batch search queries in the vector database
This commit is contained in:
parent
6cd10f3d5e
commit
98fde36834
3 changed files with 106 additions and 45 deletions
|
@ -20,6 +20,7 @@ use postage::watch;
|
|||
use project::{Fs, Project, WorktreeId};
|
||||
use smol::channel;
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::HashMap,
|
||||
mem,
|
||||
ops::Range,
|
||||
|
@ -704,27 +705,64 @@ impl SemanticIndex {
|
|||
let database_url = self.database_url.clone();
|
||||
let fs = self.fs.clone();
|
||||
cx.spawn(|this, mut cx| async move {
|
||||
let documents = cx
|
||||
.background()
|
||||
.spawn(async move {
|
||||
let database = VectorDatabase::new(fs, database_url).await?;
|
||||
let database = VectorDatabase::new(fs.clone(), database_url.clone()).await?;
|
||||
|
||||
let phrase_embedding = embedding_provider
|
||||
.embed_batch(vec![&phrase])
|
||||
.await?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
let phrase_embedding = embedding_provider
|
||||
.embed_batch(vec![&phrase])
|
||||
.await?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
|
||||
database.top_k_search(
|
||||
&worktree_db_ids,
|
||||
&phrase_embedding,
|
||||
limit,
|
||||
include_globs,
|
||||
exclude_globs,
|
||||
)
|
||||
})
|
||||
.await?;
|
||||
let file_ids = database.retrieve_included_file_ids(
|
||||
&worktree_db_ids,
|
||||
include_globs,
|
||||
exclude_globs,
|
||||
)?;
|
||||
|
||||
let batch_n = cx.background().num_cpus();
|
||||
let batch_size = file_ids.clone().len() / batch_n;
|
||||
|
||||
let mut result_tasks = Vec::new();
|
||||
for batch in file_ids.chunks(batch_size) {
|
||||
let batch = batch.into_iter().map(|v| *v).collect::<Vec<i64>>();
|
||||
let limit = limit.clone();
|
||||
let fs = fs.clone();
|
||||
let database_url = database_url.clone();
|
||||
let phrase_embedding = phrase_embedding.clone();
|
||||
let task = cx.background().spawn(async move {
|
||||
let database = VectorDatabase::new(fs, database_url).await.log_err();
|
||||
if database.is_none() {
|
||||
return Err(anyhow!("failed to acquire database connection"));
|
||||
} else {
|
||||
database
|
||||
.unwrap()
|
||||
.top_k_search(&phrase_embedding, limit, batch.as_slice())
|
||||
}
|
||||
});
|
||||
result_tasks.push(task);
|
||||
}
|
||||
|
||||
let batch_results = futures::future::join_all(result_tasks).await;
|
||||
|
||||
let mut results = Vec::new();
|
||||
for batch_result in batch_results {
|
||||
if batch_result.is_ok() {
|
||||
for (id, similarity) in batch_result.unwrap() {
|
||||
let ix = match results.binary_search_by(|(_, s)| {
|
||||
similarity.partial_cmp(&s).unwrap_or(Ordering::Equal)
|
||||
}) {
|
||||
Ok(ix) => ix,
|
||||
Err(ix) => ix,
|
||||
};
|
||||
results.insert(ix, (id, similarity));
|
||||
results.truncate(limit);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let ids = results.into_iter().map(|(id, _)| id).collect::<Vec<i64>>();
|
||||
let documents = database.get_documents_by_ids(ids.as_slice())?;
|
||||
|
||||
let mut tasks = Vec::new();
|
||||
let mut ranges = Vec::new();
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue