This commit is contained in:
Junkui Zhang 2025-07-14 18:35:52 +08:00
parent ecde968a0c
commit 201c274c4b

View file

@ -93,10 +93,9 @@ float4 to_device_position(float2 unit_vertex, Bounds bounds) {
} }
float4 distance_from_clip_rect_impl(float2 position, Bounds clip_bounds) { float4 distance_from_clip_rect_impl(float2 position, Bounds clip_bounds) {
return float4(position.x - clip_bounds.origin.x, float2 tl = position - clip_bounds.origin;
clip_bounds.origin.x + clip_bounds.size.x - position.x, float2 br = clip_bounds.origin + clip_bounds.size - position;
position.y - clip_bounds.origin.y, return float4(tl.x, br.x, tl.y, br.y);
clip_bounds.origin.y + clip_bounds.size.y - position.y);
} }
float4 distance_from_clip_rect(float2 unit_vertex, Bounds bounds, Bounds clip_bounds) { float4 distance_from_clip_rect(float2 unit_vertex, Bounds bounds, Bounds clip_bounds) {
@ -293,20 +292,20 @@ float quad_sdf(float2 pt, Bounds bounds, Corners corner_radii) {
return quad_sdf_impl(corner_center_to_point, corner_radius); return quad_sdf_impl(corner_center_to_point, corner_radius);
} }
GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, Hsla color0, Hsla color1) { GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, LinearColorStop colors[2]) {
GradientColor output; GradientColor output;
if (tag == 0) { if (tag == 0 || tag == 2) {
output.solid = hsla_to_rgba(solid); output.solid = hsla_to_rgba(solid);
} else if (tag == 1) { } else if (tag == 1) {
output.color0 = hsla_to_rgba(color0); output.color0 = hsla_to_rgba(colors[0].color);
output.color1 = hsla_to_rgba(color1); output.color1 = hsla_to_rgba(colors[1].color);
// Prepare color space in vertex for avoid conversion // Prepare color space in vertex for avoid conversion
// in fragment shader for performance reasons // in fragment shader for performance reasons
if (color_space == 1) { if (color_space == 1) {
// Oklab // Oklab
output.color0 = srgb_to_oklab(output.color0); output.color0 = srgb_to_oklab(output.color0);
output.color1 = srgb_to_oklab(output.color1); output.color1 = srgb_to_oklab(output.color1);
} }
} }
@ -444,99 +443,6 @@ float quarter_ellipse_sdf(float2 pt, float2 radii) {
return unit_circle_sdf * (radii.x + radii.y) * -0.5; return unit_circle_sdf * (radii.x + radii.y) * -0.5;
} }
/*
**
** Shadows
**
*/
struct ShadowVertexOutput {
float4 position: SV_Position;
float4 color: COLOR;
uint shadow_id: FLAT;
float4 clip_distance: SV_ClipDistance;
};
struct ShadowFragmentInput {
float4 position: SV_Position;
float4 color: COLOR;
uint shadow_id: FLAT;
};
struct Shadow {
uint order;
float blur_radius;
Bounds bounds;
Corners corner_radii;
Bounds content_mask;
Hsla color;
};
StructuredBuffer<Shadow> shadows: register(t1);
ShadowVertexOutput shadow_vertex(uint vertex_id: SV_VertexID, uint shadow_id: SV_InstanceID) {
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
Shadow shadow = shadows[shadow_id];
float margin = 3.0 * shadow.blur_radius;
Bounds bounds = shadow.bounds;
bounds.origin -= margin;
bounds.size += 2.0 * margin;
float4 device_position = to_device_position(unit_vertex, bounds);
float4 clip_distance = distance_from_clip_rect(unit_vertex, bounds, shadow.content_mask);
float4 color = hsla_to_rgba(shadow.color);
ShadowVertexOutput output;
output.position = device_position;
output.color = color;
output.shadow_id = shadow_id;
output.clip_distance = clip_distance;
return output;
}
float4 shadow_fragment(ShadowFragmentInput input): SV_TARGET {
Shadow shadow = shadows[input.shadow_id];
float2 half_size = shadow.bounds.size / 2.;
float2 center = shadow.bounds.origin + half_size;
float2 point0 = input.position.xy - center;
float corner_radius;
if (point0.x < 0.) {
if (point0.y < 0.) {
corner_radius = shadow.corner_radii.top_left;
} else {
corner_radius = shadow.corner_radii.bottom_left;
}
} else {
if (point0.y < 0.) {
corner_radius = shadow.corner_radii.top_right;
} else {
corner_radius = shadow.corner_radii.bottom_right;
}
}
// The signal is only non-zero in a limited range, so don't waste samples
float low = point0.y - half_size.y;
float high = point0.y + half_size.y;
float start = clamp(-3. * shadow.blur_radius, low, high);
float end = clamp(3. * shadow.blur_radius, low, high);
// Accumulate samples (we can get away with surprisingly few samples)
float step = (end - start) / 4.;
float y = start + step * 0.5;
float alpha = 0.;
for (int i = 0; i < 4; i++) {
alpha += blur_along_x(point0.x, point0.y - y, shadow.blur_radius,
corner_radius, half_size) *
gaussian(y, shadow.blur_radius) * step;
y += step;
}
return input.color * float4(1., 1., 1., alpha);
}
/* /*
** **
** Quads ** Quads
@ -579,16 +485,15 @@ QuadVertexOutput quad_vertex(uint vertex_id: SV_VertexID, uint quad_id: SV_Insta
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u)); float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
Quad quad = quads[quad_id]; Quad quad = quads[quad_id];
float4 device_position = to_device_position(unit_vertex, quad.bounds); float4 device_position = to_device_position(unit_vertex, quad.bounds);
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
float4 border_color = hsla_to_rgba(quad.border_color);
GradientColor gradient = prepare_gradient_color( GradientColor gradient = prepare_gradient_color(
quad.background.tag, quad.background.tag,
quad.background.color_space, quad.background.color_space,
quad.background.solid, quad.background.solid,
quad.background.colors[0].color, quad.background.colors
quad.background.colors[1].color
); );
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
float4 border_color = hsla_to_rgba(quad.border_color);
QuadVertexOutput output; QuadVertexOutput output;
output.position = device_position; output.position = device_position;
@ -885,17 +790,97 @@ float4 quad_fragment(QuadFragmentInput input): SV_Target {
return color * float4(1.0, 1.0, 1.0, saturate(antialias_threshold - outer_sdf)); return color * float4(1.0, 1.0, 1.0, saturate(antialias_threshold - outer_sdf));
} }
struct PathVertex { /*
float2 xy_position; **
Bounds content_mask; ** Shadows
**
*/
struct ShadowVertexOutput {
float4 position: SV_Position;
nointerpolation float4 color: COLOR;
nointerpolation uint shadow_id: TEXCOORD0;
float4 clip_distance: SV_ClipDistance;
}; };
struct ShadowFragmentInput {
float4 position: SV_Position;
float4 color: COLOR;
nointerpolation uint shadow_id: TEXCOORD0;
};
struct Shadow {
uint order;
float blur_radius;
Bounds bounds;
Corners corner_radii;
Bounds content_mask;
Hsla color;
};
StructuredBuffer<Shadow> shadows: register(t1);
ShadowVertexOutput shadow_vertex(uint vertex_id: SV_VertexID, uint shadow_id: SV_InstanceID) {
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
Shadow shadow = shadows[shadow_id];
float margin = 3.0 * shadow.blur_radius;
Bounds bounds = shadow.bounds;
bounds.origin -= margin;
bounds.size += 2.0 * margin;
float4 device_position = to_device_position(unit_vertex, bounds);
float4 clip_distance = distance_from_clip_rect(unit_vertex, bounds, shadow.content_mask);
float4 color = hsla_to_rgba(shadow.color);
ShadowVertexOutput output;
output.position = device_position;
output.color = color;
output.shadow_id = shadow_id;
output.clip_distance = clip_distance;
return output;
}
float4 shadow_fragment(ShadowFragmentInput input): SV_TARGET {
Shadow shadow = shadows[input.shadow_id];
float2 half_size = shadow.bounds.size / 2.;
float2 center = shadow.bounds.origin + half_size;
float2 point0 = input.position.xy - center;
float corner_radius = pick_corner_radius(point0, shadow.corner_radii);
// The signal is only non-zero in a limited range, so don't waste samples
float low = point0.y - half_size.y;
float high = point0.y + half_size.y;
float start = clamp(-3. * shadow.blur_radius, low, high);
float end = clamp(3. * shadow.blur_radius, low, high);
// Accumulate samples (we can get away with surprisingly few samples)
float step = (end - start) / 4.;
float y = start + step * 0.5;
float alpha = 0.;
for (int i = 0; i < 4; i++) {
alpha += blur_along_x(point0.x, point0.y - y, shadow.blur_radius,
corner_radius, half_size) *
gaussian(y, shadow.blur_radius) * step;
y += step;
}
return input.color * float4(1., 1., 1., alpha);
}
/* /*
** **
** Paths ** Paths
** **
*/ */
struct PathVertex {
float2 xy_position;
Bounds content_mask;
};
struct PathSprite { struct PathSprite {
Bounds bounds; Bounds bounds;
Background color; Background color;
@ -926,8 +911,7 @@ PathVertexOutput paths_vertex(uint vertex_id: SV_VertexID, uint instance_id: SV_
sprite.color.tag, sprite.color.tag,
sprite.color.color_space, sprite.color.color_space,
sprite.color.solid, sprite.color.solid,
sprite.color.colors[0].color, sprite.color.colors
sprite.color.colors[1].color
); );
output.solid_color = gradient.solid; output.solid_color = gradient.solid;
@ -967,15 +951,15 @@ struct Underline {
struct UnderlineVertexOutput { struct UnderlineVertexOutput {
float4 position: SV_Position; float4 position: SV_Position;
float4 color: COLOR; nointerpolation float4 color: COLOR;
uint underline_id: FLAT; nointerpolation uint underline_id: TEXCOORD0;
float4 clip_distance: SV_ClipDistance; float4 clip_distance: SV_ClipDistance;
}; };
struct UnderlineFragmentInput { struct UnderlineFragmentInput {
float4 position: SV_Position; float4 position: SV_Position;
float4 color: COLOR; nointerpolation float4 color: COLOR;
uint underline_id: FLAT; nointerpolation uint underline_id: TEXCOORD0;
}; };
StructuredBuffer<Underline> underlines: register(t1); StructuredBuffer<Underline> underlines: register(t1);
@ -1000,10 +984,8 @@ float4 underline_fragment(UnderlineFragmentInput input): SV_Target {
Underline underline = underlines[input.underline_id]; Underline underline = underlines[input.underline_id];
if (underline.wavy) { if (underline.wavy) {
float half_thickness = underline.thickness * 0.5; float half_thickness = underline.thickness * 0.5;
float2 origin = float2 origin = underline.bounds.origin;
float2(underline.bounds.origin.x, underline.bounds.origin.y); float2 st = ((input.position.xy - origin) / underline.bounds.size.y) - float2(0., 0.5);
float2 st = ((input.position.xy - origin) / underline.bounds.size.y) -
float2(0., 0.5);
float frequency = (M_PI_F * (3. * underline.thickness)) / 8.; float frequency = (M_PI_F * (3. * underline.thickness)) / 8.;
float amplitude = 1. / (2. * underline.thickness); float amplitude = 1. / (2. * underline.thickness);
float sine = sin(st.x * frequency) * amplitude; float sine = sin(st.x * frequency) * amplitude;
@ -1039,14 +1021,14 @@ struct MonochromeSprite {
struct MonochromeSpriteVertexOutput { struct MonochromeSpriteVertexOutput {
float4 position: SV_Position; float4 position: SV_Position;
float2 tile_position: POSITION; float2 tile_position: POSITION;
float4 color: COLOR; nointerpolation float4 color: COLOR;
float4 clip_distance: SV_ClipDistance; float4 clip_distance: SV_ClipDistance;
}; };
struct MonochromeSpriteFragmentInput { struct MonochromeSpriteFragmentInput {
float4 position: SV_Position; float4 position: SV_Position;
float2 tile_position: POSITION; float2 tile_position: POSITION;
float4 color: COLOR; nointerpolation float4 color: COLOR;
}; };
StructuredBuffer<MonochromeSprite> mono_sprites: register(t1); StructuredBuffer<MonochromeSprite> mono_sprites: register(t1);