Accept wrapped text content from LLM providers (#31048)
Some providers sometimes send `{ "type": "text", "text": ... }` instead of just the text as a string. Now we accept those instead of erroring. Release Notes: - N/A
This commit is contained in:
parent
89700c3682
commit
4bb04cef9d
9 changed files with 72 additions and 26 deletions
|
@ -19,7 +19,7 @@ use language_model::{
|
|||
LanguageModelCompletionError, LanguageModelId, LanguageModelKnownError, LanguageModelName,
|
||||
LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
|
||||
LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
|
||||
LanguageModelToolResultContent, MessageContent, RateLimiter, Role,
|
||||
LanguageModelToolResultContent, MessageContent, RateLimiter, Role, WrappedTextContent,
|
||||
};
|
||||
use language_model::{LanguageModelCompletionEvent, LanguageModelToolUse, StopReason};
|
||||
use schemars::JsonSchema;
|
||||
|
@ -350,8 +350,12 @@ pub fn count_anthropic_tokens(
|
|||
// TODO: Estimate token usage from tool uses.
|
||||
}
|
||||
MessageContent::ToolResult(tool_result) => match &tool_result.content {
|
||||
LanguageModelToolResultContent::Text(txt) => {
|
||||
string_contents.push_str(txt);
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent {
|
||||
text,
|
||||
..
|
||||
}) => {
|
||||
string_contents.push_str(text);
|
||||
}
|
||||
LanguageModelToolResultContent::Image(image) => {
|
||||
tokens_from_images += image.estimate_tokens();
|
||||
|
@ -588,9 +592,10 @@ pub fn into_anthropic(
|
|||
tool_use_id: tool_result.tool_use_id.to_string(),
|
||||
is_error: tool_result.is_error,
|
||||
content: match tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => {
|
||||
ToolResultContent::Plain(text.to_string())
|
||||
}
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(
|
||||
WrappedTextContent { text, .. },
|
||||
) => ToolResultContent::Plain(text.to_string()),
|
||||
LanguageModelToolResultContent::Image(image) => {
|
||||
ToolResultContent::Multipart(vec![ToolResultPart::Image {
|
||||
source: anthropic::ImageSource {
|
||||
|
|
|
@ -37,7 +37,7 @@ use language_model::{
|
|||
LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
|
||||
LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
|
||||
LanguageModelToolResultContent, LanguageModelToolUse, MessageContent, RateLimiter, Role,
|
||||
TokenUsage,
|
||||
TokenUsage, WrappedTextContent,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
@ -641,7 +641,8 @@ pub fn into_bedrock(
|
|||
BedrockToolResultBlock::builder()
|
||||
.tool_use_id(tool_result.tool_use_id.to_string())
|
||||
.content(match tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => {
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent { text, .. }) => {
|
||||
BedrockToolResultContentBlock::Text(text.to_string())
|
||||
}
|
||||
LanguageModelToolResultContent::Image(_) => {
|
||||
|
@ -776,7 +777,11 @@ pub fn get_bedrock_tokens(
|
|||
// TODO: Estimate token usage from tool uses.
|
||||
}
|
||||
MessageContent::ToolResult(tool_result) => match tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => {
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent {
|
||||
text,
|
||||
..
|
||||
}) => {
|
||||
string_contents.push_str(&text);
|
||||
}
|
||||
LanguageModelToolResultContent::Image(image) => {
|
||||
|
|
|
@ -23,7 +23,7 @@ use language_model::{
|
|||
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
|
||||
LanguageModelRequestMessage, LanguageModelToolChoice, LanguageModelToolResultContent,
|
||||
LanguageModelToolSchemaFormat, LanguageModelToolUse, MessageContent, RateLimiter, Role,
|
||||
StopReason,
|
||||
StopReason, WrappedTextContent,
|
||||
};
|
||||
use settings::SettingsStore;
|
||||
use std::time::Duration;
|
||||
|
@ -455,7 +455,11 @@ fn into_copilot_chat(
|
|||
for content in &message.content {
|
||||
if let MessageContent::ToolResult(tool_result) = content {
|
||||
let content = match &tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => text.to_string().into(),
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent {
|
||||
text,
|
||||
..
|
||||
}) => text.to_string().into(),
|
||||
LanguageModelToolResultContent::Image(image) => {
|
||||
if model.supports_vision() {
|
||||
ChatMessageContent::Multipart(vec![ChatMessagePart::Image {
|
||||
|
|
|
@ -426,14 +426,17 @@ pub fn into_google(
|
|||
}
|
||||
language_model::MessageContent::ToolResult(tool_result) => {
|
||||
match tool_result.content {
|
||||
language_model::LanguageModelToolResultContent::Text(txt) => {
|
||||
language_model::LanguageModelToolResultContent::Text(text)
|
||||
| language_model::LanguageModelToolResultContent::WrappedText(
|
||||
language_model::WrappedTextContent { text, .. },
|
||||
) => {
|
||||
vec![Part::FunctionResponsePart(
|
||||
google_ai::FunctionResponsePart {
|
||||
function_response: google_ai::FunctionResponse {
|
||||
name: tool_result.tool_name.to_string(),
|
||||
// The API expects a valid JSON object
|
||||
response: serde_json::json!({
|
||||
"output": txt
|
||||
"output": text
|
||||
}),
|
||||
},
|
||||
},
|
||||
|
|
|
@ -13,7 +13,7 @@ use language_model::{
|
|||
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
|
||||
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
|
||||
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
|
||||
RateLimiter, Role, StopReason,
|
||||
RateLimiter, Role, StopReason, WrappedTextContent,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
@ -428,7 +428,11 @@ pub fn into_mistral(
|
|||
}
|
||||
MessageContent::ToolResult(tool_result) => {
|
||||
let content = match &tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => text.to_string(),
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent {
|
||||
text,
|
||||
..
|
||||
}) => text.to_string(),
|
||||
LanguageModelToolResultContent::Image(_) => {
|
||||
// TODO: Mistral image support
|
||||
"[Tool responded with an image, but Zed doesn't support these in Mistral models yet]".to_string()
|
||||
|
|
|
@ -13,7 +13,7 @@ use language_model::{
|
|||
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
|
||||
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
|
||||
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
|
||||
RateLimiter, Role, StopReason,
|
||||
RateLimiter, Role, StopReason, WrappedTextContent,
|
||||
};
|
||||
use open_ai::{ImageUrl, Model, ResponseStreamEvent, stream_completion};
|
||||
use schemars::JsonSchema;
|
||||
|
@ -407,7 +407,11 @@ pub fn into_open_ai(
|
|||
}
|
||||
MessageContent::ToolResult(tool_result) => {
|
||||
let content = match &tool_result.content {
|
||||
LanguageModelToolResultContent::Text(text) => {
|
||||
LanguageModelToolResultContent::Text(text)
|
||||
| LanguageModelToolResultContent::WrappedText(WrappedTextContent {
|
||||
text,
|
||||
..
|
||||
}) => {
|
||||
vec![open_ai::MessagePart::Text {
|
||||
text: text.to_string(),
|
||||
}]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue