Standardize on u64 for token counts (#32869)

Previously we were using a mix of `u32` and `usize`, e.g. `max_tokens:
usize, max_output_tokens: Option<u32>` in the same `struct`.

Although [tiktoken](https://github.com/openai/tiktoken) uses `usize`,
token counts should be consistent across targets (e.g. the same model
doesn't suddenly get a smaller context window if you're compiling for
wasm32), and these token counts could end up getting serialized using a
binary protocol, so `usize` is not the right choice for token counts.

I chose to standardize on `u64` over `u32` because we don't store many
of them (so the extra size should be insignificant) and future models
may exceed `u32::MAX` tokens.

Release Notes:

- N/A
This commit is contained in:
Richard Feldman 2025-06-17 10:43:07 -04:00 committed by GitHub
parent a391d67366
commit 5405c2c2d3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
32 changed files with 191 additions and 192 deletions

View file

@ -51,12 +51,12 @@ pub struct AvailableModel {
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
pub display_name: Option<String>,
/// The model's context window size.
pub max_tokens: usize,
pub max_tokens: u64,
/// A model `name` to substitute when calling tools, in case the primary model doesn't support tool calling.
pub tool_override: Option<String>,
/// Configuration of Anthropic's caching API.
pub cache_configuration: Option<LanguageModelCacheConfiguration>,
pub max_output_tokens: Option<u32>,
pub max_output_tokens: Option<u64>,
pub default_temperature: Option<f32>,
#[serde(default)]
pub extra_beta_headers: Vec<String>,
@ -321,7 +321,7 @@ pub struct AnthropicModel {
pub fn count_anthropic_tokens(
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<usize>> {
) -> BoxFuture<'static, Result<u64>> {
cx.background_spawn(async move {
let messages = request.messages;
let mut tokens_from_images = 0;
@ -377,7 +377,7 @@ pub fn count_anthropic_tokens(
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
.map(|tokens| tokens + tokens_from_images)
.map(|tokens| (tokens + tokens_from_images) as u64)
})
.boxed()
}
@ -461,11 +461,11 @@ impl LanguageModel for AnthropicModel {
self.state.read(cx).api_key.clone()
}
fn max_token_count(&self) -> usize {
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn max_output_tokens(&self) -> Option<u32> {
fn max_output_tokens(&self) -> Option<u64> {
Some(self.model.max_output_tokens())
}
@ -473,7 +473,7 @@ impl LanguageModel for AnthropicModel {
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<usize>> {
) -> BoxFuture<'static, Result<u64>> {
count_anthropic_tokens(request, cx)
}
@ -518,7 +518,7 @@ pub fn into_anthropic(
request: LanguageModelRequest,
model: String,
default_temperature: f32,
max_output_tokens: u32,
max_output_tokens: u64,
mode: AnthropicModelMode,
) -> anthropic::Request {
let mut new_messages: Vec<anthropic::Message> = Vec::new();