ollama: Add tool call support (#29563)
The goal of this PR is to support tool calls using ollama. A lot of the serialization work was done in https://github.com/zed-industries/zed/pull/15803 however the abstraction over language models always disables tools. ## Changelog: - Use `serde_json::Value` inside `OllamaFunctionCall` just as it's used in `OllamaFunctionCall`. This fixes deserialization of ollama tool calls. - Added deserialization tests using json from official ollama api docs. - Fetch model capabilities during model enumeration from ollama provider - Added `supports_tools` setting to manually configure if a model supports tools ## TODO: - [x] Fix tool call serialization/deserialization - [x] Fetch model capabilities from ollama api - [x] Add tests for parsing model capabilities - [ ] Documentation for `supports_tools` field for ollama language model config - [ ] Convert between generic language model types - [x] Pass tools to ollama Release Notes: - N/A --------- Co-authored-by: Antonio Scandurra <me@as-cii.com> Co-authored-by: Nathan Sobo <nathan@zed.dev>
This commit is contained in:
parent
e9616259d0
commit
769ec59162
3 changed files with 360 additions and 88 deletions
|
@ -1,9 +1,11 @@
|
|||
use anyhow::{Result, anyhow};
|
||||
use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
|
||||
use futures::{Stream, TryFutureExt, stream};
|
||||
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
|
||||
use http_client::HttpClient;
|
||||
use language_model::{
|
||||
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
||||
LanguageModelRequestTool, LanguageModelToolUse, LanguageModelToolUseId, StopReason,
|
||||
};
|
||||
use language_model::{
|
||||
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
||||
|
@ -11,12 +13,14 @@ use language_model::{
|
|||
LanguageModelRequest, RateLimiter, Role,
|
||||
};
|
||||
use ollama::{
|
||||
ChatMessage, ChatOptions, ChatRequest, KeepAlive, get_models, preload_model,
|
||||
stream_chat_completion,
|
||||
ChatMessage, ChatOptions, ChatRequest, ChatResponseDelta, KeepAlive, OllamaFunctionTool,
|
||||
OllamaToolCall, get_models, preload_model, show_model, stream_chat_completion,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use settings::{Settings, SettingsStore};
|
||||
use std::pin::Pin;
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
use std::{collections::BTreeMap, sync::Arc};
|
||||
use ui::{ButtonLike, Indicator, List, prelude::*};
|
||||
use util::ResultExt;
|
||||
|
@ -47,6 +51,8 @@ pub struct AvailableModel {
|
|||
pub max_tokens: usize,
|
||||
/// The number of seconds to keep the connection open after the last request
|
||||
pub keep_alive: Option<KeepAlive>,
|
||||
/// Whether the model supports tools
|
||||
pub supports_tools: bool,
|
||||
}
|
||||
|
||||
pub struct OllamaLanguageModelProvider {
|
||||
|
@ -68,26 +74,44 @@ impl State {
|
|||
|
||||
fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).ollama;
|
||||
let http_client = self.http_client.clone();
|
||||
let http_client = Arc::clone(&self.http_client);
|
||||
let api_url = settings.api_url.clone();
|
||||
|
||||
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
|
||||
cx.spawn(async move |this, cx| {
|
||||
let models = get_models(http_client.as_ref(), &api_url, None).await?;
|
||||
|
||||
let mut models: Vec<ollama::Model> = models
|
||||
let tasks = models
|
||||
.into_iter()
|
||||
// Since there is no metadata from the Ollama API
|
||||
// indicating which models are embedding models,
|
||||
// simply filter out models with "-embed" in their name
|
||||
.filter(|model| !model.name.contains("-embed"))
|
||||
.map(|model| ollama::Model::new(&model.name, None, None))
|
||||
.collect();
|
||||
.map(|model| {
|
||||
let http_client = Arc::clone(&http_client);
|
||||
let api_url = api_url.clone();
|
||||
async move {
|
||||
let name = model.name.as_str();
|
||||
let capabilities = show_model(http_client.as_ref(), &api_url, name).await?;
|
||||
let ollama_model =
|
||||
ollama::Model::new(name, None, None, capabilities.supports_tools());
|
||||
Ok(ollama_model)
|
||||
}
|
||||
});
|
||||
|
||||
models.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
// Rate-limit capability fetches
|
||||
// since there is an arbitrary number of models available
|
||||
let mut ollama_models: Vec<_> = futures::stream::iter(tasks)
|
||||
.buffer_unordered(5)
|
||||
.collect::<Vec<Result<_>>>()
|
||||
.await
|
||||
.into_iter()
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
ollama_models.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
|
||||
this.update(cx, |this, cx| {
|
||||
this.available_models = models;
|
||||
this.available_models = ollama_models;
|
||||
cx.notify();
|
||||
})
|
||||
})
|
||||
|
@ -189,6 +213,7 @@ impl LanguageModelProvider for OllamaLanguageModelProvider {
|
|||
display_name: model.display_name.clone(),
|
||||
max_tokens: model.max_tokens,
|
||||
keep_alive: model.keep_alive.clone(),
|
||||
supports_tools: model.supports_tools,
|
||||
},
|
||||
);
|
||||
}
|
||||
|
@ -269,7 +294,7 @@ impl OllamaLanguageModel {
|
|||
temperature: request.temperature.or(Some(1.0)),
|
||||
..Default::default()
|
||||
}),
|
||||
tools: vec![],
|
||||
tools: request.tools.into_iter().map(tool_into_ollama).collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -292,7 +317,7 @@ impl LanguageModel for OllamaLanguageModel {
|
|||
}
|
||||
|
||||
fn supports_tools(&self) -> bool {
|
||||
false
|
||||
self.model.supports_tools
|
||||
}
|
||||
|
||||
fn telemetry_id(&self) -> String {
|
||||
|
@ -341,39 +366,100 @@ impl LanguageModel for OllamaLanguageModel {
|
|||
};
|
||||
|
||||
let future = self.request_limiter.stream(async move {
|
||||
let response = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
|
||||
let stream = response
|
||||
.filter_map(|response| async move {
|
||||
match response {
|
||||
Ok(delta) => {
|
||||
let content = match delta.message {
|
||||
ChatMessage::User { content } => content,
|
||||
ChatMessage::Assistant { content, .. } => content,
|
||||
ChatMessage::System { content } => content,
|
||||
};
|
||||
Some(Ok(content))
|
||||
}
|
||||
Err(error) => Some(Err(error)),
|
||||
}
|
||||
})
|
||||
.boxed();
|
||||
let stream = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
|
||||
let stream = map_to_language_model_completion_events(stream);
|
||||
Ok(stream)
|
||||
});
|
||||
|
||||
async move {
|
||||
Ok(future
|
||||
.await?
|
||||
.map(|result| {
|
||||
result
|
||||
.map(LanguageModelCompletionEvent::Text)
|
||||
.map_err(LanguageModelCompletionError::Other)
|
||||
})
|
||||
.boxed())
|
||||
}
|
||||
.boxed()
|
||||
future.map_ok(|f| f.boxed()).boxed()
|
||||
}
|
||||
}
|
||||
|
||||
fn map_to_language_model_completion_events(
|
||||
stream: Pin<Box<dyn Stream<Item = anyhow::Result<ChatResponseDelta>> + Send>>,
|
||||
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
||||
// Used for creating unique tool use ids
|
||||
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
|
||||
|
||||
struct State {
|
||||
stream: Pin<Box<dyn Stream<Item = anyhow::Result<ChatResponseDelta>> + Send>>,
|
||||
used_tools: bool,
|
||||
}
|
||||
|
||||
// We need to create a ToolUse and Stop event from a single
|
||||
// response from the original stream
|
||||
let stream = stream::unfold(
|
||||
State {
|
||||
stream,
|
||||
used_tools: false,
|
||||
},
|
||||
async move |mut state| {
|
||||
let response = state.stream.next().await?;
|
||||
|
||||
let delta = match response {
|
||||
Ok(delta) => delta,
|
||||
Err(e) => {
|
||||
let event = Err(LanguageModelCompletionError::Other(anyhow!(e)));
|
||||
return Some((vec![event], state));
|
||||
}
|
||||
};
|
||||
|
||||
let mut events = Vec::new();
|
||||
|
||||
match delta.message {
|
||||
ChatMessage::User { content } => {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
||||
}
|
||||
ChatMessage::System { content } => {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
||||
}
|
||||
ChatMessage::Assistant {
|
||||
content,
|
||||
tool_calls,
|
||||
} => {
|
||||
// Check for tool calls
|
||||
if let Some(tool_call) = tool_calls.and_then(|v| v.into_iter().next()) {
|
||||
match tool_call {
|
||||
OllamaToolCall::Function(function) => {
|
||||
let tool_id = format!(
|
||||
"{}-{}",
|
||||
&function.name,
|
||||
TOOL_CALL_COUNTER.fetch_add(1, Ordering::Relaxed)
|
||||
);
|
||||
let event =
|
||||
LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse {
|
||||
id: LanguageModelToolUseId::from(tool_id),
|
||||
name: Arc::from(function.name),
|
||||
raw_input: function.arguments.to_string(),
|
||||
input: function.arguments,
|
||||
is_input_complete: true,
|
||||
});
|
||||
events.push(Ok(event));
|
||||
state.used_tools = true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
if delta.done {
|
||||
if state.used_tools {
|
||||
state.used_tools = false;
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
||||
} else {
|
||||
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
||||
}
|
||||
}
|
||||
|
||||
Some((events, state))
|
||||
},
|
||||
);
|
||||
|
||||
stream.flat_map(futures::stream::iter)
|
||||
}
|
||||
|
||||
struct ConfigurationView {
|
||||
state: gpui::Entity<State>,
|
||||
loading_models_task: Option<Task<()>>,
|
||||
|
@ -509,3 +595,13 @@ impl Render for ConfigurationView {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn tool_into_ollama(tool: LanguageModelRequestTool) -> ollama::OllamaTool {
|
||||
ollama::OllamaTool::Function {
|
||||
function: OllamaFunctionTool {
|
||||
name: tool.name,
|
||||
description: Some(tool.description),
|
||||
parameters: Some(tool.input_schema),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue