Make LanguageModel::use_any_tool return a stream of chunks (#16262)

This PR is a refactor to pave the way for allowing the user to view and
edit workflow step resolutions. I've made tool calls work more like
normal streaming completions for all providers. The `use_any_tool`
method returns a stream of strings (which contain chunks of JSON). I've
also done some minor cleanup of language model providers in general,
removing the duplication around handling streaming responses.

Release Notes:

- N/A
This commit is contained in:
Max Brunsfeld 2024-08-14 18:02:46 -07:00 committed by GitHub
parent 1117d89057
commit 4c390b82fb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 253 additions and 400 deletions

View file

@ -5,18 +5,21 @@ use crate::{
LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
};
use anthropic::AnthropicError;
use anyhow::{anyhow, bail, Context as _, Result};
use anyhow::{anyhow, Result};
use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
use collections::BTreeMap;
use feature_flags::{FeatureFlagAppExt, ZedPro};
use futures::{future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, StreamExt};
use futures::{
future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
TryStreamExt as _,
};
use gpui::{
AnyElement, AnyView, AppContext, AsyncAppContext, FontWeight, Model, ModelContext,
Subscription, Task,
};
use http_client::{AsyncBody, HttpClient, Method, Response};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use serde::{de::DeserializeOwned, Deserialize, Serialize};
use serde_json::value::RawValue;
use settings::{Settings, SettingsStore};
use smol::{
@ -451,21 +454,9 @@ impl LanguageModel for CloudLanguageModel {
},
)
.await?;
let body = BufReader::new(response.into_body());
let stream = futures::stream::try_unfold(body, move |mut body| async move {
let mut buffer = String::new();
match body.read_line(&mut buffer).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: anthropic::Event = serde_json::from_str(&buffer)
.context("failed to parse Anthropic event")?;
Ok(Some((event, body)))
}
Err(err) => Err(AnthropicError::Other(err.into())),
}
});
Ok(anthropic::extract_text_from_events(stream))
Ok(anthropic::extract_text_from_events(
response_lines(response).map_err(AnthropicError::Other),
))
});
async move {
Ok(future
@ -492,21 +483,7 @@ impl LanguageModel for CloudLanguageModel {
},
)
.await?;
let body = BufReader::new(response.into_body());
let stream = futures::stream::try_unfold(body, move |mut body| async move {
let mut buffer = String::new();
match body.read_line(&mut buffer).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: open_ai::ResponseStreamEvent =
serde_json::from_str(&buffer)?;
Ok(Some((event, body)))
}
Err(e) => Err(e.into()),
}
});
Ok(open_ai::extract_text_from_events(stream))
Ok(open_ai::extract_text_from_events(response_lines(response)))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
@ -527,21 +504,9 @@ impl LanguageModel for CloudLanguageModel {
},
)
.await?;
let body = BufReader::new(response.into_body());
let stream = futures::stream::try_unfold(body, move |mut body| async move {
let mut buffer = String::new();
match body.read_line(&mut buffer).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: google_ai::GenerateContentResponse =
serde_json::from_str(&buffer)?;
Ok(Some((event, body)))
}
Err(e) => Err(e.into()),
}
});
Ok(google_ai::extract_text_from_events(stream))
Ok(google_ai::extract_text_from_events(response_lines(
response,
)))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
@ -563,21 +528,7 @@ impl LanguageModel for CloudLanguageModel {
},
)
.await?;
let body = BufReader::new(response.into_body());
let stream = futures::stream::try_unfold(body, move |mut body| async move {
let mut buffer = String::new();
match body.read_line(&mut buffer).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: open_ai::ResponseStreamEvent =
serde_json::from_str(&buffer)?;
Ok(Some((event, body)))
}
Err(e) => Err(e.into()),
}
});
Ok(open_ai::extract_text_from_events(stream))
Ok(open_ai::extract_text_from_events(response_lines(response)))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
@ -591,10 +542,12 @@ impl LanguageModel for CloudLanguageModel {
tool_description: String,
input_schema: serde_json::Value,
_cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<serde_json::Value>> {
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let client = self.client.clone();
let llm_api_token = self.llm_api_token.clone();
match &self.model {
CloudModel::Anthropic(model) => {
let client = self.client.clone();
let mut request = request.into_anthropic(model.tool_model_id().into());
request.tool_choice = Some(anthropic::ToolChoice::Tool {
name: tool_name.clone(),
@ -605,7 +558,6 @@ impl LanguageModel for CloudLanguageModel {
input_schema,
}];
let llm_api_token = self.llm_api_token.clone();
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
@ -621,70 +573,34 @@ impl LanguageModel for CloudLanguageModel {
)
.await?;
let mut tool_use_index = None;
let mut tool_input = String::new();
let mut body = BufReader::new(response.into_body());
let mut line = String::new();
while body.read_line(&mut line).await? > 0 {
let event: anthropic::Event = serde_json::from_str(&line)?;
line.clear();
match event {
anthropic::Event::ContentBlockStart {
content_block,
index,
} => {
if let anthropic::Content::ToolUse { name, .. } = content_block
{
if name == tool_name {
tool_use_index = Some(index);
}
}
}
anthropic::Event::ContentBlockDelta { index, delta } => match delta
{
anthropic::ContentDelta::TextDelta { .. } => {}
anthropic::ContentDelta::InputJsonDelta { partial_json } => {
if Some(index) == tool_use_index {
tool_input.push_str(&partial_json);
}
}
},
anthropic::Event::ContentBlockStop { index } => {
if Some(index) == tool_use_index {
return Ok(serde_json::from_str(&tool_input)?);
}
}
_ => {}
}
}
if tool_use_index.is_some() {
Err(anyhow!("tool content incomplete"))
} else {
Err(anyhow!("tool not used"))
}
Ok(anthropic::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
CloudModel::OpenAi(model) => {
let mut request = request.into_open_ai(model.id().into());
let client = self.client.clone();
let mut function = open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
};
let func = open_ai::ToolDefinition::Function {
function: function.clone(),
};
request.tool_choice = Some(open_ai::ToolChoice::Other(func.clone()));
// Fill in description and params separately, as they're not needed for tool_choice field.
function.description = Some(tool_description);
function.parameters = Some(input_schema);
request.tools = vec![open_ai::ToolDefinition::Function { function }];
request.tool_choice = Some(open_ai::ToolChoice::Other(
open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
},
},
));
request.tools = vec![open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: Some(tool_description),
parameters: Some(input_schema),
},
}];
let llm_api_token = self.llm_api_token.clone();
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
@ -700,41 +616,12 @@ impl LanguageModel for CloudLanguageModel {
)
.await?;
let mut body = BufReader::new(response.into_body());
let mut line = String::new();
let mut load_state = None;
while body.read_line(&mut line).await? > 0 {
let part: open_ai::ResponseStreamEvent = serde_json::from_str(&line)?;
line.clear();
for choice in part.choices {
let Some(tool_calls) = choice.delta.tool_calls else {
continue;
};
for call in tool_calls {
if let Some(func) = call.function {
if func.name.as_deref() == Some(tool_name.as_str()) {
load_state = Some((String::default(), call.index));
}
if let Some((arguments, (output, index))) =
func.arguments.zip(load_state.as_mut())
{
if call.index == *index {
output.push_str(&arguments);
}
}
}
}
}
}
if let Some((arguments, _)) = load_state {
return Ok(serde_json::from_str(&arguments)?);
} else {
bail!("tool not used");
}
Ok(open_ai::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
@ -744,22 +631,23 @@ impl LanguageModel for CloudLanguageModel {
CloudModel::Zed(model) => {
// All Zed models are OpenAI-based at the time of writing.
let mut request = request.into_open_ai(model.id().into());
let client = self.client.clone();
let mut function = open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
};
let func = open_ai::ToolDefinition::Function {
function: function.clone(),
};
request.tool_choice = Some(open_ai::ToolChoice::Other(func.clone()));
// Fill in description and params separately, as they're not needed for tool_choice field.
function.description = Some(tool_description);
function.parameters = Some(input_schema);
request.tools = vec![open_ai::ToolDefinition::Function { function }];
request.tool_choice = Some(open_ai::ToolChoice::Other(
open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: None,
parameters: None,
},
},
));
request.tools = vec![open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool_name.clone(),
description: Some(tool_description),
parameters: Some(input_schema),
},
}];
let llm_api_token = self.llm_api_token.clone();
self.request_limiter
.run(async move {
let response = Self::perform_llm_completion(
@ -775,40 +663,12 @@ impl LanguageModel for CloudLanguageModel {
)
.await?;
let mut body = BufReader::new(response.into_body());
let mut line = String::new();
let mut load_state = None;
while body.read_line(&mut line).await? > 0 {
let part: open_ai::ResponseStreamEvent = serde_json::from_str(&line)?;
line.clear();
for choice in part.choices {
let Some(tool_calls) = choice.delta.tool_calls else {
continue;
};
for call in tool_calls {
if let Some(func) = call.function {
if func.name.as_deref() == Some(tool_name.as_str()) {
load_state = Some((String::default(), call.index));
}
if let Some((arguments, (output, index))) =
func.arguments.zip(load_state.as_mut())
{
if call.index == *index {
output.push_str(&arguments);
}
}
}
}
}
}
if let Some((arguments, _)) = load_state {
return Ok(serde_json::from_str(&arguments)?);
} else {
bail!("tool not used");
}
Ok(open_ai::extract_tool_args_from_events(
tool_name,
Box::pin(response_lines(response)),
)
.await?
.boxed())
})
.boxed()
}
@ -816,6 +676,25 @@ impl LanguageModel for CloudLanguageModel {
}
}
fn response_lines<T: DeserializeOwned>(
response: Response<AsyncBody>,
) -> impl Stream<Item = Result<T>> {
futures::stream::try_unfold(
(String::new(), BufReader::new(response.into_body())),
move |(mut line, mut body)| async {
match body.read_line(&mut line).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: T = serde_json::from_str(&line)?;
line.clear();
Ok(Some((event, (line, body))))
}
Err(e) => Err(e.into()),
}
},
)
}
impl LlmApiToken {
async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
let lock = self.0.upgradable_read().await;