Add capabilities to OpenAI-compatible model settings (#36370)

### TL;DR
* Adds `capabilities` configuration for OpenAI-compatible models
* Relates to
https://github.com/zed-industries/zed/issues/36215#issuecomment-3193920491

### Summary
This PR introduces support for configuring model capabilities for
OpenAI-compatible language models. The implementation addresses the
issue that not all OpenAI-compatible APIs support the same features -
for example, Cerebras' API explicitly does not support
`parallel_tool_calls` as documented in their [OpenAI compatibility
guide](https://inference-docs.cerebras.ai/resources/openai#currently-unsupported-openai-features).

### Changes

1. **Model Capabilities Structure**:
- Added `ModelCapabilityToggles` struct for UI representation with
boolean toggle states
- Implemented proper parsing of capability toggles into
`ModelCapabilities`

2. **UI Updates**:
- Modified the "Add LLM Provider" modal to include checkboxes for each
capability
- Each OpenAI-compatible model can now be configured with its specific
capabilities through the UI

3. **Configuration File Structure**:
- Updated the settings schema to support a `capabilities` object for
each `openai_compatible` model
- Each capability (`tools`, `images`, `parallel_tool_calls`,
`prompt_cache_key`) can be individually specified per model

### Example Configuration

```json
{
  "openai_compatible": {
    "Cerebras": {
      "api_url": "https://api.cerebras.ai/v1",
      "available_models": [
        {
          "name": "gpt-oss-120b",
          "max_tokens": 131000,
          "capabilities": {
            "tools": true,
            "images": false,
            "parallel_tool_calls": false,
            "prompt_cache_key": false
          }
        }
      ]
    }
  }
}
```

### Tests Added

- Added tests to verify default capability values are correctly applied
- Added tests to verify that deselected toggles are properly parsed as
`false`
- Added tests to verify that mixed capability selections work correctly

Thanks to @osyvokon for the desired `capabilities` configuration
structure!


Release Notes:

- OpenAI-compatible models now have configurable capabilities (#36370;
thanks @calesennett)

---------

Co-authored-by: Oleksiy Syvokon <oleksiy@zed.dev>
This commit is contained in:
Cale Sennett 2025-08-18 03:36:52 -05:00 committed by GitHub
parent ea828c0c59
commit 61ce07a91b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 208 additions and 12 deletions

View file

@ -7,10 +7,12 @@ use gpui::{DismissEvent, Entity, EventEmitter, FocusHandle, Focusable, Render, T
use language_model::LanguageModelRegistry;
use language_models::{
AllLanguageModelSettings, OpenAiCompatibleSettingsContent,
provider::open_ai_compatible::AvailableModel,
provider::open_ai_compatible::{AvailableModel, ModelCapabilities},
};
use settings::update_settings_file;
use ui::{Banner, KeyBinding, Modal, ModalFooter, ModalHeader, Section, prelude::*};
use ui::{
Banner, Checkbox, KeyBinding, Modal, ModalFooter, ModalHeader, Section, ToggleState, prelude::*,
};
use ui_input::SingleLineInput;
use workspace::{ModalView, Workspace};
@ -69,11 +71,19 @@ impl AddLlmProviderInput {
}
}
struct ModelCapabilityToggles {
pub supports_tools: ToggleState,
pub supports_images: ToggleState,
pub supports_parallel_tool_calls: ToggleState,
pub supports_prompt_cache_key: ToggleState,
}
struct ModelInput {
name: Entity<SingleLineInput>,
max_completion_tokens: Entity<SingleLineInput>,
max_output_tokens: Entity<SingleLineInput>,
max_tokens: Entity<SingleLineInput>,
capabilities: ModelCapabilityToggles,
}
impl ModelInput {
@ -100,11 +110,23 @@ impl ModelInput {
cx,
);
let max_tokens = single_line_input("Max Tokens", "Max Tokens", Some("200000"), window, cx);
let ModelCapabilities {
tools,
images,
parallel_tool_calls,
prompt_cache_key,
} = ModelCapabilities::default();
Self {
name: model_name,
max_completion_tokens,
max_output_tokens,
max_tokens,
capabilities: ModelCapabilityToggles {
supports_tools: tools.into(),
supports_images: images.into(),
supports_parallel_tool_calls: parallel_tool_calls.into(),
supports_prompt_cache_key: prompt_cache_key.into(),
},
}
}
@ -136,6 +158,12 @@ impl ModelInput {
.text(cx)
.parse::<u64>()
.map_err(|_| SharedString::from("Max Tokens must be a number"))?,
capabilities: ModelCapabilities {
tools: self.capabilities.supports_tools.selected(),
images: self.capabilities.supports_images.selected(),
parallel_tool_calls: self.capabilities.supports_parallel_tool_calls.selected(),
prompt_cache_key: self.capabilities.supports_prompt_cache_key.selected(),
},
})
}
}
@ -322,6 +350,55 @@ impl AddLlmProviderModal {
.child(model.max_output_tokens.clone()),
)
.child(model.max_tokens.clone())
.child(
v_flex()
.gap_1()
.child(
Checkbox::new(("supports-tools", ix), model.capabilities.supports_tools)
.label("Supports tools")
.on_click(cx.listener(move |this, checked, _window, cx| {
this.input.models[ix].capabilities.supports_tools = *checked;
cx.notify();
})),
)
.child(
Checkbox::new(("supports-images", ix), model.capabilities.supports_images)
.label("Supports images")
.on_click(cx.listener(move |this, checked, _window, cx| {
this.input.models[ix].capabilities.supports_images = *checked;
cx.notify();
})),
)
.child(
Checkbox::new(
("supports-parallel-tool-calls", ix),
model.capabilities.supports_parallel_tool_calls,
)
.label("Supports parallel_tool_calls")
.on_click(cx.listener(
move |this, checked, _window, cx| {
this.input.models[ix]
.capabilities
.supports_parallel_tool_calls = *checked;
cx.notify();
},
)),
)
.child(
Checkbox::new(
("supports-prompt-cache-key", ix),
model.capabilities.supports_prompt_cache_key,
)
.label("Supports prompt_cache_key")
.on_click(cx.listener(
move |this, checked, _window, cx| {
this.input.models[ix].capabilities.supports_prompt_cache_key =
*checked;
cx.notify();
},
)),
),
)
.when(has_more_than_one_model, |this| {
this.child(
Button::new(("remove-model", ix), "Remove Model")
@ -562,6 +639,93 @@ mod tests {
);
}
#[gpui::test]
async fn test_model_input_default_capabilities(cx: &mut TestAppContext) {
let cx = setup_test(cx).await;
cx.update(|window, cx| {
let model_input = ModelInput::new(window, cx);
model_input.name.update(cx, |input, cx| {
input.editor().update(cx, |editor, cx| {
editor.set_text("somemodel", window, cx);
});
});
assert_eq!(
model_input.capabilities.supports_tools,
ToggleState::Selected
);
assert_eq!(
model_input.capabilities.supports_images,
ToggleState::Unselected
);
assert_eq!(
model_input.capabilities.supports_parallel_tool_calls,
ToggleState::Unselected
);
assert_eq!(
model_input.capabilities.supports_prompt_cache_key,
ToggleState::Unselected
);
let parsed_model = model_input.parse(cx).unwrap();
assert_eq!(parsed_model.capabilities.tools, true);
assert_eq!(parsed_model.capabilities.images, false);
assert_eq!(parsed_model.capabilities.parallel_tool_calls, false);
assert_eq!(parsed_model.capabilities.prompt_cache_key, false);
});
}
#[gpui::test]
async fn test_model_input_deselected_capabilities(cx: &mut TestAppContext) {
let cx = setup_test(cx).await;
cx.update(|window, cx| {
let mut model_input = ModelInput::new(window, cx);
model_input.name.update(cx, |input, cx| {
input.editor().update(cx, |editor, cx| {
editor.set_text("somemodel", window, cx);
});
});
model_input.capabilities.supports_tools = ToggleState::Unselected;
model_input.capabilities.supports_images = ToggleState::Unselected;
model_input.capabilities.supports_parallel_tool_calls = ToggleState::Unselected;
model_input.capabilities.supports_prompt_cache_key = ToggleState::Unselected;
let parsed_model = model_input.parse(cx).unwrap();
assert_eq!(parsed_model.capabilities.tools, false);
assert_eq!(parsed_model.capabilities.images, false);
assert_eq!(parsed_model.capabilities.parallel_tool_calls, false);
assert_eq!(parsed_model.capabilities.prompt_cache_key, false);
});
}
#[gpui::test]
async fn test_model_input_with_name_and_capabilities(cx: &mut TestAppContext) {
let cx = setup_test(cx).await;
cx.update(|window, cx| {
let mut model_input = ModelInput::new(window, cx);
model_input.name.update(cx, |input, cx| {
input.editor().update(cx, |editor, cx| {
editor.set_text("somemodel", window, cx);
});
});
model_input.capabilities.supports_tools = ToggleState::Selected;
model_input.capabilities.supports_images = ToggleState::Unselected;
model_input.capabilities.supports_parallel_tool_calls = ToggleState::Selected;
model_input.capabilities.supports_prompt_cache_key = ToggleState::Unselected;
let parsed_model = model_input.parse(cx).unwrap();
assert_eq!(parsed_model.name, "somemodel");
assert_eq!(parsed_model.capabilities.tools, true);
assert_eq!(parsed_model.capabilities.images, false);
assert_eq!(parsed_model.capabilities.parallel_tool_calls, true);
assert_eq!(parsed_model.capabilities.prompt_cache_key, false);
});
}
async fn setup_test(cx: &mut TestAppContext) -> &mut VisualTestContext {
cx.update(|cx| {
let store = SettingsStore::test(cx);

View file

@ -38,6 +38,27 @@ pub struct AvailableModel {
pub max_tokens: u64,
pub max_output_tokens: Option<u64>,
pub max_completion_tokens: Option<u64>,
#[serde(default)]
pub capabilities: ModelCapabilities,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct ModelCapabilities {
pub tools: bool,
pub images: bool,
pub parallel_tool_calls: bool,
pub prompt_cache_key: bool,
}
impl Default for ModelCapabilities {
fn default() -> Self {
Self {
tools: true,
images: false,
parallel_tool_calls: false,
prompt_cache_key: false,
}
}
}
pub struct OpenAiCompatibleLanguageModelProvider {
@ -293,17 +314,17 @@ impl LanguageModel for OpenAiCompatibleLanguageModel {
}
fn supports_tools(&self) -> bool {
true
self.model.capabilities.tools
}
fn supports_images(&self) -> bool {
false
self.model.capabilities.images
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto => true,
LanguageModelToolChoice::Any => true,
LanguageModelToolChoice::Auto => self.model.capabilities.tools,
LanguageModelToolChoice::Any => self.model.capabilities.tools,
LanguageModelToolChoice::None => true,
}
}
@ -355,13 +376,11 @@ impl LanguageModel for OpenAiCompatibleLanguageModel {
LanguageModelCompletionError,
>,
> {
let supports_parallel_tool_call = true;
let supports_prompt_cache_key = false;
let request = into_open_ai(
request,
&self.model.name,
supports_parallel_tool_call,
supports_prompt_cache_key,
self.model.capabilities.parallel_tool_calls,
self.model.capabilities.prompt_cache_key,
self.max_output_tokens(),
None,
);

View file

@ -427,7 +427,7 @@ Custom models will be listed in the model dropdown in the Agent Panel.
Zed supports using [OpenAI compatible APIs](https://platform.openai.com/docs/api-reference/chat) by specifying a custom `api_url` and `available_models` for the OpenAI provider.
This is useful for connecting to other hosted services (like Together AI, Anyscale, etc.) or local models.
You can add a custom, OpenAI-compatible model via either via the UI or by editing your `settings.json`.
You can add a custom, OpenAI-compatible model either via the UI or by editing your `settings.json`.
To do it via the UI, go to the Agent Panel settings (`agent: open settings`) and look for the "Add Provider" button to the right of the "LLM Providers" section title.
Then, fill up the input fields available in the modal.
@ -443,7 +443,13 @@ To do it via your `settings.json`, add the following snippet under `language_mod
{
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"display_name": "Together Mixtral 8x7B",
"max_tokens": 32768
"max_tokens": 32768,
"capabilities": {
"tools": true,
"images": false,
"parallel_tool_calls": false,
"prompt_cache_key": false
}
}
]
}
@ -451,6 +457,13 @@ To do it via your `settings.json`, add the following snippet under `language_mod
}
```
By default, OpenAI-compatible models inherit the following capabilities:
- `tools`: true (supports tool/function calling)
- `images`: false (does not support image inputs)
- `parallel_tool_calls`: false (does not support `parallel_tool_calls` parameter)
- `prompt_cache_key`: false (does not support `prompt_cache_key` parameter)
Note that LLM API keys aren't stored in your settings file.
So, ensure you have it set in your environment variables (`OPENAI_API_KEY=<your api key>`) so your settings can pick it up.