rename vector_store crate to semantic_index
This commit is contained in:
parent
e630ff38c4
commit
8b42f5b1b3
14 changed files with 186 additions and 183 deletions
166
crates/semantic_index/src/embedding.rs
Normal file
166
crates/semantic_index/src/embedding.rs
Normal file
|
@ -0,0 +1,166 @@
|
|||
use anyhow::{anyhow, Result};
|
||||
use async_trait::async_trait;
|
||||
use futures::AsyncReadExt;
|
||||
use gpui::executor::Background;
|
||||
use gpui::serde_json;
|
||||
use isahc::http::StatusCode;
|
||||
use isahc::prelude::Configurable;
|
||||
use isahc::{AsyncBody, Response};
|
||||
use lazy_static::lazy_static;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::env;
|
||||
use std::sync::Arc;
|
||||
use std::time::Duration;
|
||||
use tiktoken_rs::{cl100k_base, CoreBPE};
|
||||
use util::http::{HttpClient, Request};
|
||||
|
||||
lazy_static! {
|
||||
static ref OPENAI_API_KEY: Option<String> = env::var("OPENAI_API_KEY").ok();
|
||||
static ref OPENAI_BPE_TOKENIZER: CoreBPE = cl100k_base().unwrap();
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct OpenAIEmbeddings {
|
||||
pub client: Arc<dyn HttpClient>,
|
||||
pub executor: Arc<Background>,
|
||||
}
|
||||
|
||||
#[derive(Serialize)]
|
||||
struct OpenAIEmbeddingRequest<'a> {
|
||||
model: &'static str,
|
||||
input: Vec<&'a str>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct OpenAIEmbeddingResponse {
|
||||
data: Vec<OpenAIEmbedding>,
|
||||
usage: OpenAIEmbeddingUsage,
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
struct OpenAIEmbedding {
|
||||
embedding: Vec<f32>,
|
||||
index: usize,
|
||||
object: String,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct OpenAIEmbeddingUsage {
|
||||
prompt_tokens: usize,
|
||||
total_tokens: usize,
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
pub trait EmbeddingProvider: Sync + Send {
|
||||
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>>;
|
||||
}
|
||||
|
||||
pub struct DummyEmbeddings {}
|
||||
|
||||
#[async_trait]
|
||||
impl EmbeddingProvider for DummyEmbeddings {
|
||||
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
|
||||
// 1024 is the OpenAI Embeddings size for ada models.
|
||||
// the model we will likely be starting with.
|
||||
let dummy_vec = vec![0.32 as f32; 1536];
|
||||
return Ok(vec![dummy_vec; spans.len()]);
|
||||
}
|
||||
}
|
||||
|
||||
impl OpenAIEmbeddings {
|
||||
async fn truncate(span: String) -> String {
|
||||
let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span.as_ref());
|
||||
if tokens.len() > 8190 {
|
||||
tokens.truncate(8190);
|
||||
let result = OPENAI_BPE_TOKENIZER.decode(tokens.clone());
|
||||
if result.is_ok() {
|
||||
let transformed = result.unwrap();
|
||||
// assert_ne!(transformed, span);
|
||||
return transformed;
|
||||
}
|
||||
}
|
||||
|
||||
return span.to_string();
|
||||
}
|
||||
|
||||
async fn send_request(&self, api_key: &str, spans: Vec<&str>) -> Result<Response<AsyncBody>> {
|
||||
let request = Request::post("https://api.openai.com/v1/embeddings")
|
||||
.redirect_policy(isahc::config::RedirectPolicy::Follow)
|
||||
.header("Content-Type", "application/json")
|
||||
.header("Authorization", format!("Bearer {}", api_key))
|
||||
.body(
|
||||
serde_json::to_string(&OpenAIEmbeddingRequest {
|
||||
input: spans.clone(),
|
||||
model: "text-embedding-ada-002",
|
||||
})
|
||||
.unwrap()
|
||||
.into(),
|
||||
)?;
|
||||
|
||||
Ok(self.client.send(request).await?)
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl EmbeddingProvider for OpenAIEmbeddings {
|
||||
async fn embed_batch(&self, spans: Vec<&str>) -> Result<Vec<Vec<f32>>> {
|
||||
const BACKOFF_SECONDS: [usize; 3] = [65, 180, 360];
|
||||
const MAX_RETRIES: usize = 3;
|
||||
|
||||
let api_key = OPENAI_API_KEY
|
||||
.as_ref()
|
||||
.ok_or_else(|| anyhow!("no api key"))?;
|
||||
|
||||
let mut request_number = 0;
|
||||
let mut response: Response<AsyncBody>;
|
||||
let mut spans: Vec<String> = spans.iter().map(|x| x.to_string()).collect();
|
||||
while request_number < MAX_RETRIES {
|
||||
response = self
|
||||
.send_request(api_key, spans.iter().map(|x| &**x).collect())
|
||||
.await?;
|
||||
request_number += 1;
|
||||
|
||||
if request_number + 1 == MAX_RETRIES && response.status() != StatusCode::OK {
|
||||
return Err(anyhow!(
|
||||
"openai max retries, error: {:?}",
|
||||
&response.status()
|
||||
));
|
||||
}
|
||||
|
||||
match response.status() {
|
||||
StatusCode::TOO_MANY_REQUESTS => {
|
||||
let delay = Duration::from_secs(BACKOFF_SECONDS[request_number - 1] as u64);
|
||||
self.executor.timer(delay).await;
|
||||
}
|
||||
StatusCode::BAD_REQUEST => {
|
||||
log::info!("BAD REQUEST: {:?}", &response.status());
|
||||
// Don't worry about delaying bad request, as we can assume
|
||||
// we haven't been rate limited yet.
|
||||
for span in spans.iter_mut() {
|
||||
*span = Self::truncate(span.to_string()).await;
|
||||
}
|
||||
}
|
||||
StatusCode::OK => {
|
||||
let mut body = String::new();
|
||||
response.body_mut().read_to_string(&mut body).await?;
|
||||
let response: OpenAIEmbeddingResponse = serde_json::from_str(&body)?;
|
||||
|
||||
log::info!(
|
||||
"openai embedding completed. tokens: {:?}",
|
||||
response.usage.total_tokens
|
||||
);
|
||||
return Ok(response
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|embedding| embedding.embedding)
|
||||
.collect());
|
||||
}
|
||||
_ => {
|
||||
return Err(anyhow!("openai embedding failed {}", response.status()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Err(anyhow!("openai embedding failed"))
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue