cx.background_executor().spawn(...)
-> cx.background_spawn(...)
(#25103)
Done automatically with > ast-grep -p '$A.background_executor().spawn($B)' -r '$A.background_spawn($B)' --update-all --globs "\!crates/gpui" Followed by: * `cargo fmt` * Unexpected need to remove some trailing whitespace. * Manually adding imports of `gpui::{AppContext as _}` which provides `background_spawn` * Added `AppContext as _` to existing use of `AppContext` Release Notes: - N/A
This commit is contained in:
parent
f606b0641e
commit
b1872e3afd
120 changed files with 1146 additions and 1267 deletions
|
@ -252,54 +252,53 @@ pub fn count_anthropic_tokens(
|
|||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let messages = request.messages;
|
||||
let mut tokens_from_images = 0;
|
||||
let mut string_messages = Vec::with_capacity(messages.len());
|
||||
cx.background_spawn(async move {
|
||||
let messages = request.messages;
|
||||
let mut tokens_from_images = 0;
|
||||
let mut string_messages = Vec::with_capacity(messages.len());
|
||||
|
||||
for message in messages {
|
||||
use language_model::MessageContent;
|
||||
for message in messages {
|
||||
use language_model::MessageContent;
|
||||
|
||||
let mut string_contents = String::new();
|
||||
let mut string_contents = String::new();
|
||||
|
||||
for content in message.content {
|
||||
match content {
|
||||
MessageContent::Text(text) => {
|
||||
string_contents.push_str(&text);
|
||||
}
|
||||
MessageContent::Image(image) => {
|
||||
tokens_from_images += image.estimate_tokens();
|
||||
}
|
||||
MessageContent::ToolUse(_tool_use) => {
|
||||
// TODO: Estimate token usage from tool uses.
|
||||
}
|
||||
MessageContent::ToolResult(tool_result) => {
|
||||
string_contents.push_str(&tool_result.content);
|
||||
}
|
||||
for content in message.content {
|
||||
match content {
|
||||
MessageContent::Text(text) => {
|
||||
string_contents.push_str(&text);
|
||||
}
|
||||
MessageContent::Image(image) => {
|
||||
tokens_from_images += image.estimate_tokens();
|
||||
}
|
||||
MessageContent::ToolUse(_tool_use) => {
|
||||
// TODO: Estimate token usage from tool uses.
|
||||
}
|
||||
MessageContent::ToolResult(tool_result) => {
|
||||
string_contents.push_str(&tool_result.content);
|
||||
}
|
||||
}
|
||||
|
||||
if !string_contents.is_empty() {
|
||||
string_messages.push(tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(string_contents),
|
||||
name: None,
|
||||
function_call: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
|
||||
.map(|tokens| tokens + tokens_from_images)
|
||||
})
|
||||
.boxed()
|
||||
if !string_contents.is_empty() {
|
||||
string_messages.push(tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(string_contents),
|
||||
name: None,
|
||||
function_call: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &string_messages)
|
||||
.map(|tokens| tokens + tokens_from_images)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
impl AnthropicModel {
|
||||
|
|
|
@ -3,7 +3,8 @@ use collections::BTreeMap;
|
|||
use editor::{Editor, EditorElement, EditorStyle};
|
||||
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
|
||||
use gpui::{
|
||||
AnyView, AppContext, AsyncApp, Entity, FontStyle, Subscription, Task, TextStyle, WhiteSpace,
|
||||
AnyView, AppContext as _, AsyncApp, Entity, FontStyle, Subscription, Task, TextStyle,
|
||||
WhiteSpace,
|
||||
};
|
||||
use http_client::HttpClient;
|
||||
use language_model::{
|
||||
|
@ -269,26 +270,25 @@ impl LanguageModel for DeepSeekLanguageModel {
|
|||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
cx.background_spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn stream_completion(
|
||||
|
|
|
@ -330,28 +330,27 @@ pub fn count_google_tokens(
|
|||
) -> BoxFuture<'static, Result<usize>> {
|
||||
// We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
|
||||
// So we have to use tokenizer from tiktoken_rs to count tokens.
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
cx.background_spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
// Tiktoken doesn't yet support these models, so we manually use the
|
||||
// same tokenizer as GPT-4.
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
struct ConfigurationView {
|
||||
|
|
|
@ -281,26 +281,25 @@ impl LanguageModel for MistralLanguageModel {
|
|||
request: LanguageModelRequest,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
cx.background_spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn stream_completion(
|
||||
|
|
|
@ -343,34 +343,31 @@ pub fn count_open_ai_tokens(
|
|||
model: open_ai::Model,
|
||||
cx: &App,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
cx.background_executor()
|
||||
.spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
cx.background_spawn(async move {
|
||||
let messages = request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
|
||||
role: match message.role {
|
||||
Role::User => "user".into(),
|
||||
Role::Assistant => "assistant".into(),
|
||||
Role::System => "system".into(),
|
||||
},
|
||||
content: Some(message.string_contents()),
|
||||
name: None,
|
||||
function_call: None,
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
match model {
|
||||
open_ai::Model::Custom { .. }
|
||||
| open_ai::Model::O1Mini
|
||||
| open_ai::Model::O1
|
||||
| open_ai::Model::O3Mini => {
|
||||
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
|
||||
}
|
||||
_ => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
match model {
|
||||
open_ai::Model::Custom { .. }
|
||||
| open_ai::Model::O1Mini
|
||||
| open_ai::Model::O1
|
||||
| open_ai::Model::O3Mini => tiktoken_rs::num_tokens_from_messages("gpt-4", &messages),
|
||||
_ => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
struct ConfigurationView {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue