Ollama max_tokens settings (#17025)
- Support `available_models` for Ollama - Clamp default max tokens (context length) to 16384. - Add documentation for ollama context configuration.
This commit is contained in:
parent
d401ab1efc
commit
b62e63349b
5 changed files with 92 additions and 35 deletions
|
@ -135,6 +135,7 @@ impl AssistantSettingsContent {
|
|||
Some(language_model::settings::OllamaSettingsContent {
|
||||
api_url,
|
||||
low_speed_timeout_in_seconds,
|
||||
available_models: None,
|
||||
});
|
||||
}
|
||||
},
|
||||
|
@ -295,7 +296,7 @@ impl AssistantSettingsContent {
|
|||
_ => (None, None),
|
||||
};
|
||||
settings.provider = Some(AssistantProviderContentV1::Ollama {
|
||||
default_model: Some(ollama::Model::new(&model)),
|
||||
default_model: Some(ollama::Model::new(&model, None, None)),
|
||||
api_url,
|
||||
low_speed_timeout_in_seconds,
|
||||
});
|
||||
|
|
|
@ -6,8 +6,10 @@ use ollama::{
|
|||
get_models, preload_model, stream_chat_completion, ChatMessage, ChatOptions, ChatRequest,
|
||||
ChatResponseDelta, OllamaToolCall,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use settings::{Settings, SettingsStore};
|
||||
use std::{sync::Arc, time::Duration};
|
||||
use std::{collections::BTreeMap, sync::Arc, time::Duration};
|
||||
use ui::{prelude::*, ButtonLike, Indicator};
|
||||
use util::ResultExt;
|
||||
|
||||
|
@ -28,6 +30,17 @@ const PROVIDER_NAME: &str = "Ollama";
|
|||
pub struct OllamaSettings {
|
||||
pub api_url: String,
|
||||
pub low_speed_timeout: Option<Duration>,
|
||||
pub available_models: Vec<AvailableModel>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
||||
pub struct AvailableModel {
|
||||
/// The model name in the Ollama API (e.g. "llama3.1:latest")
|
||||
pub name: String,
|
||||
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
|
||||
pub display_name: Option<String>,
|
||||
/// The Context Length parameter to the model (aka num_ctx or n_ctx)
|
||||
pub max_tokens: usize,
|
||||
}
|
||||
|
||||
pub struct OllamaLanguageModelProvider {
|
||||
|
@ -61,7 +74,7 @@ impl State {
|
|||
// indicating which models are embedding models,
|
||||
// simply filter out models with "-embed" in their name
|
||||
.filter(|model| !model.name.contains("-embed"))
|
||||
.map(|model| ollama::Model::new(&model.name))
|
||||
.map(|model| ollama::Model::new(&model.name, None, None))
|
||||
.collect();
|
||||
|
||||
models.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
|
@ -123,10 +136,32 @@ impl LanguageModelProvider for OllamaLanguageModelProvider {
|
|||
}
|
||||
|
||||
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
|
||||
self.state
|
||||
.read(cx)
|
||||
let mut models: BTreeMap<String, ollama::Model> = BTreeMap::default();
|
||||
|
||||
// Add models from the Ollama API
|
||||
for model in self.state.read(cx).available_models.iter() {
|
||||
models.insert(model.name.clone(), model.clone());
|
||||
}
|
||||
|
||||
// Override with available models from settings
|
||||
for model in AllLanguageModelSettings::get_global(cx)
|
||||
.ollama
|
||||
.available_models
|
||||
.iter()
|
||||
{
|
||||
models.insert(
|
||||
model.name.clone(),
|
||||
ollama::Model {
|
||||
name: model.name.clone(),
|
||||
display_name: model.display_name.clone(),
|
||||
max_tokens: model.max_tokens,
|
||||
keep_alive: None,
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
models
|
||||
.into_values()
|
||||
.map(|model| {
|
||||
Arc::new(OllamaLanguageModel {
|
||||
id: LanguageModelId::from(model.name.clone()),
|
||||
|
|
|
@ -152,6 +152,7 @@ pub struct AnthropicSettingsContentV1 {
|
|||
pub struct OllamaSettingsContent {
|
||||
pub api_url: Option<String>,
|
||||
pub low_speed_timeout_in_seconds: Option<u64>,
|
||||
pub available_models: Option<Vec<provider::ollama::AvailableModel>>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
|
@ -276,6 +277,9 @@ impl settings::Settings for AllLanguageModelSettings {
|
|||
anthropic.as_ref().and_then(|s| s.available_models.clone()),
|
||||
);
|
||||
|
||||
// Ollama
|
||||
let ollama = value.ollama.clone();
|
||||
|
||||
merge(
|
||||
&mut settings.ollama.api_url,
|
||||
value.ollama.as_ref().and_then(|s| s.api_url.clone()),
|
||||
|
@ -288,6 +292,10 @@ impl settings::Settings for AllLanguageModelSettings {
|
|||
settings.ollama.low_speed_timeout =
|
||||
Some(Duration::from_secs(low_speed_timeout_in_seconds));
|
||||
}
|
||||
merge(
|
||||
&mut settings.ollama.available_models,
|
||||
ollama.as_ref().and_then(|s| s.available_models.clone()),
|
||||
);
|
||||
|
||||
// OpenAI
|
||||
let (openai, upgraded) = match value.openai.clone().map(|s| s.upgrade()) {
|
||||
|
|
|
@ -66,40 +66,37 @@ impl Default for KeepAlive {
|
|||
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
|
||||
pub struct Model {
|
||||
pub name: String,
|
||||
pub display_name: Option<String>,
|
||||
pub max_tokens: usize,
|
||||
pub keep_alive: Option<KeepAlive>,
|
||||
}
|
||||
|
||||
// This could be dynamically retrieved via the API (1 call per model)
|
||||
// curl -s http://localhost:11434/api/show -d '{"model": "llama3.1:latest"}' | jq '.model_info."llama.context_length"'
|
||||
fn get_max_tokens(name: &str) -> usize {
|
||||
match name {
|
||||
"dolphin-llama3:8b-256k" => 262144, // 256K
|
||||
_ => match name.split(':').next().unwrap() {
|
||||
"mistral-nemo" => 1024000, // 1M
|
||||
"deepseek-coder-v2" => 163840, // 160K
|
||||
"llama3.1" | "phi3" | "command-r" | "command-r-plus" => 131072, // 128K
|
||||
"codeqwen" => 65536, // 64K
|
||||
"mistral" | "mistral-large" | "dolphin-mistral" | "codestral" // 32K
|
||||
| "mistral-openorca" | "dolphin-mixtral" | "mixstral" | "llava"
|
||||
| "qwen" | "qwen2" | "wizardlm2" | "wizard-math" => 32768,
|
||||
"codellama" | "stable-code" | "deepseek-coder" | "starcoder2" // 16K
|
||||
| "wizardcoder" => 16384,
|
||||
"llama3" | "gemma2" | "gemma" | "codegemma" | "dolphin-llama3" // 8K
|
||||
| "llava-llama3" | "starcoder" | "openchat" | "aya" => 8192,
|
||||
"llama2" | "yi" | "llama2-chinese" | "vicuna" | "nous-hermes2" // 4K
|
||||
| "stablelm2" => 4096,
|
||||
"phi" | "orca-mini" | "tinyllama" | "granite-code" => 2048, // 2K
|
||||
_ => 2048, // 2K (default)
|
||||
},
|
||||
/// Default context length for unknown models.
|
||||
const DEFAULT_TOKENS: usize = 2048;
|
||||
/// Magic number. Lets many Ollama models work with ~16GB of ram.
|
||||
const MAXIMUM_TOKENS: usize = 16384;
|
||||
|
||||
match name.split(':').next().unwrap() {
|
||||
"phi" | "tinyllama" | "granite-code" => 2048,
|
||||
"llama2" | "yi" | "vicuna" | "stablelm2" => 4096,
|
||||
"llama3" | "gemma2" | "gemma" | "codegemma" | "starcoder" | "aya" => 8192,
|
||||
"codellama" | "starcoder2" => 16384,
|
||||
"mistral" | "codestral" | "mixstral" | "llava" | "qwen2" | "dolphin-mixtral" => 32768,
|
||||
"llama3.1" | "phi3" | "phi3.5" | "command-r" | "deepseek-coder-v2" => 128000,
|
||||
_ => DEFAULT_TOKENS,
|
||||
}
|
||||
.clamp(1, MAXIMUM_TOKENS)
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(name: &str) -> Self {
|
||||
pub fn new(name: &str, display_name: Option<&str>, max_tokens: Option<usize>) -> Self {
|
||||
Self {
|
||||
name: name.to_owned(),
|
||||
max_tokens: get_max_tokens(name),
|
||||
display_name: display_name
|
||||
.map(ToString::to_string)
|
||||
.or_else(|| name.strip_suffix(":latest").map(ToString::to_string)),
|
||||
max_tokens: max_tokens.unwrap_or_else(|| get_max_tokens(name)),
|
||||
keep_alive: Some(KeepAlive::indefinite()),
|
||||
}
|
||||
}
|
||||
|
@ -109,7 +106,7 @@ impl Model {
|
|||
}
|
||||
|
||||
pub fn display_name(&self) -> &str {
|
||||
&self.name
|
||||
self.display_name.as_ref().unwrap_or(&self.name)
|
||||
}
|
||||
|
||||
pub fn max_token_count(&self) -> usize {
|
||||
|
|
|
@ -108,33 +108,49 @@ Custom models will be listed in the model dropdown in the assistant panel.
|
|||
|
||||
Download and install Ollama from [ollama.com/download](https://ollama.com/download) (Linux or macOS) and ensure it's running with `ollama --version`.
|
||||
|
||||
You can use Ollama with the Zed assistant by making Ollama appear as an OpenAPI endpoint.
|
||||
|
||||
1. Download, for example, the `mistral` model with Ollama:
|
||||
1. Download one of the [available models](https://ollama.com/models), for example, for `mistral`:
|
||||
|
||||
```sh
|
||||
ollama pull mistral
|
||||
```
|
||||
|
||||
2. Make sure that the Ollama server is running. You can start it either via running the Ollama app, or launching:
|
||||
2. Make sure that the Ollama server is running. You can start it either via running Ollama.app (MacOS) or launching:
|
||||
|
||||
```sh
|
||||
ollama serve
|
||||
```
|
||||
|
||||
3. In the assistant panel, select one of the Ollama models using the model dropdown.
|
||||
4. (Optional) If you want to change the default URL that is used to access the Ollama server, you can do so by adding the following settings:
|
||||
|
||||
4. (Optional) Specify a [custom api_url](#custom-endpoint) or [custom `low_speed_timeout_in_seconds`](#provider-timeout) if required.
|
||||
|
||||
#### Ollama Context Length {#ollama-context}}
|
||||
|
||||
Zed has pre-configured maximum context lengths (`max_tokens`) to match the capabilities of common models. Zed API requests to Ollama include this as `num_ctx` parameter, but the default values do not exceed `16384` so users with ~16GB of ram are able to use most models out of the box. See [get_max_tokens in ollama.rs](https://github.com/zed-industries/zed/blob/main/crates/ollama/src/ollama.rs) for a complete set of defaults.
|
||||
|
||||
**Note**: Tokens counts displayed in the assistant panel are only estimates and will differ from the models native tokenizer.
|
||||
|
||||
Depending on your hardware or use-case you may wish to limit or increase the context length for a specific model via settings.json:
|
||||
|
||||
```json
|
||||
{
|
||||
"language_models": {
|
||||
"ollama": {
|
||||
"api_url": "http://localhost:11434"
|
||||
"low_speed_timeout_in_seconds": 120,
|
||||
"available_models": [
|
||||
{
|
||||
"provider": "ollama",
|
||||
"name": "mistral:latest",
|
||||
"max_tokens": 32768
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
If you specify a context length that is too large for your hardware, Ollama will log an error. You can watch these logs by running: `tail -f ~/.ollama/logs/ollama.log` (MacOS) or `journalctl -u ollama -f` (Linux). Depending on the memory available on your machine, you may need to adjust the context length to a smaller value.
|
||||
|
||||
### OpenAI {#openai}
|
||||
|
||||
1. Visit the OpenAI platform and [create an API key](https://platform.openai.com/account/api-keys)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue