This commit is contained in:
Junkui Zhang 2025-07-14 17:49:44 +08:00
parent fda3d56d87
commit 4a78ce7cfd

View file

@ -240,6 +240,23 @@ float2 to_tile_position(float2 unit_vertex, AtlasTile tile) {
return (float2(tile.bounds.origin) + unit_vertex * float2(tile.bounds.size)) / atlas_size;
}
// Selects corner radius based on quadrant.
float pick_corner_radius(float2 center_to_point, Corners corner_radii) {
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
return corner_radii.top_left;
} else {
return corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
return corner_radii.top_right;
} else {
return corner_radii.bottom_right;
}
}
}
float4 to_device_position_transformed(float2 unit_vertex, Bounds bounds,
TransformationMatrix transformation) {
float2 position = unit_vertex * bounds.size + bounds.origin;
@ -248,32 +265,32 @@ float4 to_device_position_transformed(float2 unit_vertex, Bounds bounds,
return float4(device_position, 0.0, 1.0);
}
// Implementation of quad signed distance field
float quad_sdf_impl(float2 corner_center_to_point, float corner_radius) {
if (corner_radius == 0.0) {
// Fast path for unrounded corners
return max(corner_center_to_point.x, corner_center_to_point.y);
} else {
// Signed distance of the point from a quad that is inset by corner_radius
// It is negative inside this quad, and positive outside
float signed_distance_to_inset_quad =
// 0 inside the inset quad, and positive outside
length(max(float2(0.0, 0.0), corner_center_to_point)) +
// 0 outside the inset quad, and negative inside
min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
return signed_distance_to_inset_quad - corner_radius;
}
}
float quad_sdf(float2 pt, Bounds bounds, Corners corner_radii) {
float2 half_size = bounds.size / 2.;
float2 center = bounds.origin + half_size;
float2 center_to_point = pt - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_left;
} else {
corner_radius = corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_right;
} else {
corner_radius = corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
return distance;
float corner_radius = pick_corner_radius(center_to_point, corner_radii);
float2 corner_to_point = abs(center_to_point) - half_size;
float2 corner_center_to_point = corner_to_point + corner_radius;
return quad_sdf_impl(corner_center_to_point, corner_radius);
}
GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, Hsla color0, Hsla color1) {
@ -376,6 +393,57 @@ float4 gradient_color(Background background,
return color;
}
// Returns the dash velocity of a corner given the dash velocity of the two
// sides, by returning the slower velocity (larger dashes).
//
// Since 0 is used for dash velocity when the border width is 0 (instead of
// +inf), this returns the other dash velocity in that case.
//
// An alternative to this might be to appropriately interpolate the dash
// velocity around the corner, but that seems overcomplicated.
float corner_dash_velocity(float dv1, float dv2) {
if (dv1 == 0.0) {
return dv2;
} else if (dv2 == 0.0) {
return dv1;
} else {
return min(dv1, dv2);
}
}
// Returns alpha used to render antialiased dashes.
// `t` is within the dash when `fmod(t, period) < length`.
float dash_alpha(
float t, float period, float length, float dash_velocity,
float antialias_threshold
) {
float half_period = period / 2.0;
float half_length = length / 2.0;
// Value in [-half_period, half_period]
// The dash is in [-half_length, half_length]
float centered = fmod(t + half_period - half_length, period) - half_period;
// Signed distance for the dash, negative values are inside the dash
float signed_distance = abs(centered) - half_length;
// Antialiased alpha based on the signed distance
return saturate(antialias_threshold - signed_distance / dash_velocity);
}
// This approximates distance to the nearest point to a quarter ellipse in a way
// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
// The components of `point` are expected to be positive.
//
// Negative on the outside and positive on the inside.
float quarter_ellipse_sdf(float2 pt, float2 radii) {
// Scale the space to treat the ellipse like a unit circle
float2 circle_vec = pt / radii;
float unit_circle_sdf = length(circle_vec) - 1.0;
// Approximate up-scaling of the length by using the average of the radii.
//
// TODO: A better solution would be to use the gradient of the implicit
// function for an ellipse to approximate a scaling factor.
return unit_circle_sdf * (radii.x + radii.y) * -0.5;
}
/*
**
** Shadows
@ -477,7 +545,7 @@ float4 shadow_fragment(ShadowFragmentInput input): SV_TARGET {
struct Quad {
uint order;
uint pad;
uint border_style;
Bounds bounds;
Bounds content_mask;
Background background;
@ -535,66 +603,286 @@ QuadVertexOutput quad_vertex(uint vertex_id: SV_VertexID, uint quad_id: SV_Insta
float4 quad_fragment(QuadFragmentInput input): SV_Target {
Quad quad = quads[input.quad_id];
float2 half_size = quad.bounds.size / 2.;
float2 center = quad.bounds.origin + half_size;
float2 center_to_point = input.position.xy - center;
float4 color = gradient_color(quad.background, input.position.xy, quad.bounds,
float4 background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
input.background_solid, input.background_color0, input.background_color1);
// Fast path when the quad is not rounded and doesn't have any border.
if (quad.corner_radii.top_left == 0. && quad.corner_radii.bottom_left == 0. &&
quad.corner_radii.top_right == 0. &&
quad.corner_radii.bottom_right == 0. && quad.border_widths.top == 0. &&
quad.border_widths.left == 0. && quad.border_widths.right == 0. &&
quad.border_widths.bottom == 0.) {
return color;
bool unrounded = quad.corner_radii.top_left == 0.0 &&
quad.corner_radii.bottom_left == 0.0 &&
quad.corner_radii.top_right == 0.0 &&
quad.corner_radii.bottom_right == 0.0;
// Fast path when the quad is not rounded and doesn't have any border
if (quad.border_widths.top == 0.0 &&
quad.border_widths.left == 0.0 &&
quad.border_widths.right == 0.0 &&
quad.border_widths.bottom == 0.0 &&
unrounded) {
return background_color;
}
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_left;
} else {
corner_radius = quad.corner_radii.bottom_left;
}
float2 size = quad.bounds.size;
float2 half_size = size / 2.;
float2 the_point = input.position.xy - quad.bounds.origin;
float2 center_to_point = the_point - half_size;
// Signed distance field threshold for inclusion of pixels. 0.5 is the
// minimum distance between the center of the pixel and the edge.
const float antialias_threshold = 0.5;
// Radius of the nearest corner
float corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
float2 border = float2(
center_to_point.x < 0.0 ? quad.border_widths.left : quad.border_widths.right,
center_to_point.y < 0.0 ? quad.border_widths.top : quad.border_widths.bottom
);
// 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
// The purpose of this is to not draw antialiasing pixels in this case.
float2 reduced_border = float2(
border.x == 0.0 ? -antialias_threshold : border.x,
border.y == 0.0 ? -antialias_threshold : border.y
);
// Vector from the corner of the quad bounds to the point, after mirroring
// the point into the bottom right quadrant. Both components are <= 0.
float2 corner_to_point = abs(center_to_point) - half_size;
// Vector from the point to the center of the rounded corner's circle, also
// mirrored into bottom right quadrant.
float2 corner_center_to_point = corner_to_point + corner_radius;
// Whether the nearest point on the border is rounded
bool is_near_rounded_corner =
corner_center_to_point.x >= 0.0 &&
corner_center_to_point.y >= 0.0;
// Vector from straight border inner corner to point.
//
// 0-width borders are turned into width -1 so that inner_sdf is > 1.0 near
// the border. Without this, antialiasing pixels would be drawn.
float2 straight_border_inner_corner_to_point = corner_to_point + reduced_border;
// Whether the point is beyond the inner edge of the straight border
bool is_beyond_inner_straight_border =
straight_border_inner_corner_to_point.x > 0.0 ||
straight_border_inner_corner_to_point.y > 0.0;
// Whether the point is far enough inside the quad, such that the pixels are
// not affected by the straight border.
bool is_within_inner_straight_border =
straight_border_inner_corner_to_point.x < -antialias_threshold &&
straight_border_inner_corner_to_point.y < -antialias_threshold;
// Fast path for points that must be part of the background
if (is_within_inner_straight_border && !is_near_rounded_corner) {
return background_color;
}
// Signed distance of the point to the outside edge of the quad's border
float outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
// Approximate signed distance of the point to the inside edge of the quad's
// border. It is negative outside this edge (within the border), and
// positive inside.
//
// This is not always an accurate signed distance:
// * The rounded portions with varying border width use an approximation of
// nearest-point-on-ellipse.
// * When it is quickly known to be outside the edge, -1.0 is used.
float inner_sdf = 0.0;
if (corner_center_to_point.x <= 0.0 || corner_center_to_point.y <= 0.0) {
// Fast paths for straight borders
inner_sdf = -max(straight_border_inner_corner_to_point.x,
straight_border_inner_corner_to_point.y);
} else if (is_beyond_inner_straight_border) {
// Fast path for points that must be outside the inner edge
inner_sdf = -1.0;
} else if (reduced_border.x == reduced_border.y) {
// Fast path for circular inner edge.
inner_sdf = -(outer_sdf + reduced_border.x);
} else {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_right;
} else {
corner_radius = quad.corner_radii.bottom_right;
float2 ellipse_radii = max(float2(0.0, 0.0), float2(corner_radius, corner_radius) - reduced_border);
inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
}
// Negative when inside the border
float border_sdf = max(inner_sdf, outer_sdf);
float4 color = background_color;
if (border_sdf < antialias_threshold) {
float4 border_color = input.border_color;
// Dashed border logic when border_style == 1
if (quad.border_style == 1) {
// Position along the perimeter in "dash space", where each dash
// period has length 1
float t = 0.0;
// Total number of dash periods, so that the dash spacing can be
// adjusted to evenly divide it
float max_t = 0.0;
// Border width is proportional to dash size. This is the behavior
// used by browsers, but also avoids dashes from different segments
// overlapping when dash size is smaller than the border width.
//
// Dash pattern: (2 * border width) dash, (1 * border width) gap
const float dash_length_per_width = 2.0;
const float dash_gap_per_width = 1.0;
const float dash_period_per_width = dash_length_per_width + dash_gap_per_width;
// Since the dash size is determined by border width, the density of
// dashes varies. Multiplying a pixel distance by this returns a
// position in dash space - it has units (dash period / pixels). So
// a dash velocity of (1 / 10) is 1 dash every 10 pixels.
float dash_velocity = 0.0;
// Dividing this by the border width gives the dash velocity
const float dv_numerator = 1.0 / dash_period_per_width;
if (unrounded) {
// When corners aren't rounded, the dashes are separately laid
// out on each straight line, rather than around the whole
// perimeter. This way each line starts and ends with a dash.
bool is_horizontal = corner_center_to_point.x < corner_center_to_point.y;
float border_width = is_horizontal ? border.x : border.y;
dash_velocity = dv_numerator / border_width;
t = is_horizontal ? the_point.x : the_point.y;
t *= dash_velocity;
max_t = is_horizontal ? size.x : size.y;
max_t *= dash_velocity;
} else {
// When corners are rounded, the dashes are laid out clockwise
// around the whole perimeter.
float r_tr = quad.corner_radii.top_right;
float r_br = quad.corner_radii.bottom_right;
float r_bl = quad.corner_radii.bottom_left;
float r_tl = quad.corner_radii.top_left;
float w_t = quad.border_widths.top;
float w_r = quad.border_widths.right;
float w_b = quad.border_widths.bottom;
float w_l = quad.border_widths.left;
// Straight side dash velocities
float dv_t = w_t <= 0.0 ? 0.0 : dv_numerator / w_t;
float dv_r = w_r <= 0.0 ? 0.0 : dv_numerator / w_r;
float dv_b = w_b <= 0.0 ? 0.0 : dv_numerator / w_b;
float dv_l = w_l <= 0.0 ? 0.0 : dv_numerator / w_l;
// Straight side lengths in dash space
float s_t = (size.x - r_tl - r_tr) * dv_t;
float s_r = (size.y - r_tr - r_br) * dv_r;
float s_b = (size.x - r_br - r_bl) * dv_b;
float s_l = (size.y - r_bl - r_tl) * dv_l;
float corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
float corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
float corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
float corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
// Corner lengths in dash space
float c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
float c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
float c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
float c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
// Cumulative dash space upto each segment
float upto_tr = s_t;
float upto_r = upto_tr + c_tr;
float upto_br = upto_r + s_r;
float upto_b = upto_br + c_br;
float upto_bl = upto_b + s_b;
float upto_l = upto_bl + c_bl;
float upto_tl = upto_l + s_l;
max_t = upto_tl + c_tl;
if (is_near_rounded_corner) {
float radians = atan2(corner_center_to_point.y, corner_center_to_point.x);
float corner_t = radians * corner_radius;
if (center_to_point.x >= 0.0) {
if (center_to_point.y < 0.0) {
dash_velocity = corner_dash_velocity_tr;
// Subtracted because radians is pi/2 to 0 when
// going clockwise around the top right corner,
// since the y axis has been flipped
t = upto_r - corner_t * dash_velocity;
} else {
dash_velocity = corner_dash_velocity_br;
// Added because radians is 0 to pi/2 when going
// clockwise around the bottom-right corner
t = upto_br + corner_t * dash_velocity;
}
} else {
if (center_to_point.y >= 0.0) {
dash_velocity = corner_dash_velocity_bl;
// Subtracted because radians is pi/1 to 0 when
// going clockwise around the bottom-left corner,
// since the x axis has been flipped
t = upto_l - corner_t * dash_velocity;
} else {
dash_velocity = corner_dash_velocity_tl;
// Added because radians is 0 to pi/2 when going
// clockwise around the top-left corner, since both
// axis were flipped
t = upto_tl + corner_t * dash_velocity;
}
}
} else {
// Straight borders
bool is_horizontal = corner_center_to_point.x < corner_center_to_point.y;
if (is_horizontal) {
if (center_to_point.y < 0.0) {
dash_velocity = dv_t;
t = (the_point.x - r_tl) * dash_velocity;
} else {
dash_velocity = dv_b;
t = upto_bl - (the_point.x - r_bl) * dash_velocity;
}
} else {
if (center_to_point.x < 0.0) {
dash_velocity = dv_l;
t = upto_tl - (the_point.y - r_tl) * dash_velocity;
} else {
dash_velocity = dv_r;
t = upto_r + (the_point.y - r_tr) * dash_velocity;
}
}
}
}
float dash_length = dash_length_per_width / dash_period_per_width;
float desired_dash_gap = dash_gap_per_width / dash_period_per_width;
// Straight borders should start and end with a dash, so max_t is
// reduced to cause this.
max_t -= unrounded ? dash_length : 0.0;
if (max_t >= 1.0) {
// Adjust dash gap to evenly divide max_t
float dash_count = floor(max_t);
float dash_period = max_t / dash_count;
border_color.a *= dash_alpha(t, dash_period, dash_length, dash_velocity, antialias_threshold);
} else if (unrounded) {
// When there isn't enough space for the full gap between the
// two start / end dashes of a straight border, reduce gap to
// make them fit.
float dash_gap = max_t - dash_length;
if (dash_gap > 0.0) {
float dash_period = dash_length + dash_gap;
border_color.a *= dash_alpha(t, dash_period, dash_length, dash_velocity, antialias_threshold);
}
}
}
}
float2 rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
float vertical_border = center_to_point.x <= 0. ? quad.border_widths.left
: quad.border_widths.right;
float horizontal_border = center_to_point.y <= 0. ? quad.border_widths.top
: quad.border_widths.bottom;
float2 inset_size = half_size - corner_radius - float2(vertical_border, horizontal_border);
float2 point_to_inset_corner = abs(center_to_point) - inset_size;
float border_width;
if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
border_width = 0.;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
if (border_width != 0.) {
float inset_distance = distance + border_width;
// Blend the border on top of the background and then linearly interpolate
// between the two as we slide inside the background.
float4 blended_border = over(color, input.border_color);
color = lerp(blended_border, color, saturate(0.5 - inset_distance));
float4 blended_border = over(background_color, border_color);
color = lerp(background_color, blended_border,
saturate(antialias_threshold - inner_sdf));
}
return color * float4(1., 1., 1., saturate(0.5 - distance));
return color * float4(1.0, 1.0, 1.0, saturate(antialias_threshold - outer_sdf));
}
struct PathVertex {
@ -795,7 +1083,9 @@ float4 monochrome_sprite_fragment(MonochromeSpriteFragmentInput input): SV_Targe
struct PolychromeSprite {
uint order;
uint pad;
uint grayscale;
float opacity;
Bounds bounds;
Bounds content_mask;
Corners corner_radii;
@ -805,14 +1095,14 @@ struct PolychromeSprite {
struct PolychromeSpriteVertexOutput {
float4 position: SV_Position;
float2 tile_position: POSITION;
uint sprite_id: FLAT;
nointerpolation uint sprite_id: TEXCOORD0;
float4 clip_distance: SV_ClipDistance;
};
struct PolychromeSpriteFragmentInput {
float4 position: SV_Position;
float2 tile_position: POSITION;
uint sprite_id: FLAT;
nointerpolation uint sprite_id: TEXCOORD0;
};
StructuredBuffer<PolychromeSprite> poly_sprites: register(t1);
@ -839,10 +1129,13 @@ float4 polychrome_sprite_fragment(PolychromeSpriteFragmentInput input): SV_Targe
float distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
float4 color = sample;
if (sprite.grayscale) {
}
if ((sprite.grayscale & 0xFFu) != 0u) {
float3 grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
color = float4(grayscale, sample.a);
}
color.a *= saturate(0.5 - distance);
color.a *= sprite.opacity * saturate(0.5 - distance);
return color;
}