Add LM Studio support to the Assistant (#23097)

#### Release Notes:

- Added support for [LM Studio](https://lmstudio.ai/) to the Assistant.

#### Quick demo:


https://github.com/user-attachments/assets/af58fc13-1abc-4898-9747-3511016da86a

#### Future enhancements:
- wire up tool calling (new in [LM Studio
0.3.6](https://lmstudio.ai/blog/lmstudio-v0.3.6))

---------

Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>
This commit is contained in:
Yagil Burowski 2025-01-14 15:41:58 -05:00 committed by GitHub
parent 4445679f3c
commit c038696aa8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
24 changed files with 1153 additions and 2 deletions

16
Cargo.lock generated
View file

@ -406,6 +406,7 @@ dependencies = [
"language_model_selector",
"language_models",
"languages",
"lmstudio",
"log",
"lsp",
"markdown",
@ -483,6 +484,7 @@ dependencies = [
"language_model",
"language_model_selector",
"language_models",
"lmstudio",
"log",
"lsp",
"markdown",
@ -6682,6 +6684,7 @@ dependencies = [
"gpui",
"http_client",
"image",
"lmstudio",
"log",
"ollama",
"open_ai",
@ -6727,6 +6730,7 @@ dependencies = [
"gpui",
"http_client",
"language_model",
"lmstudio",
"menu",
"ollama",
"open_ai",
@ -7195,6 +7199,18 @@ dependencies = [
"libc",
]
[[package]]
name = "lmstudio"
version = "0.1.0"
dependencies = [
"anyhow",
"futures 0.3.31",
"http_client",
"schemars",
"serde",
"serde_json",
]
[[package]]
name = "lock_api"
version = "0.4.12"

View file

@ -69,6 +69,7 @@ members = [
"crates/livekit_client",
"crates/livekit_client_macos",
"crates/livekit_server",
"crates/lmstudio",
"crates/lsp",
"crates/markdown",
"crates/markdown_preview",
@ -255,6 +256,7 @@ languages = { path = "crates/languages" }
livekit_client = { path = "crates/livekit_client" }
livekit_client_macos = { path = "crates/livekit_client_macos" }
livekit_server = { path = "crates/livekit_server" }
lmstudio = { path = "crates/lmstudio" }
lsp = { path = "crates/lsp" }
markdown = { path = "crates/markdown" }
markdown_preview = { path = "crates/markdown_preview" }
@ -614,6 +616,7 @@ image_viewer = { codegen-units = 1 }
inline_completion_button = { codegen-units = 1 }
install_cli = { codegen-units = 1 }
journal = { codegen-units = 1 }
lmstudio = { codegen-units = 1 }
menu = { codegen-units = 1 }
notifications = { codegen-units = 1 }
ollama = { codegen-units = 1 }

View file

@ -0,0 +1,33 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="16px" height="16px" viewBox="0 0 16 16" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<title>Artboard</title>
<g id="Artboard" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd">
<rect id="Rectangle" stroke="black" stroke-width="1.26" x="1.22" y="1.22" width="13.56" height="13.56" rx="2.66"></rect>
<g id="Group-7" transform="translate(2.44, 3.03)" fill="black">
<g id="Group" transform="translate(0.37, 0)">
<rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
</g>
<g id="Group-2" transform="translate(2.88, 1.7)">
<rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
</g>
<g id="Group-3" transform="translate(1.53, 3.38)">
<rect id="Rectangle" opacity="0.487118676" x="1.92" y="0" width="6.28" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
</g>
<g id="Group-4" transform="translate(0, 5.09)">
<rect id="Rectangle" opacity="0.487118676" x="1.9" y="0" width="6.28" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="6.28" height="1.43" rx="0.71"></rect>
</g>
<g id="Group-5" transform="translate(1.64, 6.77)">
<rect id="Rectangle" opacity="0.487118676" x="1.94" y="0" width="5.46" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="5.46" height="1.43" rx="0.71"></rect>
</g>
<g id="Group-6" transform="translate(4.24, 8.47)">
<rect id="Rectangle" opacity="0.487118676" x="2.11" y="0" width="4.56" height="1.43" rx="0.71"></rect>
<rect id="Rectangle" opacity="0.845098586" x="0" y="0" width="4.56" height="1.43" rx="0.71"></rect>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View file

@ -1146,6 +1146,9 @@
"openai": {
"version": "1",
"api_url": "https://api.openai.com/v1"
},
"lmstudio": {
"api_url": "http://localhost:1234/api/v0"
}
},
// Zed's Prettier integration settings.

View file

@ -52,6 +52,7 @@ language.workspace = true
language_model.workspace = true
language_model_selector.workspace = true
language_models.workspace = true
lmstudio = { workspace = true, features = ["schemars"] }
log.workspace = true
lsp.workspace = true
markdown.workspace = true

View file

@ -5,6 +5,7 @@ use anthropic::Model as AnthropicModel;
use feature_flags::FeatureFlagAppExt;
use gpui::{AppContext, Pixels};
use language_model::{CloudModel, LanguageModel};
use lmstudio::Model as LmStudioModel;
use ollama::Model as OllamaModel;
use schemars::{schema::Schema, JsonSchema};
use serde::{Deserialize, Serialize};
@ -40,6 +41,10 @@ pub enum AssistantProviderContentV1 {
default_model: Option<OllamaModel>,
api_url: Option<String>,
},
LmStudio {
default_model: Option<LmStudioModel>,
api_url: Option<String>,
},
}
#[derive(Debug, Default)]
@ -137,6 +142,12 @@ impl AssistantSettingsContent {
model: model.id().to_string(),
})
}
AssistantProviderContentV1::LmStudio { default_model, .. } => {
default_model.map(|model| LanguageModelSelection {
provider: "lmstudio".to_string(),
model: model.id().to_string(),
})
}
}),
inline_alternatives: None,
enable_experimental_live_diffs: None,
@ -214,6 +225,18 @@ impl AssistantSettingsContent {
api_url,
});
}
"lmstudio" => {
let api_url = match &settings.provider {
Some(AssistantProviderContentV1::LmStudio { api_url, .. }) => {
api_url.clone()
}
_ => None,
};
settings.provider = Some(AssistantProviderContentV1::LmStudio {
default_model: Some(lmstudio::Model::new(&model, None, None)),
api_url,
});
}
"openai" => {
let (api_url, available_models) = match &settings.provider {
Some(AssistantProviderContentV1::OpenAi {
@ -313,6 +336,7 @@ fn providers_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema:
"anthropic".into(),
"google".into(),
"ollama".into(),
"lmstudio".into(),
"openai".into(),
"zed.dev".into(),
"copilot_chat".into(),
@ -355,7 +379,7 @@ pub struct AssistantSettingsContentV1 {
default_height: Option<f32>,
/// The provider of the assistant service.
///
/// This can be "openai", "anthropic", "ollama", "zed.dev"
/// This can be "openai", "anthropic", "ollama", "lmstudio", "zed.dev"
/// each with their respective default models and configurations.
provider: Option<AssistantProviderContentV1>,
}

View file

@ -46,6 +46,7 @@ markdown.workspace = true
menu.workspace = true
multi_buffer.workspace = true
ollama = { workspace = true, features = ["schemars"] }
lmstudio = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
ordered-float.workspace = true
parking_lot.workspace = true

View file

@ -4,6 +4,7 @@ use ::open_ai::Model as OpenAiModel;
use anthropic::Model as AnthropicModel;
use gpui::Pixels;
use language_model::{CloudModel, LanguageModel};
use lmstudio::Model as LmStudioModel;
use ollama::Model as OllamaModel;
use schemars::{schema::Schema, JsonSchema};
use serde::{Deserialize, Serialize};
@ -39,6 +40,11 @@ pub enum AssistantProviderContentV1 {
default_model: Option<OllamaModel>,
api_url: Option<String>,
},
#[serde(rename = "lmstudio")]
LmStudio {
default_model: Option<LmStudioModel>,
api_url: Option<String>,
},
}
#[derive(Debug, Default)]
@ -130,6 +136,12 @@ impl AssistantSettingsContent {
model: model.id().to_string(),
})
}
AssistantProviderContentV1::LmStudio { default_model, .. } => {
default_model.map(|model| LanguageModelSelection {
provider: "lmstudio".to_string(),
model: model.id().to_string(),
})
}
}),
inline_alternatives: None,
enable_experimental_live_diffs: None,
@ -207,6 +219,18 @@ impl AssistantSettingsContent {
api_url,
});
}
"lmstudio" => {
let api_url = match &settings.provider {
Some(AssistantProviderContentV1::LmStudio { api_url, .. }) => {
api_url.clone()
}
_ => None,
};
settings.provider = Some(AssistantProviderContentV1::LmStudio {
default_model: Some(lmstudio::Model::new(&model, None, None)),
api_url,
});
}
"openai" => {
let (api_url, available_models) = match &settings.provider {
Some(AssistantProviderContentV1::OpenAi {
@ -305,6 +329,7 @@ fn providers_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema:
enum_values: Some(vec![
"anthropic".into(),
"google".into(),
"lmstudio".into(),
"ollama".into(),
"openai".into(),
"zed.dev".into(),

View file

@ -28,6 +28,7 @@ image.workspace = true
log.workspace = true
ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
lmstudio = { workspace = true, features = ["schemars"] }
parking_lot.workspace = true
proto.workspace = true
schemars.workspace = true

View file

@ -2,5 +2,6 @@ pub mod cloud_model;
pub use anthropic::Model as AnthropicModel;
pub use cloud_model::*;
pub use lmstudio::Model as LmStudioModel;
pub use ollama::Model as OllamaModel;
pub use open_ai::Model as OpenAiModel;

View file

@ -65,3 +65,13 @@ impl From<Role> for open_ai::Role {
}
}
}
impl From<Role> for lmstudio::Role {
fn from(val: Role) -> Self {
match val {
Role::User => lmstudio::Role::User,
Role::Assistant => lmstudio::Role::Assistant,
Role::System => lmstudio::Role::System,
}
}
}

View file

@ -27,6 +27,7 @@ http_client.workspace = true
language_model.workspace = true
menu.workspace = true
ollama = { workspace = true, features = ["schemars"] }
lmstudio = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
project.workspace = true
proto.workspace = true

View file

@ -15,6 +15,7 @@ pub use crate::provider::cloud::LlmApiToken;
pub use crate::provider::cloud::RefreshLlmTokenListener;
use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
use crate::provider::google::GoogleLanguageModelProvider;
use crate::provider::lmstudio::LmStudioLanguageModelProvider;
use crate::provider::ollama::OllamaLanguageModelProvider;
use crate::provider::open_ai::OpenAiLanguageModelProvider;
pub use crate::settings::*;
@ -55,6 +56,10 @@ fn register_language_model_providers(
OllamaLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
LmStudioLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
GoogleLanguageModelProvider::new(client.http_client(), cx),
cx,

View file

@ -2,5 +2,6 @@ pub mod anthropic;
pub mod cloud;
pub mod copilot_chat;
pub mod google;
pub mod lmstudio;
pub mod ollama;
pub mod open_ai;

View file

@ -0,0 +1,518 @@
use anyhow::{anyhow, Result};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
use http_client::HttpClient;
use language_model::LanguageModelCompletionEvent;
use language_model::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, RateLimiter, Role,
};
use lmstudio::{
get_models, preload_model, stream_chat_completion, ChatCompletionRequest, ChatMessage,
ModelType,
};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::{collections::BTreeMap, sync::Arc};
use ui::{prelude::*, ButtonLike, Indicator};
use util::ResultExt;
use crate::AllLanguageModelSettings;
const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
const PROVIDER_ID: &str = "lmstudio";
const PROVIDER_NAME: &str = "LM Studio";
#[derive(Default, Debug, Clone, PartialEq)]
pub struct LmStudioSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
/// The model name in the LM Studio API. e.g. qwen2.5-coder-7b, phi-4, etc
pub name: String,
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
pub display_name: Option<String>,
/// The model's context window size.
pub max_tokens: usize,
}
pub struct LmStudioLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
pub struct State {
http_client: Arc<dyn HttpClient>,
available_models: Vec<lmstudio::Model>,
fetch_model_task: Option<Task<Result<()>>>,
_subscription: Subscription,
}
impl State {
fn is_authenticated(&self) -> bool {
!self.available_models.is_empty()
}
fn fetch_models(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
let http_client = self.http_client.clone();
let api_url = settings.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|this, mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<lmstudio::Model> = models
.into_iter()
.filter(|model| model.r#type != ModelType::Embeddings)
.map(|model| lmstudio::Model::new(&model.id, None, None))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
this.update(&mut cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
fn restart_fetch_models_task(&mut self, cx: &mut ModelContext<Self>) {
let task = self.fetch_models(cx);
self.fetch_model_task.replace(task);
}
fn authenticate(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
self.fetch_models(cx)
}
}
}
impl LmStudioLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
let this = Self {
http_client: http_client.clone(),
state: cx.new_model(|cx| {
let subscription = cx.observe_global::<SettingsStore>({
let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
move |this: &mut State, cx| {
let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
if &settings != new_settings {
settings = new_settings.clone();
this.restart_fetch_models_task(cx);
cx.notify();
}
}
});
State {
http_client,
available_models: Default::default(),
fetch_model_task: None,
_subscription: subscription,
}
}),
};
this.state
.update(cx, |state, cx| state.restart_fetch_models_task(cx));
this
}
}
impl LanguageModelProviderState for LmStudioLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for LmStudioLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiLmStudio
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
// Add models from the LM Studio API
for model in self.state.read(cx).available_models.iter() {
models.insert(model.name.clone(), model.clone());
}
// Override with available models from settings
for model in AllLanguageModelSettings::get_global(cx)
.lmstudio
.available_models
.iter()
{
models.insert(
model.name.clone(),
lmstudio::Model {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
},
);
}
models
.into_values()
.map(|model| {
Arc::new(LmStudioLanguageModel {
id: LanguageModelId::from(model.name.clone()),
model: model.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn load_model(&self, model: Arc<dyn LanguageModel>, cx: &AppContext) {
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
let http_client = self.http_client.clone();
let api_url = settings.api_url.clone();
let id = model.id().0.to_string();
cx.spawn(|_| async move { preload_model(http_client, &api_url, &id).await })
.detach_and_log_err(cx);
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
let state = self.state.clone();
cx.new_view(|cx| ConfigurationView::new(state, cx)).into()
}
fn reset_credentials(&self, cx: &mut AppContext) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.fetch_models(cx))
}
}
pub struct LmStudioLanguageModel {
id: LanguageModelId,
model: lmstudio::Model,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl LmStudioLanguageModel {
fn to_lmstudio_request(&self, request: LanguageModelRequest) -> ChatCompletionRequest {
ChatCompletionRequest {
model: self.model.name.clone(),
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => ChatMessage::User {
content: msg.string_contents(),
},
Role::Assistant => ChatMessage::Assistant {
content: Some(msg.string_contents()),
tool_calls: None,
},
Role::System => ChatMessage::System {
content: msg.string_contents(),
},
})
.collect(),
stream: true,
max_tokens: Some(-1),
stop: Some(request.stop),
temperature: request.temperature.or(Some(0.0)),
tools: vec![],
}
}
}
impl LanguageModel for LmStudioLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("lmstudio/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
_cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
// Endpoint for this is coming soon. In the meantime, hacky estimation
let token_count = request
.messages
.iter()
.map(|msg| msg.string_contents().split_whitespace().count())
.sum::<usize>();
let estimated_tokens = (token_count as f64 * 0.75) as usize;
async move { Ok(estimated_tokens) }.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
let request = self.to_lmstudio_request(request);
let http_client = self.http_client.clone();
let Ok(api_url) = cx.update(|cx| {
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
settings.api_url.clone()
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
let future = self.request_limiter.stream(async move {
let response = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(fragment) => {
// Skip empty deltas
if fragment.choices[0].delta.is_object()
&& fragment.choices[0].delta.as_object().unwrap().is_empty()
{
return None;
}
// Try to parse the delta as ChatMessage
if let Ok(chat_message) = serde_json::from_value::<ChatMessage>(
fragment.choices[0].delta.clone(),
) {
let content = match chat_message {
ChatMessage::User { content } => content,
ChatMessage::Assistant { content, .. } => {
content.unwrap_or_default()
}
ChatMessage::System { content } => content,
};
if !content.is_empty() {
Some(Ok(content))
} else {
None
}
} else {
None
}
}
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
});
async move {
Ok(future
.await?
.map(|result| result.map(LanguageModelCompletionEvent::Text))
.boxed())
}
.boxed()
}
fn use_any_tool(
&self,
_request: LanguageModelRequest,
_tool_name: String,
_tool_description: String,
_schema: serde_json::Value,
_cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
async move { Ok(futures::stream::empty().boxed()) }.boxed()
}
}
struct ConfigurationView {
state: gpui::Model<State>,
loading_models_task: Option<Task<()>>,
}
impl ConfigurationView {
pub fn new(state: gpui::Model<State>, cx: &mut ViewContext<Self>) -> Self {
let loading_models_task = Some(cx.spawn({
let state = state.clone();
|this, mut cx| async move {
if let Some(task) = state
.update(&mut cx, |state, cx| state.authenticate(cx))
.log_err()
{
task.await.log_err();
}
this.update(&mut cx, |this, cx| {
this.loading_models_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
state,
loading_models_task,
}
}
fn retry_connection(&self, cx: &mut WindowContext) {
self.state
.update(cx, |state, cx| state.fetch_models(cx))
.detach_and_log_err(cx);
}
}
impl Render for ConfigurationView {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let is_authenticated = self.state.read(cx).is_authenticated();
let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
let lmstudio_reqs =
"To use LM Studio as a provider for Zed assistant, it needs to be running with at least one model downloaded.";
let mut inline_code_bg = cx.theme().colors().editor_background;
inline_code_bg.fade_out(0.5);
if self.loading_models_task.is_some() {
div().child(Label::new("Loading models...")).into_any()
} else {
v_flex()
.size_full()
.gap_3()
.child(
v_flex()
.size_full()
.gap_2()
.p_1()
.child(Label::new(lmstudio_intro))
.child(Label::new(lmstudio_reqs))
.child(
h_flex()
.gap_0p5()
.child(Label::new("To get your first model, try running "))
.child(
div()
.bg(inline_code_bg)
.px_1p5()
.rounded_md()
.child(Label::new("lms get qwen2.5-coder-7b")),
),
),
)
.child(
h_flex()
.w_full()
.pt_2()
.justify_between()
.gap_2()
.child(
h_flex()
.w_full()
.gap_2()
.map(|this| {
if is_authenticated {
this.child(
Button::new("lmstudio-site", "LM Studio")
.style(ButtonStyle::Subtle)
.icon(IconName::ExternalLink)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, cx| cx.open_url(LMSTUDIO_SITE))
.into_any_element(),
)
} else {
this.child(
Button::new(
"download_lmstudio_button",
"Download LM Studio",
)
.style(ButtonStyle::Subtle)
.icon(IconName::ExternalLink)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, cx| {
cx.open_url(LMSTUDIO_DOWNLOAD_URL)
})
.into_any_element(),
)
}
})
.child(
Button::new("view-models", "Model Catalog")
.style(ButtonStyle::Subtle)
.icon(IconName::ExternalLink)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, cx| cx.open_url(LMSTUDIO_CATALOG_URL)),
),
)
.child(if is_authenticated {
// This is only a button to ensure the spacing is correct
// it should stay disabled
ButtonLike::new("connected")
.disabled(true)
// Since this won't ever be clickable, we can use the arrow cursor
.cursor_style(gpui::CursorStyle::Arrow)
.child(
h_flex()
.gap_2()
.child(Indicator::dot().color(Color::Success))
.child(Label::new("Connected"))
.into_any_element(),
)
.into_any_element()
} else {
Button::new("retry_lmstudio_models", "Connect")
.icon_position(IconPosition::Start)
.icon(IconName::ArrowCircle)
.on_click(cx.listener(move |this, _, cx| this.retry_connection(cx)))
.into_any_element()
}),
)
.into_any()
}
}
}

View file

@ -14,6 +14,7 @@ use crate::provider::{
cloud::{self, ZedDotDevSettings},
copilot_chat::CopilotChatSettings,
google::GoogleSettings,
lmstudio::LmStudioSettings,
ollama::OllamaSettings,
open_ai::OpenAiSettings,
};
@ -59,12 +60,14 @@ pub struct AllLanguageModelSettings {
pub zed_dot_dev: ZedDotDevSettings,
pub google: GoogleSettings,
pub copilot_chat: CopilotChatSettings,
pub lmstudio: LmStudioSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option<AnthropicSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub lmstudio: Option<LmStudioSettingsContent>,
pub openai: Option<OpenAiSettingsContent>,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
@ -153,6 +156,12 @@ pub struct OllamaSettingsContent {
pub available_models: Option<Vec<provider::ollama::AvailableModel>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct LmStudioSettingsContent {
pub api_url: Option<String>,
pub available_models: Option<Vec<provider::lmstudio::AvailableModel>>,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
#[serde(untagged)]
pub enum OpenAiSettingsContent {
@ -278,6 +287,18 @@ impl settings::Settings for AllLanguageModelSettings {
ollama.as_ref().and_then(|s| s.available_models.clone()),
);
// LM Studio
let lmstudio = value.lmstudio.clone();
merge(
&mut settings.lmstudio.api_url,
value.lmstudio.as_ref().and_then(|s| s.api_url.clone()),
);
merge(
&mut settings.lmstudio.available_models,
lmstudio.as_ref().and_then(|s| s.available_models.clone()),
);
// OpenAI
let (openai, upgraded) = match value.openai.clone().map(|s| s.upgrade()) {
Some((content, upgraded)) => (Some(content), upgraded),

View file

@ -0,0 +1,24 @@
[package]
name = "lmstudio"
version = "0.1.0"
edition = "2021"
publish = false
license = "GPL-3.0-or-later"
[lints]
workspace = true
[lib]
path = "src/lmstudio.rs"
[features]
default = []
schemars = ["dep:schemars"]
[dependencies]
anyhow.workspace = true
futures.workspace = true
http_client.workspace = true
schemars = { workspace = true, optional = true }
serde.workspace = true
serde_json.workspace = true

1
crates/lmstudio/LICENSE-GPL Symbolic link
View file

@ -0,0 +1 @@
../../LICENSE-GPL

View file

@ -0,0 +1,369 @@
use anyhow::{anyhow, Context, Result};
use futures::{io::BufReader, stream::BoxStream, AsyncBufReadExt, AsyncReadExt, StreamExt};
use http_client::{http, AsyncBody, HttpClient, Method, Request as HttpRequest};
use serde::{Deserialize, Serialize};
use serde_json::{value::RawValue, Value};
use std::{convert::TryFrom, sync::Arc, time::Duration};
pub const LMSTUDIO_API_URL: &str = "http://localhost:1234/api/v0";
#[derive(Clone, Copy, Serialize, Deserialize, Debug, Eq, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Role {
User,
Assistant,
System,
Tool,
}
impl TryFrom<String> for Role {
type Error = anyhow::Error;
fn try_from(value: String) -> Result<Self> {
match value.as_str() {
"user" => Ok(Self::User),
"assistant" => Ok(Self::Assistant),
"system" => Ok(Self::System),
"tool" => Ok(Self::Tool),
_ => Err(anyhow!("invalid role '{value}'")),
}
}
}
impl From<Role> for String {
fn from(val: Role) -> Self {
match val {
Role::User => "user".to_owned(),
Role::Assistant => "assistant".to_owned(),
Role::System => "system".to_owned(),
Role::Tool => "tool".to_owned(),
}
}
}
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
pub struct Model {
pub name: String,
pub display_name: Option<String>,
pub max_tokens: usize,
}
impl Model {
pub fn new(name: &str, display_name: Option<&str>, max_tokens: Option<usize>) -> Self {
Self {
name: name.to_owned(),
display_name: display_name.map(|s| s.to_owned()),
max_tokens: max_tokens.unwrap_or(2048),
}
}
pub fn id(&self) -> &str {
&self.name
}
pub fn display_name(&self) -> &str {
self.display_name.as_ref().unwrap_or(&self.name)
}
pub fn max_token_count(&self) -> usize {
self.max_tokens
}
}
#[derive(Serialize, Deserialize, Debug)]
#[serde(tag = "role", rename_all = "lowercase")]
pub enum ChatMessage {
Assistant {
#[serde(default)]
content: Option<String>,
#[serde(default)]
tool_calls: Option<Vec<LmStudioToolCall>>,
},
User {
content: String,
},
System {
content: String,
},
}
#[derive(Serialize, Deserialize, Debug)]
#[serde(rename_all = "lowercase")]
pub enum LmStudioToolCall {
Function(LmStudioFunctionCall),
}
#[derive(Serialize, Deserialize, Debug)]
pub struct LmStudioFunctionCall {
pub name: String,
pub arguments: Box<RawValue>,
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
pub struct LmStudioFunctionTool {
pub name: String,
pub description: Option<String>,
pub parameters: Option<Value>,
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
#[serde(tag = "type", rename_all = "lowercase")]
pub enum LmStudioTool {
Function { function: LmStudioFunctionTool },
}
#[derive(Serialize, Debug)]
pub struct ChatCompletionRequest {
pub model: String,
pub messages: Vec<ChatMessage>,
pub stream: bool,
pub max_tokens: Option<i32>,
pub stop: Option<Vec<String>>,
pub temperature: Option<f32>,
pub tools: Vec<LmStudioTool>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ChatResponse {
pub id: String,
pub object: String,
pub created: u64,
pub model: String,
pub choices: Vec<ChoiceDelta>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ChoiceDelta {
pub index: u32,
#[serde(default)]
pub delta: serde_json::Value,
pub finish_reason: Option<String>,
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
pub struct ToolCallChunk {
pub index: usize,
pub id: Option<String>,
// There is also an optional `type` field that would determine if a
// function is there. Sometimes this streams in with the `function` before
// it streams in the `type`
pub function: Option<FunctionChunk>,
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
pub struct FunctionChunk {
pub name: Option<String>,
pub arguments: Option<String>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,
pub total_tokens: u32,
}
#[derive(Serialize, Deserialize, Debug)]
#[serde(untagged)]
pub enum ResponseStreamResult {
Ok(ResponseStreamEvent),
Err { error: String },
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ResponseStreamEvent {
pub created: u32,
pub model: String,
pub choices: Vec<ChoiceDelta>,
pub usage: Option<Usage>,
}
#[derive(Serialize, Deserialize)]
pub struct ListModelsResponse {
pub data: Vec<ModelEntry>,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct ModelEntry {
pub id: String,
pub object: String,
pub r#type: ModelType,
pub publisher: String,
pub arch: Option<String>,
pub compatibility_type: CompatibilityType,
pub quantization: String,
pub state: ModelState,
pub max_context_length: Option<u32>,
pub loaded_context_length: Option<u32>,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ModelType {
Llm,
Embeddings,
Vlm,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
#[serde(rename_all = "kebab-case")]
pub enum ModelState {
Loaded,
Loading,
NotLoaded,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum CompatibilityType {
Gguf,
Mlx,
}
pub async fn complete(
client: &dyn HttpClient,
api_url: &str,
request: ChatCompletionRequest,
) -> Result<ChatResponse> {
let uri = format!("{api_url}/chat/completions");
let request_builder = HttpRequest::builder()
.method(Method::POST)
.uri(uri)
.header("Content-Type", "application/json");
let serialized_request = serde_json::to_string(&request)?;
let request = request_builder.body(AsyncBody::from(serialized_request))?;
let mut response = client.send(request).await?;
if response.status().is_success() {
let mut body = Vec::new();
response.body_mut().read_to_end(&mut body).await?;
let response_message: ChatResponse = serde_json::from_slice(&body)?;
Ok(response_message)
} else {
let mut body = Vec::new();
response.body_mut().read_to_end(&mut body).await?;
let body_str = std::str::from_utf8(&body)?;
Err(anyhow!(
"Failed to connect to API: {} {}",
response.status(),
body_str
))
}
}
pub async fn stream_chat_completion(
client: &dyn HttpClient,
api_url: &str,
request: ChatCompletionRequest,
) -> Result<BoxStream<'static, Result<ChatResponse>>> {
let uri = format!("{api_url}/chat/completions");
let request_builder = http::Request::builder()
.method(Method::POST)
.uri(uri)
.header("Content-Type", "application/json");
let request = request_builder.body(AsyncBody::from(serde_json::to_string(&request)?))?;
let mut response = client.send(request).await?;
if response.status().is_success() {
let reader = BufReader::new(response.into_body());
Ok(reader
.lines()
.filter_map(|line| async move {
match line {
Ok(line) => {
let line = line.strip_prefix("data: ")?;
if line == "[DONE]" {
None
} else {
let result = serde_json::from_str(&line)
.context("Unable to parse chat completions response");
if let Err(ref e) = result {
eprintln!("Error parsing line: {e}\nLine content: '{line}'");
}
Some(result)
}
}
Err(e) => {
eprintln!("Error reading line: {e}");
Some(Err(e.into()))
}
}
})
.boxed())
} else {
let mut body = String::new();
response.body_mut().read_to_string(&mut body).await?;
Err(anyhow!(
"Failed to connect to LM Studio API: {} {}",
response.status(),
body,
))
}
}
pub async fn get_models(
client: &dyn HttpClient,
api_url: &str,
_: Option<Duration>,
) -> Result<Vec<ModelEntry>> {
let uri = format!("{api_url}/models");
let request_builder = HttpRequest::builder()
.method(Method::GET)
.uri(uri)
.header("Accept", "application/json");
let request = request_builder.body(AsyncBody::default())?;
let mut response = client.send(request).await?;
let mut body = String::new();
response.body_mut().read_to_string(&mut body).await?;
if response.status().is_success() {
let response: ListModelsResponse =
serde_json::from_str(&body).context("Unable to parse LM Studio models response")?;
Ok(response.data)
} else {
Err(anyhow!(
"Failed to connect to LM Studio API: {} {}",
response.status(),
body,
))
}
}
/// Sends an empty request to LM Studio to trigger loading the model
pub async fn preload_model(client: Arc<dyn HttpClient>, api_url: &str, model: &str) -> Result<()> {
let uri = format!("{api_url}/completions");
let request = HttpRequest::builder()
.method(Method::POST)
.uri(uri)
.header("Content-Type", "application/json")
.body(AsyncBody::from(serde_json::to_string(
&serde_json::json!({
"model": model,
"messages": [],
"stream": false,
"max_tokens": 0,
}),
)?))?;
let mut response = client.send(request).await?;
if response.status().is_success() {
Ok(())
} else {
let mut body = String::new();
response.body_mut().read_to_string(&mut body).await?;
Err(anyhow!(
"Failed to connect to LM Studio API: {} {}",
response.status(),
body,
))
}
}

View file

@ -1,8 +1,10 @@
mod cloud;
mod lmstudio;
mod ollama;
mod open_ai;
pub use cloud::*;
pub use lmstudio::*;
pub use ollama::*;
pub use open_ai::*;
use sha2::{Digest, Sha256};

View file

@ -0,0 +1,70 @@
use anyhow::{Context as _, Result};
use futures::{future::BoxFuture, AsyncReadExt as _, FutureExt};
use http_client::HttpClient;
use serde::{Deserialize, Serialize};
use std::sync::Arc;
use crate::{Embedding, EmbeddingProvider, TextToEmbed};
pub enum LmStudioEmbeddingModel {
NomicEmbedText,
}
pub struct LmStudioEmbeddingProvider {
client: Arc<dyn HttpClient>,
model: LmStudioEmbeddingModel,
}
#[derive(Serialize)]
struct LmStudioEmbeddingRequest {
model: String,
prompt: String,
}
#[derive(Deserialize)]
struct LmStudioEmbeddingResponse {
embedding: Vec<f32>,
}
impl LmStudioEmbeddingProvider {
pub fn new(client: Arc<dyn HttpClient>, model: LmStudioEmbeddingModel) -> Self {
Self { client, model }
}
}
impl EmbeddingProvider for LmStudioEmbeddingProvider {
fn embed<'a>(&'a self, texts: &'a [TextToEmbed<'a>]) -> BoxFuture<'a, Result<Vec<Embedding>>> {
let model = match self.model {
LmStudioEmbeddingModel::NomicEmbedText => "nomic-embed-text",
};
futures::future::try_join_all(texts.iter().map(|to_embed| {
let request = LmStudioEmbeddingRequest {
model: model.to_string(),
prompt: to_embed.text.to_string(),
};
let request = serde_json::to_string(&request).unwrap();
async {
let response = self
.client
.post_json("http://localhost:1234/api/v0/embeddings", request.into())
.await?;
let mut body = String::new();
response.into_body().read_to_string(&mut body).await?;
let response: LmStudioEmbeddingResponse =
serde_json::from_str(&body).context("Unable to parse response")?;
Ok(Embedding::new(response.embedding))
}
}))
.boxed()
}
fn batch_size(&self) -> usize {
256
}
}

View file

@ -116,6 +116,7 @@ pub enum IconName {
AiAnthropic,
AiAnthropicHosted,
AiGoogle,
AiLmStudio,
AiOllama,
AiOpenAi,
AiZed,

View file

@ -8,7 +8,7 @@ This section covers various aspects of the Assistant:
- [Inline Assistant](./inline-assistant.md): Discover how to use the Assistant to power inline transformations directly within your code editor and terminal.
- [Providers & Configuration](./configuration.md): Configure the Assistant, and set up different language model providers like Anthropic, OpenAI, Ollama, Google Gemini, and GitHub Copilot Chat.
- [Providers & Configuration](./configuration.md): Configure the Assistant, and set up different language model providers like Anthropic, OpenAI, Ollama, LM Studio, Google Gemini, and GitHub Copilot Chat.
- [Introducing Contexts](./contexts.md): Learn about contexts (similar to conversations), and learn how they power your interactions between you, your project, and the assistant/model.

View file

@ -10,6 +10,7 @@ The following providers are supported:
- [Google AI](#google-ai) [^1]
- [Ollama](#ollama)
- [OpenAI](#openai)
- [LM Studio](#lmstudio)
To configure different providers, run `assistant: show configuration` in the command palette, or click on the hamburger menu at the top-right of the assistant panel and select "Configure".
@ -236,6 +237,25 @@ Example configuration for using X.ai Grok with Zed:
}
```
### LM Studio {#lmstudio}
1. Download and install the latest version of LM Studio from https://lmstudio.ai/download
2. In the app press ⌘/Ctrl + Shift + M and download at least one model, e.g. qwen2.5-coder-7b
You can also get models via the LM Studio CLI:
```sh
lms get qwen2.5-coder-7b
```
3. Make sure the LM Studio API server by running:
```sh
lms server start
```
Tip: Set [LM Studio as a login item](https://lmstudio.ai/docs/advanced/headless#run-the-llm-service-on-machine-login) to automate running the LM Studio server.
#### Custom endpoints {#custom-endpoint}
You can use a custom API endpoint for different providers, as long as it's compatible with the providers API structure.