Standardize on u64 for token counts (#32869)
Previously we were using a mix of `u32` and `usize`, e.g. `max_tokens: usize, max_output_tokens: Option<u32>` in the same `struct`. Although [tiktoken](https://github.com/openai/tiktoken) uses `usize`, token counts should be consistent across targets (e.g. the same model doesn't suddenly get a smaller context window if you're compiling for wasm32), and these token counts could end up getting serialized using a binary protocol, so `usize` is not the right choice for token counts. I chose to standardize on `u64` over `u32` because we don't store many of them (so the extra size should be insignificant) and future models may exceed `u32::MAX` tokens. Release Notes: - N/A
This commit is contained in:
parent
a391d67366
commit
5405c2c2d3
32 changed files with 191 additions and 192 deletions
|
@ -51,12 +51,12 @@ pub struct AvailableModel {
|
|||
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
|
||||
pub display_name: Option<String>,
|
||||
/// The model's context window size.
|
||||
pub max_tokens: usize,
|
||||
pub max_tokens: u64,
|
||||
/// A model `name` to substitute when calling tools, in case the primary model doesn't support tool calling.
|
||||
pub tool_override: Option<String>,
|
||||
/// Configuration of Anthropic's caching API.
|
||||
pub cache_configuration: Option<LanguageModelCacheConfiguration>,
|
||||
pub max_output_tokens: Option<u32>,
|
||||
pub max_output_tokens: Option<u64>,
|
||||
pub default_temperature: Option<f32>,
|
||||
#[serde(default)]
|
||||
pub extra_beta_headers: Vec<String>,
|
||||
|
@ -321,7 +321,7 @@ pub struct AnthropicModel {
|
|||
pub fn count_anthropic_tokens(
|
||||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
) -> BoxFuture<'static, Result<u64>> {
|
||||
cx.background_spawn(async move {
|
||||
let messages = request.messages;
|
||||
let mut tokens_from_images = 0;
|
||||
|
@ -377,7 +377,7 @@ pub fn count_anthropic_tokens(
|
|||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
|
||||
.map(|tokens| tokens + tokens_from_images)
|
||||
.map(|tokens| (tokens + tokens_from_images) as u64)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
@ -461,11 +461,11 @@ impl LanguageModel for AnthropicModel {
|
|||
self.state.read(cx).api_key.clone()
|
||||
}
|
||||
|
||||
fn max_token_count(&self) -> usize {
|
||||
fn max_token_count(&self) -> u64 {
|
||||
self.model.max_token_count()
|
||||
}
|
||||
|
||||
fn max_output_tokens(&self) -> Option<u32> {
|
||||
fn max_output_tokens(&self) -> Option<u64> {
|
||||
Some(self.model.max_output_tokens())
|
||||
}
|
||||
|
||||
|
@ -473,7 +473,7 @@ impl LanguageModel for AnthropicModel {
|
|||
&self,
|
||||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
) -> BoxFuture<'static, Result<u64>> {
|
||||
count_anthropic_tokens(request, cx)
|
||||
}
|
||||
|
||||
|
@ -518,7 +518,7 @@ pub fn into_anthropic(
|
|||
request: LanguageModelRequest,
|
||||
model: String,
|
||||
default_temperature: f32,
|
||||
max_output_tokens: u32,
|
||||
max_output_tokens: u64,
|
||||
mode: AnthropicModelMode,
|
||||
) -> anthropic::Request {
|
||||
let mut new_messages: Vec<anthropic::Message> = Vec::new();
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue