debugger: Add memory view (#33955)
This is mostly setting up the UI for now; I expect it to be the biggest chunk of work. Release Notes: - debugger: Added memory view --------- Co-authored-by: Anthony Eid <hello@anthonyeid.me> Co-authored-by: Mikayla Maki <mikayla.c.maki@gmail.com> Co-authored-by: Mikayla Maki <mikayla@zed.dev>
This commit is contained in:
parent
a2f5c47e2d
commit
6673c7cd4c
18 changed files with 1732 additions and 71 deletions
384
crates/project/src/debugger/memory.rs
Normal file
384
crates/project/src/debugger/memory.rs
Normal file
|
@ -0,0 +1,384 @@
|
|||
//! This module defines the format in which memory of debuggee is represented.
|
||||
//!
|
||||
//! Each byte in memory can either be mapped or unmapped. We try to mimic that twofold:
|
||||
//! - We assume that the memory is divided into pages of a fixed size.
|
||||
//! - We assume that each page can be either mapped or unmapped.
|
||||
//! These two assumptions drive the shape of the memory representation.
|
||||
//! In particular, we want the unmapped pages to be represented without allocating any memory, as *most*
|
||||
//! of the memory in a program space is usually unmapped.
|
||||
//! Note that per DAP we don't know what the address space layout is, so we can't optimize off of it.
|
||||
//! Note that while we optimize for a paged layout, we also want to be able to represent memory that is not paged.
|
||||
//! This use case is relevant to embedded folks. Furthermore, we cater to default 4k page size.
|
||||
//! It is picked arbitrarily as a ubiquous default - other than that, the underlying format of Zed's memory storage should not be relevant
|
||||
//! to the users of this module.
|
||||
|
||||
use std::{collections::BTreeMap, ops::RangeInclusive, sync::Arc};
|
||||
|
||||
use gpui::BackgroundExecutor;
|
||||
use smallvec::SmallVec;
|
||||
|
||||
const PAGE_SIZE: u64 = 4096;
|
||||
|
||||
/// Represents the contents of a single page. We special-case unmapped pages to be allocation-free,
|
||||
/// since they're going to make up the majority of the memory in a program space (even though the user might not even get to see them - ever).
|
||||
#[derive(Clone, Debug)]
|
||||
pub(super) enum PageContents {
|
||||
/// Whole page is unreadable.
|
||||
Unmapped,
|
||||
Mapped(Arc<MappedPageContents>),
|
||||
}
|
||||
|
||||
impl PageContents {
|
||||
#[cfg(test)]
|
||||
fn mapped(contents: Vec<u8>) -> Self {
|
||||
PageContents::Mapped(Arc::new(MappedPageContents(
|
||||
vec![PageChunk::Mapped(contents.into())].into(),
|
||||
)))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
enum PageChunk {
|
||||
Mapped(Arc<[u8]>),
|
||||
Unmapped(u64),
|
||||
}
|
||||
|
||||
impl PageChunk {
|
||||
fn len(&self) -> u64 {
|
||||
match self {
|
||||
PageChunk::Mapped(contents) => contents.len() as u64,
|
||||
PageChunk::Unmapped(size) => *size,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MappedPageContents {
|
||||
fn len(&self) -> u64 {
|
||||
self.0.iter().map(|chunk| chunk.len()).sum()
|
||||
}
|
||||
}
|
||||
/// We hope for the whole page to be mapped in a single chunk, but we do leave the possibility open
|
||||
/// of having interleaved read permissions in a single page; debuggee's execution environment might either
|
||||
/// have a different page size OR it might not have paged memory layout altogether
|
||||
/// (which might be relevant to embedded systems).
|
||||
///
|
||||
/// As stated previously, the concept of a page in this module has to do more
|
||||
/// with optimizing fetching of the memory and not with the underlying bits and pieces
|
||||
/// of the memory of a debuggee.
|
||||
|
||||
#[derive(Default, Debug)]
|
||||
pub(super) struct MappedPageContents(
|
||||
/// Most of the time there should be only one chunk (either mapped or unmapped),
|
||||
/// but we do leave the possibility open of having multiple regions of memory in a single page.
|
||||
SmallVec<[PageChunk; 1]>,
|
||||
);
|
||||
|
||||
type MemoryAddress = u64;
|
||||
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd, Ord, Eq)]
|
||||
#[repr(transparent)]
|
||||
pub(super) struct PageAddress(u64);
|
||||
|
||||
impl PageAddress {
|
||||
pub(super) fn iter_range(
|
||||
range: RangeInclusive<PageAddress>,
|
||||
) -> impl Iterator<Item = PageAddress> {
|
||||
let mut current = range.start().0;
|
||||
let end = range.end().0;
|
||||
|
||||
std::iter::from_fn(move || {
|
||||
if current > end {
|
||||
None
|
||||
} else {
|
||||
let addr = PageAddress(current);
|
||||
current += PAGE_SIZE;
|
||||
Some(addr)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) struct Memory {
|
||||
pages: BTreeMap<PageAddress, PageContents>,
|
||||
}
|
||||
|
||||
/// Represents a single memory cell (or None if a given cell is unmapped/unknown).
|
||||
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Ord, Eq)]
|
||||
#[repr(transparent)]
|
||||
pub struct MemoryCell(pub Option<u8>);
|
||||
|
||||
impl Memory {
|
||||
pub(super) fn new() -> Self {
|
||||
Self {
|
||||
pages: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn memory_range_to_page_range(
|
||||
range: RangeInclusive<MemoryAddress>,
|
||||
) -> RangeInclusive<PageAddress> {
|
||||
let start_page = (range.start() / PAGE_SIZE) * PAGE_SIZE;
|
||||
let end_page = (range.end() / PAGE_SIZE) * PAGE_SIZE;
|
||||
PageAddress(start_page)..=PageAddress(end_page)
|
||||
}
|
||||
|
||||
pub(super) fn build_page(&self, page_address: PageAddress) -> Option<MemoryPageBuilder> {
|
||||
if self.pages.contains_key(&page_address) {
|
||||
// We already know the state of this page.
|
||||
None
|
||||
} else {
|
||||
Some(MemoryPageBuilder::new(page_address))
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn insert_page(&mut self, address: PageAddress, page: PageContents) {
|
||||
self.pages.insert(address, page);
|
||||
}
|
||||
|
||||
pub(super) fn memory_range(&self, range: RangeInclusive<MemoryAddress>) -> MemoryIterator {
|
||||
let pages = Self::memory_range_to_page_range(range.clone());
|
||||
let pages = self
|
||||
.pages
|
||||
.range(pages)
|
||||
.map(|(address, page)| (*address, page.clone()))
|
||||
.collect::<Vec<_>>();
|
||||
MemoryIterator::new(range, pages.into_iter())
|
||||
}
|
||||
|
||||
pub(crate) fn clear(&mut self, background_executor: &BackgroundExecutor) {
|
||||
let memory = std::mem::take(&mut self.pages);
|
||||
background_executor
|
||||
.spawn(async move {
|
||||
drop(memory);
|
||||
})
|
||||
.detach();
|
||||
}
|
||||
}
|
||||
|
||||
/// Builder for memory pages.
|
||||
///
|
||||
/// Memory reads in DAP are sequential (or at least we make them so).
|
||||
/// ReadMemory response includes `unreadableBytes` property indicating the number of bytes
|
||||
/// that could not be read after the last successfully read byte.
|
||||
///
|
||||
/// We use it as follows:
|
||||
/// - We start off with a "large" 1-page ReadMemory request.
|
||||
/// - If it succeeds/fails wholesale, cool; we have no unknown memory regions in this page.
|
||||
/// - If it succeeds partially, we know # of mapped bytes.
|
||||
/// We might also know the # of unmapped bytes.
|
||||
/// However, we're still unsure about what's *after* the unreadable region.
|
||||
///
|
||||
/// This is where this builder comes in. It lets us track the state of figuring out contents of a single page.
|
||||
pub(super) struct MemoryPageBuilder {
|
||||
chunks: MappedPageContents,
|
||||
base_address: PageAddress,
|
||||
left_to_read: u64,
|
||||
}
|
||||
|
||||
/// Represents a chunk of memory of which we don't know if it's mapped or unmapped; thus we need
|
||||
/// to issue a request to figure out it's state.
|
||||
pub(super) struct UnknownMemory {
|
||||
pub(super) address: MemoryAddress,
|
||||
pub(super) size: u64,
|
||||
}
|
||||
|
||||
impl MemoryPageBuilder {
|
||||
fn new(base_address: PageAddress) -> Self {
|
||||
Self {
|
||||
chunks: Default::default(),
|
||||
base_address,
|
||||
left_to_read: PAGE_SIZE,
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn build(self) -> (PageAddress, PageContents) {
|
||||
debug_assert_eq!(self.left_to_read, 0);
|
||||
debug_assert_eq!(
|
||||
self.chunks.len(),
|
||||
PAGE_SIZE,
|
||||
"Expected `build` to be called on a fully-fetched page"
|
||||
);
|
||||
let contents = if let Some(first) = self.chunks.0.first()
|
||||
&& self.chunks.len() == 1
|
||||
&& matches!(first, PageChunk::Unmapped(PAGE_SIZE))
|
||||
{
|
||||
PageContents::Unmapped
|
||||
} else {
|
||||
PageContents::Mapped(Arc::new(MappedPageContents(self.chunks.0)))
|
||||
};
|
||||
(self.base_address, contents)
|
||||
}
|
||||
/// Drives the fetching of memory, in an iterator-esque style.
|
||||
pub(super) fn next_request(&self) -> Option<UnknownMemory> {
|
||||
if self.left_to_read == 0 {
|
||||
None
|
||||
} else {
|
||||
let offset_in_current_page = PAGE_SIZE - self.left_to_read;
|
||||
Some(UnknownMemory {
|
||||
address: self.base_address.0 + offset_in_current_page,
|
||||
size: self.left_to_read,
|
||||
})
|
||||
}
|
||||
}
|
||||
pub(super) fn unknown(&mut self, bytes: u64) {
|
||||
if bytes == 0 {
|
||||
return;
|
||||
}
|
||||
self.left_to_read -= bytes;
|
||||
self.chunks.0.push(PageChunk::Unmapped(bytes));
|
||||
}
|
||||
pub(super) fn known(&mut self, data: Arc<[u8]>) {
|
||||
if data.is_empty() {
|
||||
return;
|
||||
}
|
||||
self.left_to_read -= data.len() as u64;
|
||||
self.chunks.0.push(PageChunk::Mapped(data));
|
||||
}
|
||||
}
|
||||
|
||||
fn page_contents_into_iter(data: Arc<MappedPageContents>) -> Box<dyn Iterator<Item = MemoryCell>> {
|
||||
let mut data_range = 0..data.0.len();
|
||||
let iter = std::iter::from_fn(move || {
|
||||
let data = &data;
|
||||
let data_ref = data.clone();
|
||||
data_range.next().map(move |index| {
|
||||
let contents = &data_ref.0[index];
|
||||
match contents {
|
||||
PageChunk::Mapped(items) => {
|
||||
let chunk_range = 0..items.len();
|
||||
let items = items.clone();
|
||||
Box::new(
|
||||
chunk_range
|
||||
.into_iter()
|
||||
.map(move |ix| MemoryCell(Some(items[ix]))),
|
||||
) as Box<dyn Iterator<Item = MemoryCell>>
|
||||
}
|
||||
PageChunk::Unmapped(len) => {
|
||||
Box::new(std::iter::repeat_n(MemoryCell(None), *len as usize))
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
.flatten();
|
||||
|
||||
Box::new(iter)
|
||||
}
|
||||
/// Defines an iteration over a range of memory. Some of this memory might be unmapped or straight up missing.
|
||||
/// Thus, this iterator alternates between synthesizing values and yielding known memory.
|
||||
pub struct MemoryIterator {
|
||||
start: MemoryAddress,
|
||||
end: MemoryAddress,
|
||||
current_known_page: Option<(PageAddress, Box<dyn Iterator<Item = MemoryCell>>)>,
|
||||
pages: std::vec::IntoIter<(PageAddress, PageContents)>,
|
||||
}
|
||||
|
||||
impl MemoryIterator {
|
||||
fn new(
|
||||
range: RangeInclusive<MemoryAddress>,
|
||||
pages: std::vec::IntoIter<(PageAddress, PageContents)>,
|
||||
) -> Self {
|
||||
Self {
|
||||
start: *range.start(),
|
||||
end: *range.end(),
|
||||
current_known_page: None,
|
||||
pages,
|
||||
}
|
||||
}
|
||||
fn fetch_next_page(&mut self) -> bool {
|
||||
if let Some((mut address, chunk)) = self.pages.next() {
|
||||
let mut contents = match chunk {
|
||||
PageContents::Unmapped => None,
|
||||
PageContents::Mapped(mapped_page_contents) => {
|
||||
Some(page_contents_into_iter(mapped_page_contents))
|
||||
}
|
||||
};
|
||||
|
||||
if address.0 < self.start {
|
||||
// Skip ahead till our iterator is at the start of the range
|
||||
|
||||
//address: 20, start: 25
|
||||
//
|
||||
let to_skip = self.start - address.0;
|
||||
address.0 += to_skip;
|
||||
if let Some(contents) = &mut contents {
|
||||
contents.nth(to_skip as usize - 1);
|
||||
}
|
||||
}
|
||||
self.current_known_page = contents.map(|contents| (address, contents));
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
impl Iterator for MemoryIterator {
|
||||
type Item = MemoryCell;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if self.start > self.end {
|
||||
return None;
|
||||
}
|
||||
if let Some((current_page_address, current_memory_chunk)) = self.current_known_page.as_mut()
|
||||
{
|
||||
if current_page_address.0 <= self.start {
|
||||
if let Some(next_cell) = current_memory_chunk.next() {
|
||||
self.start += 1;
|
||||
return Some(next_cell);
|
||||
} else {
|
||||
self.current_known_page.take();
|
||||
}
|
||||
}
|
||||
}
|
||||
if !self.fetch_next_page() {
|
||||
self.start += 1;
|
||||
return Some(MemoryCell(None));
|
||||
} else {
|
||||
self.next()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::debugger::{
|
||||
MemoryCell,
|
||||
memory::{MemoryIterator, PageAddress, PageContents},
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn iterate_over_unmapped_memory() {
|
||||
let empty_iterator = MemoryIterator::new(0..=127, Default::default());
|
||||
let actual = empty_iterator.collect::<Vec<_>>();
|
||||
let expected = vec![MemoryCell(None); 128];
|
||||
assert_eq!(actual.len(), expected.len());
|
||||
assert_eq!(actual, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn iterate_over_partially_mapped_memory() {
|
||||
let it = MemoryIterator::new(
|
||||
0..=127,
|
||||
vec![(PageAddress(5), PageContents::mapped(vec![1]))].into_iter(),
|
||||
);
|
||||
let actual = it.collect::<Vec<_>>();
|
||||
let expected = std::iter::repeat_n(MemoryCell(None), 5)
|
||||
.chain(std::iter::once(MemoryCell(Some(1))))
|
||||
.chain(std::iter::repeat_n(MemoryCell(None), 122))
|
||||
.collect::<Vec<_>>();
|
||||
assert_eq!(actual.len(), expected.len());
|
||||
assert_eq!(actual, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn reads_from_the_middle_of_a_page() {
|
||||
let partial_iter = MemoryIterator::new(
|
||||
20..=30,
|
||||
vec![(PageAddress(0), PageContents::mapped((0..255).collect()))].into_iter(),
|
||||
);
|
||||
let actual = partial_iter.collect::<Vec<_>>();
|
||||
let expected = (20..=30)
|
||||
.map(|val| MemoryCell(Some(val)))
|
||||
.collect::<Vec<_>>();
|
||||
assert_eq!(actual.len(), expected.len());
|
||||
assert_eq!(actual, expected);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue