Have read_file support images (#30435)

This is very basic support for them. There are a number of other TODOs
before this is really a first-class supported feature, so not adding any
release notes for it; for now, this PR just makes it so that if
read_file tries to read a PNG (which has come up in practice), it at
least correctly sends it to Anthropic instead of messing up.

This also lays the groundwork for future PRs for more first-class
support for images in tool calls across more image file formats and LLM
providers.

Release Notes:

- N/A

---------

Co-authored-by: Agus Zubiaga <hi@aguz.me>
Co-authored-by: Agus Zubiaga <agus@zed.dev>
This commit is contained in:
Richard Feldman 2025-05-13 10:58:00 +02:00 committed by GitHub
parent f01af006e1
commit 8fdf309a4a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
30 changed files with 557 additions and 194 deletions

View file

@ -1,6 +1,9 @@
use crate::AllLanguageModelSettings;
use crate::ui::InstructionListItem;
use anthropic::{AnthropicError, AnthropicModelMode, ContentDelta, Event, ResponseContent, Usage};
use anthropic::{
AnthropicError, AnthropicModelMode, ContentDelta, Event, ResponseContent, ToolResultContent,
ToolResultPart, Usage,
};
use anyhow::{Context as _, Result, anyhow};
use collections::{BTreeMap, HashMap};
use credentials_provider::CredentialsProvider;
@ -15,8 +18,8 @@ use language_model::{
AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
LanguageModelCompletionError, LanguageModelId, LanguageModelKnownError, LanguageModelName,
LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice, MessageContent,
RateLimiter, Role,
LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
LanguageModelToolResultContent, MessageContent, RateLimiter, Role,
};
use language_model::{LanguageModelCompletionEvent, LanguageModelToolUse, StopReason};
use schemars::JsonSchema;
@ -346,9 +349,14 @@ pub fn count_anthropic_tokens(
MessageContent::ToolUse(_tool_use) => {
// TODO: Estimate token usage from tool uses.
}
MessageContent::ToolResult(tool_result) => {
string_contents.push_str(&tool_result.content);
}
MessageContent::ToolResult(tool_result) => match &tool_result.content {
LanguageModelToolResultContent::Text(txt) => {
string_contents.push_str(txt);
}
LanguageModelToolResultContent::Image(image) => {
tokens_from_images += image.estimate_tokens();
}
},
}
}
@ -421,6 +429,10 @@ impl LanguageModel for AnthropicModel {
true
}
fn supports_images(&self) -> bool {
true
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto
@ -575,7 +587,20 @@ pub fn into_anthropic(
Some(anthropic::RequestContent::ToolResult {
tool_use_id: tool_result.tool_use_id.to_string(),
is_error: tool_result.is_error,
content: tool_result.content.to_string(),
content: match tool_result.content {
LanguageModelToolResultContent::Text(text) => {
ToolResultContent::JustText(text.to_string())
}
LanguageModelToolResultContent::Image(image) => {
ToolResultContent::Multipart(vec![ToolResultPart::Image {
source: anthropic::ImageSource {
source_type: "base64".to_string(),
media_type: "image/png".to_string(),
data: image.source.to_string(),
},
}])
}
},
cache_control,
})
}

View file

@ -36,7 +36,8 @@ use language_model::{
LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
LanguageModelToolUse, MessageContent, RateLimiter, Role, TokenUsage,
LanguageModelToolResultContent, LanguageModelToolUse, MessageContent, RateLimiter, Role,
TokenUsage,
};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
@ -490,6 +491,10 @@ impl LanguageModel for BedrockModel {
self.model.supports_tool_use()
}
fn supports_images(&self) -> bool {
false
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto | LanguageModelToolChoice::Any => {
@ -635,9 +640,17 @@ pub fn into_bedrock(
MessageContent::ToolResult(tool_result) => {
BedrockToolResultBlock::builder()
.tool_use_id(tool_result.tool_use_id.to_string())
.content(BedrockToolResultContentBlock::Text(
tool_result.content.to_string(),
))
.content(match tool_result.content {
LanguageModelToolResultContent::Text(text) => {
BedrockToolResultContentBlock::Text(text.to_string())
}
LanguageModelToolResultContent::Image(_) => {
BedrockToolResultContentBlock::Text(
// TODO: Bedrock image support
"[Tool responded with an image, but Zed doesn't support these in Bedrock models yet]".to_string()
)
}
})
.status({
if tool_result.is_error {
BedrockToolResultStatus::Error
@ -762,9 +775,14 @@ pub fn get_bedrock_tokens(
MessageContent::ToolUse(_tool_use) => {
// TODO: Estimate token usage from tool uses.
}
MessageContent::ToolResult(tool_result) => {
string_contents.push_str(&tool_result.content);
}
MessageContent::ToolResult(tool_result) => match tool_result.content {
LanguageModelToolResultContent::Text(text) => {
string_contents.push_str(&text);
}
LanguageModelToolResultContent::Image(image) => {
tokens_from_images += image.estimate_tokens();
}
},
}
}

View file

@ -686,6 +686,14 @@ impl LanguageModel for CloudLanguageModel {
}
}
fn supports_images(&self) -> bool {
match self.model {
CloudModel::Anthropic(_) => true,
CloudModel::Google(_) => true,
CloudModel::OpenAi(_) => false,
}
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto

View file

@ -5,8 +5,9 @@ use std::sync::Arc;
use anyhow::{Result, anyhow};
use collections::HashMap;
use copilot::copilot_chat::{
ChatMessage, ChatMessageContent, CopilotChat, ImageUrl, Model as CopilotChatModel, ModelVendor,
Request as CopilotChatRequest, ResponseEvent, Tool, ToolCall,
ChatMessage, ChatMessageContent, ChatMessagePart, CopilotChat, ImageUrl,
Model as CopilotChatModel, ModelVendor, Request as CopilotChatRequest, ResponseEvent, Tool,
ToolCall,
};
use copilot::{Copilot, Status};
use futures::future::BoxFuture;
@ -20,12 +21,14 @@ use language_model::{
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
LanguageModelRequestMessage, LanguageModelToolChoice, LanguageModelToolSchemaFormat,
LanguageModelToolUse, MessageContent, RateLimiter, Role, StopReason,
LanguageModelRequestMessage, LanguageModelToolChoice, LanguageModelToolResultContent,
LanguageModelToolSchemaFormat, LanguageModelToolUse, MessageContent, RateLimiter, Role,
StopReason,
};
use settings::SettingsStore;
use std::time::Duration;
use ui::prelude::*;
use util::debug_panic;
use super::anthropic::count_anthropic_tokens;
use super::google::count_google_tokens;
@ -198,6 +201,10 @@ impl LanguageModel for CopilotChatLanguageModel {
self.model.supports_tools()
}
fn supports_images(&self) -> bool {
self.model.supports_vision()
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
match self.model.vendor() {
ModelVendor::OpenAI | ModelVendor::Anthropic => {
@ -447,9 +454,28 @@ fn into_copilot_chat(
Role::User => {
for content in &message.content {
if let MessageContent::ToolResult(tool_result) = content {
let content = match &tool_result.content {
LanguageModelToolResultContent::Text(text) => text.to_string().into(),
LanguageModelToolResultContent::Image(image) => {
if model.supports_vision() {
ChatMessageContent::Multipart(vec![ChatMessagePart::Image {
image_url: ImageUrl {
url: image.to_base64_url(),
},
}])
} else {
debug_panic!(
"This should be caught at {} level",
tool_result.tool_name
);
"[Tool responded with an image, but this model does not support vision]".to_string().into()
}
}
};
messages.push(ChatMessage::Tool {
tool_call_id: tool_result.tool_use_id.to_string(),
content: tool_result.content.to_string(),
content,
});
}
}
@ -460,18 +486,18 @@ fn into_copilot_chat(
MessageContent::Text(text) | MessageContent::Thinking { text, .. }
if !text.is_empty() =>
{
if let Some(ChatMessageContent::Text { text: text_content }) =
if let Some(ChatMessagePart::Text { text: text_content }) =
content_parts.last_mut()
{
text_content.push_str(text);
} else {
content_parts.push(ChatMessageContent::Text {
content_parts.push(ChatMessagePart::Text {
text: text.to_string(),
});
}
}
MessageContent::Image(image) if model.supports_vision() => {
content_parts.push(ChatMessageContent::Image {
content_parts.push(ChatMessagePart::Image {
image_url: ImageUrl {
url: image.to_base64_url(),
},
@ -483,7 +509,7 @@ fn into_copilot_chat(
if !content_parts.is_empty() {
messages.push(ChatMessage::User {
content: content_parts,
content: content_parts.into(),
});
}
}
@ -523,9 +549,9 @@ fn into_copilot_chat(
messages.push(ChatMessage::Assistant {
content: if text_content.is_empty() {
None
ChatMessageContent::empty()
} else {
Some(text_content)
text_content.into()
},
tool_calls,
});

View file

@ -287,6 +287,10 @@ impl LanguageModel for DeepSeekLanguageModel {
false
}
fn supports_images(&self) -> bool {
false
}
fn telemetry_id(&self) -> String {
format!("deepseek/{}", self.model.id())
}

View file

@ -313,6 +313,10 @@ impl LanguageModel for GoogleLanguageModel {
true
}
fn supports_images(&self) -> bool {
true
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto

View file

@ -285,6 +285,10 @@ impl LanguageModel for LmStudioLanguageModel {
false
}
fn supports_images(&self) -> bool {
false
}
fn supports_tool_choice(&self, _choice: LanguageModelToolChoice) -> bool {
false
}

View file

@ -303,6 +303,10 @@ impl LanguageModel for MistralLanguageModel {
false
}
fn supports_images(&self) -> bool {
false
}
fn supports_tool_choice(&self, _choice: LanguageModelToolChoice) -> bool {
false
}

View file

@ -325,6 +325,10 @@ impl LanguageModel for OllamaLanguageModel {
self.model.supports_tools.unwrap_or(false)
}
fn supports_images(&self) -> bool {
false
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto => false,

View file

@ -12,7 +12,8 @@ use language_model::{
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
LanguageModelToolChoice, LanguageModelToolUse, MessageContent, RateLimiter, Role, StopReason,
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
RateLimiter, Role, StopReason,
};
use open_ai::{Model, ResponseStreamEvent, stream_completion};
use schemars::JsonSchema;
@ -295,6 +296,10 @@ impl LanguageModel for OpenAiLanguageModel {
true
}
fn supports_images(&self) -> bool {
false
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto => true,
@ -392,8 +397,16 @@ pub fn into_open_ai(
}
}
MessageContent::ToolResult(tool_result) => {
let content = match &tool_result.content {
LanguageModelToolResultContent::Text(text) => text.to_string(),
LanguageModelToolResultContent::Image(_) => {
// TODO: Open AI image support
"[Tool responded with an image, but Zed doesn't support these in Open AI models yet]".to_string()
}
};
messages.push(open_ai::RequestMessage::Tool {
content: tool_result.content.to_string(),
content,
tool_call_id: tool_result.tool_use_id.to_string(),
});
}