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
|
||||
match serde_json::Value::from_str(&tool_call.arguments) {
|
||||
Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
|
||||
LanguageModelToolUse {
|
||||
id: tool_call.id.clone().into(),
|
||||
name: tool_call.name.as_str().into(),
|
||||
is_input_complete: true,
|
||||
input,
|
||||
raw_input: tool_call.arguments.clone(),
|
||||
},
|
||||
)),
|
||||
Err(error) => Err(LanguageModelCompletionError::BadInputJson {
|
||||
id: tool_call.id.into(),
|
||||
tool_name: tool_call.name.as_str().into(),
|
||||
raw_input: tool_call.arguments.into(),
|
||||
json_parse_error: error.to_string(),
|
||||
}),
|
||||
}
|
||||
}));
|
||||
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
||||
}
|
||||
Some(stop_reason) => {
|
||||
log::error!("Unexpected Vercel stop_reason: {stop_reason:?}",);
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
|
||||
events
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
struct RawToolCall {
|
||||
id: String,
|
||||
name: String,
|
||||
arguments: String,
|
||||
}
|
||||
|
||||
pub fn count_vercel_tokens(
|
||||
request: LanguageModelRequest,
|
||||
model: Model,
|
||||
|
@ -825,43 +576,3 @@ impl Render for ConfigurationView {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use gpui::TestAppContext;
|
||||
use language_model::LanguageModelRequestMessage;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[gpui::test]
|
||||
fn tiktoken_rs_support(cx: &TestAppContext) {
|
||||
let request = LanguageModelRequest {
|
||||
thread_id: None,
|
||||
prompt_id: None,
|
||||
intent: None,
|
||||
mode: None,
|
||||
messages: vec![LanguageModelRequestMessage {
|
||||
role: Role::User,
|
||||
content: vec![MessageContent::Text("message".into())],
|
||||
cache: false,
|
||||
}],
|
||||
tools: vec![],
|
||||
tool_choice: None,
|
||||
stop: vec![],
|
||||
temperature: None,
|
||||
};
|
||||
|
||||
// Validate that all models are supported by tiktoken-rs
|
||||
for model in Model::iter() {
|
||||
let count = cx
|
||||
.executor()
|
||||
.block(count_vercel_tokens(
|
||||
request.clone(),
|
||||
model,
|
||||
&cx.app.borrow(),
|
||||
))
|
||||
.unwrap();
|
||||
assert!(count > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,10 +17,7 @@ schemars = ["dep:schemars"]
|
|||
|
||||
[dependencies]
|
||||
anyhow.workspace = true
|
||||
futures.workspace = true
|
||||
http_client.workspace = true
|
||||
schemars = { workspace = true, optional = true }
|
||||
serde.workspace = true
|
||||
serde_json.workspace = true
|
||||
strum.workspace = true
|
||||
workspace-hack.workspace = true
|
||||
|
|
|
@ -1,51 +1,9 @@
|
|||
use anyhow::{Context as _, Result, anyhow};
|
||||
use futures::{AsyncBufReadExt, AsyncReadExt, StreamExt, io::BufReader, stream::BoxStream};
|
||||
use http_client::{AsyncBody, HttpClient, Method, Request as HttpRequest};
|
||||
use anyhow::Result;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use serde_json::Value;
|
||||
use std::{convert::TryFrom, future::Future};
|
||||
use strum::EnumIter;
|
||||
|
||||
pub const VERCEL_API_URL: &str = "https://api.v0.dev/v1";
|
||||
|
||||
fn is_none_or_empty<T: AsRef<[U]>, U>(opt: &Option<T>) -> bool {
|
||||
opt.as_ref().map_or(true, |v| v.as_ref().is_empty())
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum Role {
|
||||
User,
|
||||
Assistant,
|
||||
System,
|
||||
Tool,
|
||||
}
|
||||
|
||||
impl TryFrom<String> for Role {
|
||||
type Error = anyhow::Error;
|
||||
|
||||
fn try_from(value: String) -> Result<Self> {
|
||||
match value.as_str() {
|
||||
"user" => Ok(Self::User),
|
||||
"assistant" => Ok(Self::Assistant),
|
||||
"system" => Ok(Self::System),
|
||||
"tool" => Ok(Self::Tool),
|
||||
_ => anyhow::bail!("invalid role '{value}'"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Role> for String {
|
||||
fn from(val: Role) -> Self {
|
||||
match val {
|
||||
Role::User => "user".to_owned(),
|
||||
Role::Assistant => "assistant".to_owned(),
|
||||
Role::System => "system".to_owned(),
|
||||
Role::Tool => "tool".to_owned(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
|
||||
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq, EnumIter)]
|
||||
pub enum Model {
|
||||
|
@ -118,321 +76,3 @@ impl Model {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct Request {
|
||||
pub model: String,
|
||||
pub messages: Vec<RequestMessage>,
|
||||
pub stream: bool,
|
||||
#[serde(default, skip_serializing_if = "Option::is_none")]
|
||||
pub max_completion_tokens: Option<u64>,
|
||||
#[serde(default, skip_serializing_if = "Vec::is_empty")]
|
||||
pub stop: Vec<String>,
|
||||
pub temperature: f32,
|
||||
#[serde(default, skip_serializing_if = "Option::is_none")]
|
||||
pub tool_choice: Option<ToolChoice>,
|
||||
/// Whether to enable parallel function calling during tool use.
|
||||
#[serde(default, skip_serializing_if = "Option::is_none")]
|
||||
pub parallel_tool_calls: Option<bool>,
|
||||
#[serde(default, skip_serializing_if = "Vec::is_empty")]
|
||||
pub tools: Vec<ToolDefinition>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
#[serde(untagged)]
|
||||
pub enum ToolChoice {
|
||||
Auto,
|
||||
Required,
|
||||
None,
|
||||
Other(ToolDefinition),
|
||||
}
|
||||
|
||||
#[derive(Clone, Deserialize, Serialize, Debug)]
|
||||
#[serde(tag = "type", rename_all = "snake_case")]
|
||||
pub enum ToolDefinition {
|
||||
#[allow(dead_code)]
|
||||
Function { function: FunctionDefinition },
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct FunctionDefinition {
|
||||
pub name: String,
|
||||
pub description: Option<String>,
|
||||
pub parameters: Option<Value>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
#[serde(tag = "role", rename_all = "lowercase")]
|
||||
pub enum RequestMessage {
|
||||
Assistant {
|
||||
content: Option<MessageContent>,
|
||||
#[serde(default, skip_serializing_if = "Vec::is_empty")]
|
||||
tool_calls: Vec<ToolCall>,
|
||||
},
|
||||
User {
|
||||
content: MessageContent,
|
||||
},
|
||||
System {
|
||||
content: MessageContent,
|
||||
},
|
||||
Tool {
|
||||
content: MessageContent,
|
||||
tool_call_id: String,
|
||||
},
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
|
||||
#[serde(untagged)]
|
||||
pub enum MessageContent {
|
||||
Plain(String),
|
||||
Multipart(Vec<MessagePart>),
|
||||
}
|
||||
|
||||
impl MessageContent {
|
||||
pub fn empty() -> Self {
|
||||
MessageContent::Multipart(vec![])
|
||||
}
|
||||
|
||||
pub fn push_part(&mut self, part: MessagePart) {
|
||||
match self {
|
||||
MessageContent::Plain(text) => {
|
||||
*self =
|
||||
MessageContent::Multipart(vec![MessagePart::Text { text: text.clone() }, part]);
|
||||
}
|
||||
MessageContent::Multipart(parts) if parts.is_empty() => match part {
|
||||
MessagePart::Text { text } => *self = MessageContent::Plain(text),
|
||||
MessagePart::Image { .. } => *self = MessageContent::Multipart(vec![part]),
|
||||
},
|
||||
MessageContent::Multipart(parts) => parts.push(part),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Vec<MessagePart>> for MessageContent {
|
||||
fn from(mut parts: Vec<MessagePart>) -> Self {
|
||||
if let [MessagePart::Text { text }] = parts.as_mut_slice() {
|
||||
MessageContent::Plain(std::mem::take(text))
|
||||
} else {
|
||||
MessageContent::Multipart(parts)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
|
||||
#[serde(tag = "type")]
|
||||
pub enum MessagePart {
|
||||
#[serde(rename = "text")]
|
||||
Text { text: String },
|
||||
#[serde(rename = "image_url")]
|
||||
Image { image_url: ImageUrl },
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
|
||||
pub struct ImageUrl {
|
||||
pub url: String,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub detail: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
pub struct ToolCall {
|
||||
pub id: String,
|
||||
#[serde(flatten)]
|
||||
pub content: ToolCallContent,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
#[serde(tag = "type", rename_all = "lowercase")]
|
||||
pub enum ToolCallContent {
|
||||
Function { function: FunctionContent },
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
pub struct FunctionContent {
|
||||
pub name: String,
|
||||
pub arguments: String,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
pub struct ResponseMessageDelta {
|
||||
pub role: Option<Role>,
|
||||
pub content: Option<String>,
|
||||
#[serde(default, skip_serializing_if = "is_none_or_empty")]
|
||||
pub tool_calls: Option<Vec<ToolCallChunk>>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
pub struct ToolCallChunk {
|
||||
pub index: usize,
|
||||
pub id: Option<String>,
|
||||
|
||||
// There is also an optional `type` field that would determine if a
|
||||
// function is there. Sometimes this streams in with the `function` before
|
||||
// it streams in the `type`
|
||||
pub function: Option<FunctionChunk>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
|
||||
pub struct FunctionChunk {
|
||||
pub name: Option<String>,
|
||||
pub arguments: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct Usage {
|
||||
pub prompt_tokens: u32,
|
||||
pub completion_tokens: u32,
|
||||
pub total_tokens: u32,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ChoiceDelta {
|
||||
pub index: u32,
|
||||
pub delta: ResponseMessageDelta,
|
||||
pub finish_reason: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
#[serde(untagged)]
|
||||
pub enum ResponseStreamResult {
|
||||
Ok(ResponseStreamEvent),
|
||||
Err { error: String },
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug)]
|
||||
pub struct ResponseStreamEvent {
|
||||
pub model: String,
|
||||
pub choices: Vec<ChoiceDelta>,
|
||||
pub usage: Option<Usage>,
|
||||
}
|
||||
|
||||
pub async fn stream_completion(
|
||||
client: &dyn HttpClient,
|
||||
api_url: &str,
|
||||
api_key: &str,
|
||||
request: Request,
|
||||
) -> Result<BoxStream<'static, Result<ResponseStreamEvent>>> {
|
||||
let uri = format!("{api_url}/chat/completions");
|
||||
let request_builder = HttpRequest::builder()
|
||||
.method(Method::POST)
|
||||
.uri(uri)
|
||||
.header("Content-Type", "application/json")
|
||||
.header("Authorization", format!("Bearer {}", api_key));
|
||||
|
||||
let request = request_builder.body(AsyncBody::from(serde_json::to_string(&request)?))?;
|
||||
let mut response = client.send(request).await?;
|
||||
if response.status().is_success() {
|
||||
let reader = BufReader::new(response.into_body());
|
||||
Ok(reader
|
||||
.lines()
|
||||
.filter_map(|line| async move {
|
||||
match line {
|
||||
Ok(line) => {
|
||||
let line = line.strip_prefix("data: ")?;
|
||||
if line == "[DONE]" {
|
||||
None
|
||||
} else {
|
||||
match serde_json::from_str(line) {
|
||||
Ok(ResponseStreamResult::Ok(response)) => Some(Ok(response)),
|
||||
Ok(ResponseStreamResult::Err { error }) => {
|
||||
Some(Err(anyhow!(error)))
|
||||
}
|
||||
Err(error) => Some(Err(anyhow!(error))),
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(error) => Some(Err(anyhow!(error))),
|
||||
}
|
||||
})
|
||||
.boxed())
|
||||
} else {
|
||||
let mut body = String::new();
|
||||
response.body_mut().read_to_string(&mut body).await?;
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct VercelResponse {
|
||||
error: VercelError,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct VercelError {
|
||||
message: String,
|
||||
}
|
||||
|
||||
match serde_json::from_str::<VercelResponse>(&body) {
|
||||
Ok(response) if !response.error.message.is_empty() => Err(anyhow!(
|
||||
"Failed to connect to Vercel API: {}",
|
||||
response.error.message,
|
||||
)),
|
||||
|
||||
_ => anyhow::bail!(
|
||||
"Failed to connect to Vercel API: {} {}",
|
||||
response.status(),
|
||||
body,
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Serialize, Deserialize)]
|
||||
pub enum VercelEmbeddingModel {
|
||||
#[serde(rename = "text-embedding-3-small")]
|
||||
TextEmbedding3Small,
|
||||
#[serde(rename = "text-embedding-3-large")]
|
||||
TextEmbedding3Large,
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
struct VercelEmbeddingRequest<'a> {
|
||||
model: VercelEmbeddingModel,
|
||||
input: Vec<&'a str>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
pub struct VercelEmbeddingResponse {
|
||||
pub data: Vec<VercelEmbedding>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
pub struct VercelEmbedding {
|
||||
pub embedding: Vec<f32>,
|
||||
}
|
||||
|
||||
pub fn embed<'a>(
|
||||
client: &dyn HttpClient,
|
||||
api_url: &str,
|
||||
api_key: &str,
|
||||
model: VercelEmbeddingModel,
|
||||
texts: impl IntoIterator<Item = &'a str>,
|
||||
) -> impl 'static + Future<Output = Result<VercelEmbeddingResponse>> {
|
||||
let uri = format!("{api_url}/embeddings");
|
||||
|
||||
let request = VercelEmbeddingRequest {
|
||||
model,
|
||||
input: texts.into_iter().collect(),
|
||||
};
|
||||
let body = AsyncBody::from(serde_json::to_string(&request).unwrap());
|
||||
let request = HttpRequest::builder()
|
||||
.method(Method::POST)
|
||||
.uri(uri)
|
||||
.header("Content-Type", "application/json")
|
||||
.header("Authorization", format!("Bearer {}", api_key))
|
||||
.body(body)
|
||||
.map(|request| client.send(request));
|
||||
|
||||
async move {
|
||||
let mut response = request?.await?;
|
||||
let mut body = String::new();
|
||||
response.body_mut().read_to_string(&mut body).await?;
|
||||
|
||||
anyhow::ensure!(
|
||||
response.status().is_success(),
|
||||
"error during embedding, status: {:?}, body: {:?}",
|
||||
response.status(),
|
||||
body
|
||||
);
|
||||
let response: VercelEmbeddingResponse =
|
||||
serde_json::from_str(&body).context("failed to parse Vercel embedding response")?;
|
||||
Ok(response)
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue