This commit is contained in:
Junkui Zhang 2025-07-13 16:34:16 +08:00
parent f2c847a1b0
commit 83ea328be5

View file

@ -32,6 +32,30 @@ struct Hsla {
float a;
};
struct LinearColorStop {
Hsla color;
float percentage;
};
struct Background {
// 0u is Solid
// 1u is LinearGradient
uint tag;
// 0u is sRGB linear color
// 1u is Oklab color
uint color_space;
Hsla solid;
float angle;
LinearColorStop colors[2];
uint pad;
};
struct GradientColor {
float4 solid;
float4 color0;
float4 color1;
};
struct AtlasTextureId {
uint index;
uint kind;
@ -71,6 +95,17 @@ float4 distance_from_clip_rect(float2 unit_vertex, Bounds bounds, Bounds clip_bo
clip_bounds.origin.y + clip_bounds.size.y - position.y);
}
// Convert linear RGB to sRGB
float3 linear_to_srgb(float3 color) {
return pow(color, float3(2.2));
}
// Convert sRGB to linear RGB
float3 srgb_to_linear(float3 color) {
return pow(color, float3(1.0 / 2.2));
}
/// Hsla to linear RGBA conversion.
float4 hsla_to_rgba(Hsla hsla) {
float h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
float s = hsla.s;
@ -119,6 +154,48 @@ float4 hsla_to_rgba(Hsla hsla) {
return rgba;
}
// Converts a sRGB color to the Oklab color space.
// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
float4 srgb_to_oklab(float4 color) {
// Convert non-linear sRGB to linear sRGB
color = float4(srgb_to_linear(color.rgb), color.a);
float l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
float m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
float s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
float l_ = pow(l, 1.0/3.0);
float m_ = pow(m, 1.0/3.0);
float s_ = pow(s, 1.0/3.0);
return float4(
0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
color.a
);
}
// Converts an Oklab color to the sRGB color space.
float4 oklab_to_srgb(float4 color) {
float l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
float m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
float s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
float l = l_ * l_ * l_;
float m = m_ * m_ * m_;
float s = s_ * s_ * s_;
float3 linear_rgb = float3(
4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s
);
// Convert linear sRGB to non-linear sRGB
return float4(linear_to_srgb(linear_rgb), color.a);
}
// This approximates the error function, needed for the gaussian integral
float2 erf(float2 x) {
float2 s = sign(x);
@ -190,6 +267,83 @@ float quad_sdf(float2 pt, Bounds bounds, Corners corner_radii) {
return distance;
}
GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, Hsla color0, Hsla color1) {
GradientColor res;
if (tag == 0) {
res.solid = hsla_to_rgba(solid);
} else if (tag == 1) {
res.color0 = hsla_to_rgba(color0);
res.color1 = hsla_to_rgba(color1);
// Prepare color space in vertex for avoid conversion
// in fragment shader for performance reasons
if (color_space == 1) {
// Oklab
res.color0 = srgb_to_oklab(res.color0);
res.color1 = srgb_to_oklab(res.color1);
}
}
return res;
}
float4 gradient_color(Background background,
float2 position,
Bounds bounds,
float4 solid_color, float4 color0, float4 color1) {
float4 color;
switch (background.tag) {
case 0:
color = solid_color;
break;
case 1: {
// -90 degrees to match the CSS gradient angle.
float radians = (fmod(background.angle, 360.0) - 90.0) * (M_PI_F / 180.0);
float2 direction = float2(cos(radians), sin(radians));
// Expand the short side to be the same as the long side
if (bounds.size.x > bounds.size.y) {
direction.y *= bounds.size.y / bounds.size.x;
} else {
direction.x *= bounds.size.x / bounds.size.y;
}
// Get the t value for the linear gradient with the color stop percentages.
float2 half_size = float2(bounds.size.x, bounds.size.y) / 2.;
float2 center = float2(bounds.origin.x, bounds.origin.y) + half_size;
float2 center_to_point = position - center;
float t = dot(center_to_point, direction) / length(direction);
// Check the direct to determine the use x or y
if (abs(direction.x) > abs(direction.y)) {
t = (t + half_size.x) / bounds.size.x;
} else {
t = (t + half_size.y) / bounds.size.y;
}
// Adjust t based on the stop percentages
t = (t - background.colors[0].percentage)
/ (background.colors[1].percentage
- background.colors[0].percentage);
t = clamp(t, 0.0, 1.0);
switch (background.color_space) {
case 0:
color = lerp(color0, color1, t);
break;
case 1: {
float4 oklab_color = lerp(color0, color1, t);
color = oklab_to_srgb(oklab_color);
break;
}
}
break;
}
}
return color;
}
/*
**
** Shadows
@ -294,7 +448,7 @@ struct Quad {
uint pad;
Bounds bounds;
Bounds content_mask;
Hsla background;
Background background;
Hsla border_color;
Corners corner_radii;
Edges border_widths;
@ -302,17 +456,22 @@ struct Quad {
struct QuadVertexOutput {
float4 position: SV_Position;
float4 background_color: COLOR0;
float4 border_color: COLOR1;
// float4 border_color: COLOR0;
float4 border_color: FLAT;
uint quad_id: FLAT;
float4 background_solid: FLAT;
float4 background_color0: FLAT;
float4 background_color1: FLAT;
float4 clip_distance: SV_ClipDistance;
};
struct QuadFragmentInput {
float4 position: SV_Position;
float4 background_color: COLOR0;
float4 border_color: COLOR1;
uint quad_id: FLAT;
float4 position: SV_Position;
float4 border_color: FLAT;
float4 background_solid: FLAT;
float4 background_color0: FLAT;
float4 background_color1: FLAT;
};
StructuredBuffer<Quad> quads: register(t1);
@ -322,20 +481,34 @@ QuadVertexOutput quad_vertex(uint vertex_id: SV_VertexID, uint quad_id: SV_Insta
Quad quad = quads[quad_id];
float4 device_position = to_device_position(unit_vertex, quad.bounds);
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
float4 background_color = hsla_to_rgba(quad.background);
float4 border_color = hsla_to_rgba(quad.border_color);
GradientColor gradient = prepare_gradient_color(
quad.background.tag,
quad.background.color_space,
quad.background.solid,
quad.background.colors[0].color,
quad.background.colors[1].color
);
QuadVertexOutput output;
output.position = device_position;
output.background_color = background_color;
output.border_color = border_color;
output.quad_id = quad_id;
output.background_solid = gradient.solid;
output.background_color0 = gradient.color0;
output.background_color1 = gradient.color1;
output.clip_distance = clip_distance;
return output;
}
float4 quad_fragment(QuadFragmentInput input): SV_Target {
Quad quad = quads[input.quad_id];
float2 half_size = quad.bounds.size / 2.;
float2 center = quad.bounds.origin + half_size;
float2 center_to_point = input.position.xy - center;
float4 color = gradient_color(quad.background, input.position.xy, quad.bounds,
input.background_solid, input.background_color0, input.background_color1);
// Fast path when the quad is not rounded and doesn't have any border.
if (quad.corner_radii.top_left == 0. && quad.corner_radii.bottom_left == 0. &&
@ -343,12 +516,9 @@ float4 quad_fragment(QuadFragmentInput input): SV_Target {
quad.corner_radii.bottom_right == 0. && quad.border_widths.top == 0. &&
quad.border_widths.left == 0. && quad.border_widths.right == 0. &&
quad.border_widths.bottom == 0.) {
return input.background_color;
return color;
}
float2 half_size = quad.bounds.size / 2.;
float2 center = quad.bounds.origin + half_size;
float2 center_to_point = input.position.xy - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
@ -385,16 +555,12 @@ float4 quad_fragment(QuadFragmentInput input): SV_Target {
border_width = vertical_border;
}
float4 color;
if (border_width == 0.) {
color = input.background_color;
} else {
if (border_width != 0.) {
float inset_distance = distance + border_width;
// Blend the border on top of the background and then linearly interpolate
// between the two as we slide inside the background.
float4 blended_border = over(input.background_color, input.border_color);
color = lerp(blended_border, input.background_color,
saturate(0.5 - inset_distance));
float4 blended_border = over(color, input.border_color);
color = lerp(blended_border, color, saturate(0.5 - inset_distance));
}
return color * float4(1., 1., 1., saturate(0.5 - distance));
@ -457,14 +623,17 @@ float4 path_rasterization_fragment(PathRasterizationInput input): SV_Target {
struct PathSprite {
Bounds bounds;
Hsla color;
Background color;
AtlasTile tile;
};
struct PathVertexOutput {
float4 position: SV_Position;
float2 tile_position: POSITION1;
float4 color: COLOR;
uint sprite_id: FLAT;
float4 solid_color: FLAT;
float4 color0: FLAT;
float4 color1: FLAT;
};
StructuredBuffer<PathSprite> path_sprites: register(t1);
@ -473,18 +642,32 @@ PathVertexOutput paths_vertex(uint vertex_id: SV_VertexID, uint instance_id: SV_
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
PathSprite sprite = path_sprites[instance_id];
// Don't apply content mask because it was already accounted for when rasterizing the path.
PathVertexOutput output;
output.position = to_device_position(unit_vertex, sprite.bounds);
output.tile_position = to_tile_position(unit_vertex, sprite.tile);
output.color = hsla_to_rgba(sprite.color);
output.sprite_id = instance_id;
GradientColor gradient = prepare_gradient_color(
sprite.color.tag,
sprite.color.color_space,
sprite.color.solid,
sprite.color.colors[0].color,
sprite.color.colors[1].color
);
output.solid_color = gradient.solid;
output.color0 = gradient.color0;
output.color1 = gradient.color1;
return output;
}
float4 paths_fragment(PathVertexOutput input): SV_Target {
float sample = t_sprite.Sample(s_sprite, input.tile_position).r;
float mask = 1.0 - abs(1.0 - sample % 2.0);
float4 color = input.color;
PathSprite sprite = path_sprites[input.sprite_id];
Background background = sprite.color;
float4 color = gradient_color(background, input.position.xy, sprite.bounds,
input.solid_color, input.color0, input.color1);
color.a *= mask;
return color;
}