catchup with main

This commit is contained in:
KCaverly 2023-09-15 09:31:33 -04:00
commit 3a661c5977
67 changed files with 2965 additions and 2922 deletions

View file

@ -16,14 +16,16 @@ use embedding_queue::{EmbeddingQueue, FileToEmbed};
use futures::{future, FutureExt, StreamExt};
use gpui::{AppContext, AsyncAppContext, Entity, ModelContext, ModelHandle, Task, WeakModelHandle};
use language::{Anchor, Bias, Buffer, Language, LanguageRegistry};
use ordered_float::OrderedFloat;
use parking_lot::Mutex;
use parsing::{CodeContextRetriever, SpanDigest, PARSEABLE_ENTIRE_FILE_TYPES};
use parsing::{CodeContextRetriever, Span, SpanDigest, PARSEABLE_ENTIRE_FILE_TYPES};
use postage::watch;
use project::{search::PathMatcher, Fs, PathChange, Project, ProjectEntryId, Worktree, WorktreeId};
use smol::channel;
use std::{
cmp::Ordering,
cmp::Reverse,
future::Future,
mem,
ops::Range,
path::{Path, PathBuf},
sync::{Arc, Weak},
@ -37,7 +39,7 @@ use util::{
};
use workspace::WorkspaceCreated;
const SEMANTIC_INDEX_VERSION: usize = 10;
const SEMANTIC_INDEX_VERSION: usize = 11;
const BACKGROUND_INDEXING_DELAY: Duration = Duration::from_secs(5 * 60);
const EMBEDDING_QUEUE_FLUSH_TIMEOUT: Duration = Duration::from_millis(250);
@ -262,9 +264,11 @@ pub struct PendingFile {
job_handle: JobHandle,
}
#[derive(Clone)]
pub struct SearchResult {
pub buffer: ModelHandle<Buffer>,
pub range: Range<Anchor>,
pub similarity: OrderedFloat<f32>,
}
impl SemanticIndex {
@ -402,7 +406,7 @@ impl SemanticIndex {
if let Some(content) = fs.load(&pending_file.absolute_path).await.log_err() {
if let Some(mut spans) = retriever
.parse_file_with_template(&pending_file.relative_path, &content, language)
.parse_file_with_template(Some(&pending_file.relative_path), &content, language)
.log_err()
{
log::trace!(
@ -422,7 +426,7 @@ impl SemanticIndex {
path: pending_file.relative_path,
mtime: pending_file.modified_time,
job_handle: pending_file.job_handle,
spans: spans,
spans,
});
}
}
@ -687,39 +691,71 @@ impl SemanticIndex {
pub fn search_project(
&mut self,
project: ModelHandle<Project>,
phrase: String,
query: String,
limit: usize,
includes: Vec<PathMatcher>,
excludes: Vec<PathMatcher>,
cx: &mut ModelContext<Self>,
) -> Task<Result<Vec<SearchResult>>> {
if query.is_empty() {
return Task::ready(Ok(Vec::new()));
}
let index = self.index_project(project.clone(), cx);
let embedding_provider = self.embedding_provider.clone();
cx.spawn(|this, mut cx| async move {
let query = embedding_provider
.embed_batch(vec![query])
.await?
.pop()
.ok_or_else(|| anyhow!("could not embed query"))?;
index.await?;
let search_start = Instant::now();
let modified_buffer_results = this.update(&mut cx, |this, cx| {
this.search_modified_buffers(&project, query.clone(), limit, &excludes, cx)
});
let file_results = this.update(&mut cx, |this, cx| {
this.search_files(project, query, limit, includes, excludes, cx)
});
let (modified_buffer_results, file_results) =
futures::join!(modified_buffer_results, file_results);
// Weave together the results from modified buffers and files.
let mut results = Vec::new();
let mut modified_buffers = HashSet::default();
for result in modified_buffer_results.log_err().unwrap_or_default() {
modified_buffers.insert(result.buffer.clone());
results.push(result);
}
for result in file_results.log_err().unwrap_or_default() {
if !modified_buffers.contains(&result.buffer) {
results.push(result);
}
}
results.sort_by_key(|result| Reverse(result.similarity));
results.truncate(limit);
log::trace!("Semantic search took {:?}", search_start.elapsed());
Ok(results)
})
}
pub fn search_files(
&mut self,
project: ModelHandle<Project>,
query: Embedding,
limit: usize,
includes: Vec<PathMatcher>,
excludes: Vec<PathMatcher>,
cx: &mut ModelContext<Self>,
) -> Task<Result<Vec<SearchResult>>> {
let db_path = self.db.path().clone();
let fs = self.fs.clone();
cx.spawn(|this, mut cx| async move {
index.await?;
let t0 = Instant::now();
let database =
VectorDatabase::new(fs.clone(), db_path.clone(), cx.background()).await?;
if phrase.len() == 0 {
return Ok(Vec::new());
}
let phrase_embedding = embedding_provider
.embed_batch(vec![phrase])
.await?
.into_iter()
.next()
.unwrap();
log::trace!(
"Embedding search phrase took: {:?} milliseconds",
t0.elapsed().as_millis()
);
let worktree_db_ids = this.read_with(&cx, |this, _| {
let project_state = this
.projects
@ -738,6 +774,7 @@ impl SemanticIndex {
.collect::<Vec<i64>>();
anyhow::Ok(worktree_db_ids)
})?;
let file_ids = database
.retrieve_included_file_ids(&worktree_db_ids, &includes, &excludes)
.await?;
@ -756,26 +793,26 @@ impl SemanticIndex {
let limit = limit.clone();
let fs = fs.clone();
let db_path = db_path.clone();
let phrase_embedding = phrase_embedding.clone();
let query = query.clone();
if let Some(db) = VectorDatabase::new(fs, db_path.clone(), cx.background())
.await
.log_err()
{
batch_results.push(async move {
db.top_k_search(&phrase_embedding, limit, batch.as_slice())
.await
db.top_k_search(&query, limit, batch.as_slice()).await
});
}
}
let batch_results = futures::future::join_all(batch_results).await;
let mut results = Vec::new();
for batch_result in batch_results {
if batch_result.is_ok() {
for (id, similarity) in batch_result.unwrap() {
let ix = match results.binary_search_by(|(_, s)| {
similarity.partial_cmp(&s).unwrap_or(Ordering::Equal)
}) {
let ix = match results
.binary_search_by_key(&Reverse(similarity), |(_, s)| Reverse(*s))
{
Ok(ix) => ix,
Err(ix) => ix,
};
@ -785,7 +822,11 @@ impl SemanticIndex {
}
}
let ids = results.into_iter().map(|(id, _)| id).collect::<Vec<i64>>();
let ids = results.iter().map(|(id, _)| *id).collect::<Vec<i64>>();
let scores = results
.into_iter()
.map(|(_, score)| score)
.collect::<Vec<_>>();
let spans = database.spans_for_ids(ids.as_slice()).await?;
let mut tasks = Vec::new();
@ -810,24 +851,106 @@ impl SemanticIndex {
let buffers = futures::future::join_all(tasks).await;
log::trace!(
"Semantic Searching took: {:?} milliseconds in total",
t0.elapsed().as_millis()
);
Ok(buffers
.into_iter()
.zip(ranges)
.filter_map(|(buffer, range)| {
.zip(scores)
.filter_map(|((buffer, range), similarity)| {
let buffer = buffer.log_err()?;
let range = buffer.read_with(&cx, |buffer, _| {
let start = buffer.clip_offset(range.start, Bias::Left);
let end = buffer.clip_offset(range.end, Bias::Right);
buffer.anchor_before(start)..buffer.anchor_after(end)
});
Some(SearchResult { buffer, range })
Some(SearchResult {
buffer,
range,
similarity,
})
})
.collect::<Vec<_>>())
.collect())
})
}
fn search_modified_buffers(
&self,
project: &ModelHandle<Project>,
query: Embedding,
limit: usize,
excludes: &[PathMatcher],
cx: &mut ModelContext<Self>,
) -> Task<Result<Vec<SearchResult>>> {
let modified_buffers = project
.read(cx)
.opened_buffers(cx)
.into_iter()
.filter_map(|buffer_handle| {
let buffer = buffer_handle.read(cx);
let snapshot = buffer.snapshot();
let excluded = snapshot.resolve_file_path(cx, false).map_or(false, |path| {
excludes.iter().any(|matcher| matcher.is_match(&path))
});
if buffer.is_dirty() && !excluded {
Some((buffer_handle, snapshot))
} else {
None
}
})
.collect::<HashMap<_, _>>();
let embedding_provider = self.embedding_provider.clone();
let fs = self.fs.clone();
let db_path = self.db.path().clone();
let background = cx.background().clone();
cx.background().spawn(async move {
let db = VectorDatabase::new(fs, db_path.clone(), background).await?;
let mut results = Vec::<SearchResult>::new();
let mut retriever = CodeContextRetriever::new(embedding_provider.clone());
for (buffer, snapshot) in modified_buffers {
let language = snapshot
.language_at(0)
.cloned()
.unwrap_or_else(|| language::PLAIN_TEXT.clone());
let mut spans = retriever
.parse_file_with_template(None, &snapshot.text(), language)
.log_err()
.unwrap_or_default();
if Self::embed_spans(&mut spans, embedding_provider.as_ref(), &db)
.await
.log_err()
.is_some()
{
for span in spans {
let similarity = span.embedding.unwrap().similarity(&query);
let ix = match results
.binary_search_by_key(&Reverse(similarity), |result| {
Reverse(result.similarity)
}) {
Ok(ix) => ix,
Err(ix) => ix,
};
let range = {
let start = snapshot.clip_offset(span.range.start, Bias::Left);
let end = snapshot.clip_offset(span.range.end, Bias::Right);
snapshot.anchor_before(start)..snapshot.anchor_after(end)
};
results.insert(
ix,
SearchResult {
buffer: buffer.clone(),
range,
similarity,
},
);
results.truncate(limit);
}
}
}
Ok(results)
})
}
@ -1009,6 +1132,63 @@ impl SemanticIndex {
Ok(())
})
}
async fn embed_spans(
spans: &mut [Span],
embedding_provider: &dyn EmbeddingProvider,
db: &VectorDatabase,
) -> Result<()> {
let mut batch = Vec::new();
let mut batch_tokens = 0;
let mut embeddings = Vec::new();
let digests = spans
.iter()
.map(|span| span.digest.clone())
.collect::<Vec<_>>();
let embeddings_for_digests = db
.embeddings_for_digests(digests)
.await
.log_err()
.unwrap_or_default();
for span in &*spans {
if embeddings_for_digests.contains_key(&span.digest) {
continue;
};
if batch_tokens + span.token_count > embedding_provider.max_tokens_per_batch() {
let batch_embeddings = embedding_provider
.embed_batch(mem::take(&mut batch))
.await?;
embeddings.extend(batch_embeddings);
batch_tokens = 0;
}
batch_tokens += span.token_count;
batch.push(span.content.clone());
}
if !batch.is_empty() {
let batch_embeddings = embedding_provider
.embed_batch(mem::take(&mut batch))
.await?;
embeddings.extend(batch_embeddings);
}
let mut embeddings = embeddings.into_iter();
for span in spans {
let embedding = if let Some(embedding) = embeddings_for_digests.get(&span.digest) {
Some(embedding.clone())
} else {
embeddings.next()
};
let embedding = embedding.ok_or_else(|| anyhow!("failed to embed spans"))?;
span.embedding = Some(embedding);
}
Ok(())
}
}
impl Entity for SemanticIndex {