Extract slash commands to their own crate (#23261)
This PR extracts the slash command definitions out of the `assistant` crate and into their own `assistant_slash_commands` crate. Release Notes: - N/A
This commit is contained in:
parent
1a8303b020
commit
8030c0025a
33 changed files with 452 additions and 347 deletions
196
crates/assistant_slash_commands/src/project_command.rs
Normal file
196
crates/assistant_slash_commands/src/project_command.rs
Normal file
|
@ -0,0 +1,196 @@
|
|||
use std::{
|
||||
fmt::Write as _,
|
||||
ops::DerefMut,
|
||||
sync::{atomic::AtomicBool, Arc},
|
||||
};
|
||||
|
||||
use anyhow::{anyhow, Result};
|
||||
use assistant_slash_command::{
|
||||
ArgumentCompletion, SlashCommand, SlashCommandOutput, SlashCommandOutputSection,
|
||||
SlashCommandResult,
|
||||
};
|
||||
use feature_flags::FeatureFlag;
|
||||
use gpui::{AppContext, Task, WeakView, WindowContext};
|
||||
use language::{Anchor, CodeLabel, LspAdapterDelegate};
|
||||
use language_model::{LanguageModelRegistry, LanguageModelTool};
|
||||
use prompt_library::PromptBuilder;
|
||||
use schemars::JsonSchema;
|
||||
use semantic_index::SemanticDb;
|
||||
use serde::Deserialize;
|
||||
use ui::prelude::*;
|
||||
use workspace::Workspace;
|
||||
|
||||
use super::{create_label_for_command, search_command::add_search_result_section};
|
||||
|
||||
pub struct ProjectSlashCommandFeatureFlag;
|
||||
|
||||
impl FeatureFlag for ProjectSlashCommandFeatureFlag {
|
||||
const NAME: &'static str = "project-slash-command";
|
||||
}
|
||||
|
||||
pub struct ProjectSlashCommand {
|
||||
prompt_builder: Arc<PromptBuilder>,
|
||||
}
|
||||
|
||||
impl ProjectSlashCommand {
|
||||
pub fn new(prompt_builder: Arc<PromptBuilder>) -> Self {
|
||||
Self { prompt_builder }
|
||||
}
|
||||
}
|
||||
|
||||
impl SlashCommand for ProjectSlashCommand {
|
||||
fn name(&self) -> String {
|
||||
"project".into()
|
||||
}
|
||||
|
||||
fn label(&self, cx: &AppContext) -> CodeLabel {
|
||||
create_label_for_command("project", &[], cx)
|
||||
}
|
||||
|
||||
fn description(&self) -> String {
|
||||
"Generate a semantic search based on context".into()
|
||||
}
|
||||
|
||||
fn icon(&self) -> IconName {
|
||||
IconName::Folder
|
||||
}
|
||||
|
||||
fn menu_text(&self) -> String {
|
||||
self.description()
|
||||
}
|
||||
|
||||
fn requires_argument(&self) -> bool {
|
||||
false
|
||||
}
|
||||
|
||||
fn complete_argument(
|
||||
self: Arc<Self>,
|
||||
_arguments: &[String],
|
||||
_cancel: Arc<AtomicBool>,
|
||||
_workspace: Option<WeakView<Workspace>>,
|
||||
_cx: &mut WindowContext,
|
||||
) -> Task<Result<Vec<ArgumentCompletion>>> {
|
||||
Task::ready(Ok(Vec::new()))
|
||||
}
|
||||
|
||||
fn run(
|
||||
self: Arc<Self>,
|
||||
_arguments: &[String],
|
||||
_context_slash_command_output_sections: &[SlashCommandOutputSection<Anchor>],
|
||||
context_buffer: language::BufferSnapshot,
|
||||
workspace: WeakView<Workspace>,
|
||||
_delegate: Option<Arc<dyn LspAdapterDelegate>>,
|
||||
cx: &mut WindowContext,
|
||||
) -> Task<SlashCommandResult> {
|
||||
let model_registry = LanguageModelRegistry::read_global(cx);
|
||||
let current_model = model_registry.active_model();
|
||||
let prompt_builder = self.prompt_builder.clone();
|
||||
|
||||
let Some(workspace) = workspace.upgrade() else {
|
||||
return Task::ready(Err(anyhow::anyhow!("workspace was dropped")));
|
||||
};
|
||||
let project = workspace.read(cx).project().clone();
|
||||
let fs = project.read(cx).fs().clone();
|
||||
let Some(project_index) =
|
||||
cx.update_global(|index: &mut SemanticDb, cx| index.project_index(project, cx))
|
||||
else {
|
||||
return Task::ready(Err(anyhow::anyhow!("no project indexer")));
|
||||
};
|
||||
|
||||
cx.spawn(|mut cx| async move {
|
||||
let current_model = current_model.ok_or_else(|| anyhow!("no model selected"))?;
|
||||
|
||||
let prompt =
|
||||
prompt_builder.generate_project_slash_command_prompt(context_buffer.text())?;
|
||||
|
||||
let search_queries = current_model
|
||||
.use_tool::<SearchQueries>(
|
||||
language_model::LanguageModelRequest {
|
||||
messages: vec![language_model::LanguageModelRequestMessage {
|
||||
role: language_model::Role::User,
|
||||
content: vec![language_model::MessageContent::Text(prompt)],
|
||||
cache: false,
|
||||
}],
|
||||
tools: vec![],
|
||||
stop: vec![],
|
||||
temperature: None,
|
||||
},
|
||||
cx.deref_mut(),
|
||||
)
|
||||
.await?
|
||||
.search_queries;
|
||||
|
||||
let results = project_index
|
||||
.read_with(&cx, |project_index, cx| {
|
||||
project_index.search(search_queries.clone(), 25, cx)
|
||||
})?
|
||||
.await?;
|
||||
|
||||
let results = SemanticDb::load_results(results, &fs, &cx).await?;
|
||||
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let mut output = "Project context:\n".to_string();
|
||||
let mut sections = Vec::new();
|
||||
|
||||
for (ix, query) in search_queries.into_iter().enumerate() {
|
||||
let start_ix = output.len();
|
||||
writeln!(&mut output, "Results for {query}:").unwrap();
|
||||
let mut has_results = false;
|
||||
for result in &results {
|
||||
if result.query_index == ix {
|
||||
add_search_result_section(result, &mut output, &mut sections);
|
||||
has_results = true;
|
||||
}
|
||||
}
|
||||
if has_results {
|
||||
sections.push(SlashCommandOutputSection {
|
||||
range: start_ix..output.len(),
|
||||
icon: IconName::MagnifyingGlass,
|
||||
label: query.into(),
|
||||
metadata: None,
|
||||
});
|
||||
output.push('\n');
|
||||
} else {
|
||||
output.truncate(start_ix);
|
||||
}
|
||||
}
|
||||
|
||||
sections.push(SlashCommandOutputSection {
|
||||
range: 0..output.len(),
|
||||
icon: IconName::Book,
|
||||
label: "Project context".into(),
|
||||
metadata: None,
|
||||
});
|
||||
|
||||
Ok(SlashCommandOutput {
|
||||
text: output,
|
||||
sections,
|
||||
run_commands_in_text: true,
|
||||
}
|
||||
.to_event_stream())
|
||||
})
|
||||
.await
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(JsonSchema, Deserialize)]
|
||||
struct SearchQueries {
|
||||
/// An array of semantic search queries.
|
||||
///
|
||||
/// These queries will be used to search the user's codebase.
|
||||
/// The function can only accept 4 queries, otherwise it will error.
|
||||
/// As such, it's important that you limit the length of the search_queries array to 5 queries or less.
|
||||
search_queries: Vec<String>,
|
||||
}
|
||||
|
||||
impl LanguageModelTool for SearchQueries {
|
||||
fn name() -> String {
|
||||
"search_queries".to_string()
|
||||
}
|
||||
|
||||
fn description() -> String {
|
||||
"Generate semantic search queries based on context".to_string()
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue