Add xAI language model provider (#33593)

Closes #30010

Release Notes:

- Add support for xAI language model provider
This commit is contained in:
Umesh Yadav 2025-07-16 01:05:50 +05:30 committed by Peter Tripp
parent 7f2283749b
commit 3a7871d248
No known key found for this signature in database
14 changed files with 840 additions and 28 deletions

12
Cargo.lock generated
View file

@ -9001,6 +9001,7 @@ dependencies = [
"util",
"vercel",
"workspace-hack",
"x_ai",
"zed_llm_client",
]
@ -19732,6 +19733,17 @@ version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec107c4503ea0b4a98ef47356329af139c0a4f7750e621cf2973cd3385ebcb3d"
[[package]]
name = "x_ai"
version = "0.1.0"
dependencies = [
"anyhow",
"schemars",
"serde",
"strum 0.27.1",
"workspace-hack",
]
[[package]]
name = "xattr"
version = "0.2.3"

View file

@ -177,6 +177,7 @@ members = [
"crates/welcome",
"crates/workspace",
"crates/worktree",
"crates/x_ai",
"crates/zed",
"crates/zed_actions",
"crates/zeta",
@ -390,6 +391,7 @@ web_search_providers = { path = "crates/web_search_providers" }
welcome = { path = "crates/welcome" }
workspace = { path = "crates/workspace" }
worktree = { path = "crates/worktree" }
x_ai = { path = "crates/x_ai" }
zed = { path = "crates/zed" }
zed_actions = { path = "crates/zed_actions" }
zeta = { path = "crates/zeta" }

3
assets/icons/ai_x_ai.svg Normal file
View file

@ -0,0 +1,3 @@
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="m12.414 5.47.27 9.641h2.157l.27-13.15zM15.11.889h-3.293L6.651 7.613l1.647 2.142zM.889 15.11H4.18l1.647-2.142-1.647-2.143zm0-9.641 7.409 9.641h3.292L4.181 5.47z" fill="#000"/>
</svg>

After

Width:  |  Height:  |  Size: 289 B

View file

@ -20,6 +20,7 @@ pub enum IconName {
AiOpenAi,
AiOpenRouter,
AiVZero,
AiXAi,
AiZed,
ArrowCircle,
ArrowDown,

View file

@ -44,6 +44,7 @@ ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
open_router = { workspace = true, features = ["schemars"] }
vercel = { workspace = true, features = ["schemars"] }
x_ai = { workspace = true, features = ["schemars"] }
partial-json-fixer.workspace = true
proto.workspace = true
release_channel.workspace = true

View file

@ -20,6 +20,7 @@ use crate::provider::ollama::OllamaLanguageModelProvider;
use crate::provider::open_ai::OpenAiLanguageModelProvider;
use crate::provider::open_router::OpenRouterLanguageModelProvider;
use crate::provider::vercel::VercelLanguageModelProvider;
use crate::provider::x_ai::XAiLanguageModelProvider;
pub use crate::settings::*;
pub fn init(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) {
@ -81,5 +82,6 @@ fn register_language_model_providers(
VercelLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(XAiLanguageModelProvider::new(client.http_client(), cx), cx);
registry.register_provider(CopilotChatLanguageModelProvider::new(cx), cx);
}

View file

@ -10,3 +10,4 @@ pub mod ollama;
pub mod open_ai;
pub mod open_router;
pub mod vercel;
pub mod x_ai;

View file

@ -376,7 +376,7 @@ impl LanguageModel for OpenRouterLanguageModel {
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
let model_id = self.model.id().trim().to_lowercase();
if model_id.contains("gemini") {
if model_id.contains("gemini") || model_id.contains("grok-4") {
LanguageModelToolSchemaFormat::JsonSchemaSubset
} else {
LanguageModelToolSchemaFormat::JsonSchema

View file

@ -0,0 +1,571 @@
use anyhow::{Context as _, Result, anyhow};
use collections::BTreeMap;
use credentials_provider::CredentialsProvider;
use futures::{FutureExt, StreamExt, future::BoxFuture};
use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
LanguageModelToolChoice, LanguageModelToolSchemaFormat, RateLimiter, Role,
};
use menu;
use open_ai::ResponseStreamEvent;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::sync::Arc;
use strum::IntoEnumIterator;
use x_ai::Model;
use ui::{ElevationIndex, List, Tooltip, prelude::*};
use ui_input::SingleLineInput;
use util::ResultExt;
use crate::{AllLanguageModelSettings, ui::InstructionListItem};
const PROVIDER_ID: &str = "x_ai";
const PROVIDER_NAME: &str = "xAI";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct XAiSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
pub name: String,
pub display_name: Option<String>,
pub max_tokens: u64,
pub max_output_tokens: Option<u64>,
pub max_completion_tokens: Option<u64>,
}
pub struct XAiLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
api_key: Option<String>,
api_key_from_env: bool,
_subscription: Subscription,
}
const XAI_API_KEY_VAR: &str = "XAI_API_KEY";
impl State {
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
credentials_provider
.delete_credentials(&api_url, &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = None;
this.api_key_from_env = false;
cx.notify();
})
})
}
fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
credentials_provider
.write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
if self.is_authenticated() {
return Task::ready(Ok(()));
}
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
cx.spawn(async move |this, cx| {
let (api_key, from_env) = if let Ok(api_key) = std::env::var(XAI_API_KEY_VAR) {
(api_key, true)
} else {
let (_, api_key) = credentials_provider
.read_credentials(&api_url, &cx)
.await?
.ok_or(AuthenticateError::CredentialsNotFound)?;
(
String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
false,
)
};
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
this.api_key_from_env = from_env;
cx.notify();
})?;
Ok(())
})
}
}
impl XAiLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let state = cx.new(|cx| State {
api_key: None,
api_key_from_env: false,
_subscription: cx.observe_global::<SettingsStore>(|_this: &mut State, cx| {
cx.notify();
}),
});
Self { http_client, state }
}
fn create_language_model(&self, model: x_ai::Model) -> Arc<dyn LanguageModel> {
Arc::new(XAiLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
})
}
}
impl LanguageModelProviderState for XAiLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for XAiLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiXAi
}
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(x_ai::Model::default()))
}
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(x_ai::Model::default_fast()))
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
for model in x_ai::Model::iter() {
if !matches!(model, x_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
for model in &AllLanguageModelSettings::get_global(cx)
.x_ai
.available_models
{
models.insert(
model.name.clone(),
x_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
max_output_tokens: model.max_output_tokens,
max_completion_tokens: model.max_completion_tokens,
},
);
}
models
.into_values()
.map(|model| self.create_language_model(model))
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
.into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.reset_api_key(cx))
}
}
pub struct XAiLanguageModel {
id: LanguageModelId,
model: x_ai::Model,
state: gpui::Entity<State>,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl XAiLanguageModel {
fn stream_completion(
&self,
request: open_ai::Request,
cx: &AsyncApp,
) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
{
let http_client = self.http_client.clone();
let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
let api_url = if settings.api_url.is_empty() {
x_ai::XAI_API_URL.to_string()
} else {
settings.api_url.clone()
};
(state.api_key.clone(), api_url)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
let future = self.request_limiter.stream(async move {
let api_key = api_key.context("Missing xAI API Key")?;
let request =
open_ai::stream_completion(http_client.as_ref(), &api_url, &api_key, request);
let response = request.await?;
Ok(response)
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
impl LanguageModel for XAiLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn supports_tools(&self) -> bool {
self.model.supports_tool()
}
fn supports_images(&self) -> bool {
self.model.supports_images()
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto
| LanguageModelToolChoice::Any
| LanguageModelToolChoice::None => true,
}
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
let model_id = self.model.id().trim().to_lowercase();
if model_id.eq(x_ai::Model::Grok4.id()) {
LanguageModelToolSchemaFormat::JsonSchemaSubset
} else {
LanguageModelToolSchemaFormat::JsonSchema
}
}
fn telemetry_id(&self) -> String {
format!("x_ai/{}", self.model.id())
}
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn max_output_tokens(&self) -> Option<u64> {
self.model.max_output_tokens()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
count_xai_tokens(request, self.model.clone(), cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
futures::stream::BoxStream<
'static,
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
>,
LanguageModelCompletionError,
>,
> {
let request = crate::provider::open_ai::into_open_ai(
request,
self.model.id(),
self.model.supports_parallel_tool_calls(),
self.max_output_tokens(),
);
let completions = self.stream_completion(request, cx);
async move {
let mapper = crate::provider::open_ai::OpenAiEventMapper::new();
Ok(mapper.map_stream(completions.await?).boxed())
}
.boxed()
}
}
pub fn count_xai_tokens(
request: LanguageModelRequest,
model: Model,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
cx.background_spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.string_contents()),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
let model_name = if model.max_token_count() >= 100_000 {
"gpt-4o"
} else {
"gpt-4"
};
tiktoken_rs::num_tokens_from_messages(model_name, &messages).map(|tokens| tokens as u64)
})
.boxed()
}
struct ConfigurationView {
api_key_editor: Entity<SingleLineInput>,
state: gpui::Entity<State>,
load_credentials_task: Option<Task<()>>,
}
impl ConfigurationView {
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
let api_key_editor = cx.new(|cx| {
SingleLineInput::new(
window,
cx,
"xai-0000000000000000000000000000000000000000000000000",
)
.label("API key")
});
cx.observe(&state, |_, _, cx| {
cx.notify();
})
.detach();
let load_credentials_task = Some(cx.spawn_in(window, {
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
// We don't log an error, because "not signed in" is also an error.
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
api_key_editor,
state,
load_credentials_task,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
let api_key = self
.api_key_editor
.read(cx)
.editor()
.read(cx)
.text(cx)
.trim()
.to_string();
// Don't proceed if no API key is provided and we're not authenticated
if api_key.is_empty() && !self.state.read(cx).is_authenticated() {
return;
}
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state
.update(cx, |state, cx| state.set_api_key(api_key, cx))?
.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
self.api_key_editor.update(cx, |input, cx| {
input.editor.update(cx, |editor, cx| {
editor.set_text("", window, cx);
});
});
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
!self.state.read(cx).is_authenticated()
}
}
impl Render for ConfigurationView {
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let env_var_set = self.state.read(cx).api_key_from_env;
let api_key_section = if self.should_render_editor(cx) {
v_flex()
.on_action(cx.listener(Self::save_api_key))
.child(Label::new("To use Zed's agent with xAI, you need to add an API key. Follow these steps:"))
.child(
List::new()
.child(InstructionListItem::new(
"Create one by visiting",
Some("xAI console"),
Some("https://console.x.ai/team/default/api-keys"),
))
.child(InstructionListItem::text_only(
"Paste your API key below and hit enter to start using the agent",
)),
)
.child(self.api_key_editor.clone())
.child(
Label::new(format!(
"You can also assign the {XAI_API_KEY_VAR} environment variable and restart Zed."
))
.size(LabelSize::Small)
.color(Color::Muted),
)
.child(
Label::new("Note that xAI is a custom OpenAI-compatible provider.")
.size(LabelSize::Small)
.color(Color::Muted),
)
.into_any()
} else {
h_flex()
.mt_1()
.p_1()
.justify_between()
.rounded_md()
.border_1()
.border_color(cx.theme().colors().border)
.bg(cx.theme().colors().background)
.child(
h_flex()
.gap_1()
.child(Icon::new(IconName::Check).color(Color::Success))
.child(Label::new(if env_var_set {
format!("API key set in {XAI_API_KEY_VAR} environment variable.")
} else {
"API key configured.".to_string()
})),
)
.child(
Button::new("reset-api-key", "Reset API Key")
.label_size(LabelSize::Small)
.icon(IconName::Undo)
.icon_size(IconSize::Small)
.icon_position(IconPosition::Start)
.layer(ElevationIndex::ModalSurface)
.when(env_var_set, |this| {
this.tooltip(Tooltip::text(format!("To reset your API key, unset the {XAI_API_KEY_VAR} environment variable.")))
})
.on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
)
.into_any()
};
if self.load_credentials_task.is_some() {
div().child(Label::new("Loading credentials…")).into_any()
} else {
v_flex().size_full().child(api_key_section).into_any()
}
}
}

View file

@ -17,6 +17,7 @@ use crate::provider::{
open_ai::OpenAiSettings,
open_router::OpenRouterSettings,
vercel::VercelSettings,
x_ai::XAiSettings,
};
/// Initializes the language model settings.
@ -28,33 +29,33 @@ pub fn init(cx: &mut App) {
pub struct AllLanguageModelSettings {
pub anthropic: AnthropicSettings,
pub bedrock: AmazonBedrockSettings,
pub ollama: OllamaSettings,
pub openai: OpenAiSettings,
pub open_router: OpenRouterSettings,
pub zed_dot_dev: ZedDotDevSettings,
pub google: GoogleSettings,
pub vercel: VercelSettings,
pub lmstudio: LmStudioSettings,
pub deepseek: DeepSeekSettings,
pub google: GoogleSettings,
pub lmstudio: LmStudioSettings,
pub mistral: MistralSettings,
pub ollama: OllamaSettings,
pub open_router: OpenRouterSettings,
pub openai: OpenAiSettings,
pub vercel: VercelSettings,
pub x_ai: XAiSettings,
pub zed_dot_dev: ZedDotDevSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option<AnthropicSettingsContent>,
pub bedrock: Option<AmazonBedrockSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub deepseek: Option<DeepseekSettingsContent>,
pub google: Option<GoogleSettingsContent>,
pub lmstudio: Option<LmStudioSettingsContent>,
pub openai: Option<OpenAiSettingsContent>,
pub mistral: Option<MistralSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub open_router: Option<OpenRouterSettingsContent>,
pub openai: Option<OpenAiSettingsContent>,
pub vercel: Option<VercelSettingsContent>,
pub x_ai: Option<XAiSettingsContent>,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
pub google: Option<GoogleSettingsContent>,
pub deepseek: Option<DeepseekSettingsContent>,
pub vercel: Option<VercelSettingsContent>,
pub mistral: Option<MistralSettingsContent>,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
@ -114,6 +115,12 @@ pub struct GoogleSettingsContent {
pub available_models: Option<Vec<provider::google::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct XAiSettingsContent {
pub api_url: Option<String>,
pub available_models: Option<Vec<provider::x_ai::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct ZedDotDevSettingsContent {
available_models: Option<Vec<cloud::AvailableModel>>,
@ -230,6 +237,18 @@ impl settings::Settings for AllLanguageModelSettings {
vercel.as_ref().and_then(|s| s.available_models.clone()),
);
// XAI
let x_ai = value.x_ai.clone();
merge(
&mut settings.x_ai.api_url,
x_ai.as_ref().and_then(|s| s.api_url.clone()),
);
merge(
&mut settings.x_ai.available_models,
x_ai.as_ref().and_then(|s| s.available_models.clone()),
);
// ZedDotDev
merge(
&mut settings.zed_dot_dev.available_models,
value

23
crates/x_ai/Cargo.toml Normal file
View file

@ -0,0 +1,23 @@
[package]
name = "x_ai"
version = "0.1.0"
edition.workspace = true
publish.workspace = true
license = "GPL-3.0-or-later"
[lints]
workspace = true
[lib]
path = "src/x_ai.rs"
[features]
default = []
schemars = ["dep:schemars"]
[dependencies]
anyhow.workspace = true
schemars = { workspace = true, optional = true }
serde.workspace = true
strum.workspace = true
workspace-hack.workspace = true

1
crates/x_ai/LICENSE-GPL Symbolic link
View file

@ -0,0 +1 @@
../../LICENSE-GPL

126
crates/x_ai/src/x_ai.rs Normal file
View file

@ -0,0 +1,126 @@
use anyhow::Result;
use serde::{Deserialize, Serialize};
use strum::EnumIter;
pub const XAI_API_URL: &str = "https://api.x.ai/v1";
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq, EnumIter)]
pub enum Model {
#[serde(rename = "grok-2-vision-latest")]
Grok2Vision,
#[default]
#[serde(rename = "grok-3-latest")]
Grok3,
#[serde(rename = "grok-3-mini-latest")]
Grok3Mini,
#[serde(rename = "grok-3-fast-latest")]
Grok3Fast,
#[serde(rename = "grok-3-mini-fast-latest")]
Grok3MiniFast,
#[serde(rename = "grok-4-latest")]
Grok4,
#[serde(rename = "custom")]
Custom {
name: String,
/// The name displayed in the UI, such as in the assistant panel model dropdown menu.
display_name: Option<String>,
max_tokens: u64,
max_output_tokens: Option<u64>,
max_completion_tokens: Option<u64>,
},
}
impl Model {
pub fn default_fast() -> Self {
Self::Grok3Fast
}
pub fn from_id(id: &str) -> Result<Self> {
match id {
"grok-2-vision" => Ok(Self::Grok2Vision),
"grok-3" => Ok(Self::Grok3),
"grok-3-mini" => Ok(Self::Grok3Mini),
"grok-3-fast" => Ok(Self::Grok3Fast),
"grok-3-mini-fast" => Ok(Self::Grok3MiniFast),
_ => anyhow::bail!("invalid model id '{id}'"),
}
}
pub fn id(&self) -> &str {
match self {
Self::Grok2Vision => "grok-2-vision",
Self::Grok3 => "grok-3",
Self::Grok3Mini => "grok-3-mini",
Self::Grok3Fast => "grok-3-fast",
Self::Grok3MiniFast => "grok-3-mini-fast",
Self::Grok4 => "grok-4",
Self::Custom { name, .. } => name,
}
}
pub fn display_name(&self) -> &str {
match self {
Self::Grok2Vision => "Grok 2 Vision",
Self::Grok3 => "Grok 3",
Self::Grok3Mini => "Grok 3 Mini",
Self::Grok3Fast => "Grok 3 Fast",
Self::Grok3MiniFast => "Grok 3 Mini Fast",
Self::Grok4 => "Grok 4",
Self::Custom {
name, display_name, ..
} => display_name.as_ref().unwrap_or(name),
}
}
pub fn max_token_count(&self) -> u64 {
match self {
Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => 131_072,
Self::Grok4 => 256_000,
Self::Grok2Vision => 8_192,
Self::Custom { max_tokens, .. } => *max_tokens,
}
}
pub fn max_output_tokens(&self) -> Option<u64> {
match self {
Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => Some(8_192),
Self::Grok4 => Some(64_000),
Self::Grok2Vision => Some(4_096),
Self::Custom {
max_output_tokens, ..
} => *max_output_tokens,
}
}
pub fn supports_parallel_tool_calls(&self) -> bool {
match self {
Self::Grok2Vision
| Self::Grok3
| Self::Grok3Mini
| Self::Grok3Fast
| Self::Grok3MiniFast
| Self::Grok4 => true,
Model::Custom { .. } => false,
}
}
pub fn supports_tool(&self) -> bool {
match self {
Self::Grok2Vision
| Self::Grok3
| Self::Grok3Mini
| Self::Grok3Fast
| Self::Grok3MiniFast
| Self::Grok4 => true,
Model::Custom { .. } => false,
}
}
pub fn supports_images(&self) -> bool {
match self {
Self::Grok2Vision => true,
_ => false,
}
}
}

View file

@ -23,6 +23,8 @@ Here's an overview of the supported providers and tool call support:
| [OpenAI](#openai) | ✅ |
| [OpenAI API Compatible](#openai-api-compatible) | 🚫 |
| [OpenRouter](#openrouter) | ✅ |
| [Vercel](#vercel-v0) | ✅ |
| [xAI](#xai) | ✅ |
## Use Your Own Keys {#use-your-own-keys}
@ -442,27 +444,30 @@ Custom models will be listed in the model dropdown in the Agent Panel.
Zed supports using OpenAI compatible APIs by specifying a custom `endpoint` and `available_models` for the OpenAI provider.
You can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`.
Here are a few model examples you can plug in by using this feature:
Zed supports using OpenAI compatible APIs by specifying a custom `api_url` and `available_models` for the OpenAI provider. This is useful for connecting to other hosted services (like Together AI, Anyscale, etc.) or local models.
#### X.ai Grok
To configure a compatible API, you can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`. For example, to connect to [Together AI](https://www.together.ai/):
Example configuration for using X.ai Grok with Zed:
1. Get an API key from your [Together AI account](https://api.together.ai/settings/api-keys).
2. Add the following to your `settings.json`:
```json
{
"language_models": {
"openai": {
"api_url": "https://api.x.ai/v1",
"api_url": "https://api.together.xyz/v1",
"api_key": "YOUR_TOGETHER_AI_API_KEY",
"available_models": [
{
"name": "grok-beta",
"display_name": "X.ai Grok (Beta)",
"max_tokens": 131072
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"display_name": "Together Mixtral 8x7B",
"max_tokens": 32768,
"supports_tools": true
}
],
"version": "1"
},
]
}
}
}
```
### OpenRouter {#openrouter}
@ -523,7 +528,9 @@ You can find available models and their specifications on the [OpenRouter models
Custom models will be listed in the model dropdown in the Agent Panel.
### Vercel v0
### Vercel v0 {#vercel-v0}
> ✅ Supports tool use
[Vercel v0](https://vercel.com/docs/v0/api) is an expert model for generating full-stack apps, with framework-aware completions optimized for modern stacks like Next.js and Vercel.
It supports text and image inputs and provides fast streaming responses.
@ -535,6 +542,49 @@ Once you have it, paste it directly into the Vercel provider section in the pane
You should then find it as `v0-1.5-md` in the model dropdown in the Agent Panel.
### xAI {#xai}
> ✅ Supports tool use
Zed has first-class support for [xAI](https://x.ai/) models. You can use your own API key to access Grok models.
1. [Create an API key in the xAI Console](https://console.x.ai/team/default/api-keys)
2. Open the settings view (`agent: open configuration`) and go to the **xAI** section
3. Enter your xAI API key
The xAI API key will be saved in your keychain. Zed will also use the `XAI_API_KEY` environment variable if it's defined.
> **Note:** While the xAI API is OpenAI-compatible, Zed has first-class support for it as a dedicated provider. For the best experience, we recommend using the dedicated `x_ai` provider configuration instead of the [OpenAI API Compatible](#openai-api-compatible) method.
#### Custom Models {#xai-custom-models}
The Zed agent comes pre-configured with common Grok models. If you wish to use alternate models or customize their parameters, you can do so by adding the following to your Zed `settings.json`:
```json
{
"language_models": {
"x_ai": {
"api_url": "https://api.x.ai/v1",
"available_models": [
{
"name": "grok-1.5",
"display_name": "Grok 1.5",
"max_tokens": 131072,
"max_output_tokens": 8192
},
{
"name": "grok-1.5v",
"display_name": "Grok 1.5V (Vision)",
"max_tokens": 131072,
"max_output_tokens": 8192,
"supports_images": true
}
]
}
}
}
```
## Advanced Configuration {#advanced-configuration}
### Custom Provider Endpoints {#custom-provider-endpoint}