Add LM Studio support to the Assistant (#23097)
#### Release Notes: - Added support for [LM Studio](https://lmstudio.ai/) to the Assistant. #### Quick demo: https://github.com/user-attachments/assets/af58fc13-1abc-4898-9747-3511016da86a #### Future enhancements: - wire up tool calling (new in [LM Studio 0.3.6](https://lmstudio.ai/blog/lmstudio-v0.3.6)) --------- Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>
This commit is contained in:
parent
4445679f3c
commit
c038696aa8
24 changed files with 1153 additions and 2 deletions
|
@ -27,6 +27,7 @@ http_client.workspace = true
|
|||
language_model.workspace = true
|
||||
menu.workspace = true
|
||||
ollama = { workspace = true, features = ["schemars"] }
|
||||
lmstudio = { workspace = true, features = ["schemars"] }
|
||||
open_ai = { workspace = true, features = ["schemars"] }
|
||||
project.workspace = true
|
||||
proto.workspace = true
|
||||
|
|
|
@ -15,6 +15,7 @@ pub use crate::provider::cloud::LlmApiToken;
|
|||
pub use crate::provider::cloud::RefreshLlmTokenListener;
|
||||
use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
|
||||
use crate::provider::google::GoogleLanguageModelProvider;
|
||||
use crate::provider::lmstudio::LmStudioLanguageModelProvider;
|
||||
use crate::provider::ollama::OllamaLanguageModelProvider;
|
||||
use crate::provider::open_ai::OpenAiLanguageModelProvider;
|
||||
pub use crate::settings::*;
|
||||
|
@ -55,6 +56,10 @@ fn register_language_model_providers(
|
|||
OllamaLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
);
|
||||
registry.register_provider(
|
||||
LmStudioLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
);
|
||||
registry.register_provider(
|
||||
GoogleLanguageModelProvider::new(client.http_client(), cx),
|
||||
cx,
|
||||
|
|
|
@ -2,5 +2,6 @@ pub mod anthropic;
|
|||
pub mod cloud;
|
||||
pub mod copilot_chat;
|
||||
pub mod google;
|
||||
pub mod lmstudio;
|
||||
pub mod ollama;
|
||||
pub mod open_ai;
|
||||
|
|
518
crates/language_models/src/provider/lmstudio.rs
Normal file
518
crates/language_models/src/provider/lmstudio.rs
Normal file
|
@ -0,0 +1,518 @@
|
|||
use anyhow::{anyhow, Result};
|
||||
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
|
||||
use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
|
||||
use http_client::HttpClient;
|
||||
use language_model::LanguageModelCompletionEvent;
|
||||
use language_model::{
|
||||
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
||||
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
|
||||
LanguageModelRequest, RateLimiter, Role,
|
||||
};
|
||||
use lmstudio::{
|
||||
get_models, preload_model, stream_chat_completion, ChatCompletionRequest, ChatMessage,
|
||||
ModelType,
|
||||
};
|
||||
use schemars::JsonSchema;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use settings::{Settings, SettingsStore};
|
||||
use std::{collections::BTreeMap, sync::Arc};
|
||||
use ui::{prelude::*, ButtonLike, Indicator};
|
||||
use util::ResultExt;
|
||||
|
||||
use crate::AllLanguageModelSettings;
|
||||
|
||||
const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
|
||||
const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
|
||||
const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
|
||||
|
||||
const PROVIDER_ID: &str = "lmstudio";
|
||||
const PROVIDER_NAME: &str = "LM Studio";
|
||||
|
||||
#[derive(Default, Debug, Clone, PartialEq)]
|
||||
pub struct LmStudioSettings {
|
||||
pub api_url: String,
|
||||
pub available_models: Vec<AvailableModel>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
||||
pub struct AvailableModel {
|
||||
/// The model name in the LM Studio API. e.g. qwen2.5-coder-7b, phi-4, etc
|
||||
pub name: String,
|
||||
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
|
||||
pub display_name: Option<String>,
|
||||
/// The model's context window size.
|
||||
pub max_tokens: usize,
|
||||
}
|
||||
|
||||
pub struct LmStudioLanguageModelProvider {
|
||||
http_client: Arc<dyn HttpClient>,
|
||||
state: gpui::Model<State>,
|
||||
}
|
||||
|
||||
pub struct State {
|
||||
http_client: Arc<dyn HttpClient>,
|
||||
available_models: Vec<lmstudio::Model>,
|
||||
fetch_model_task: Option<Task<Result<()>>>,
|
||||
_subscription: Subscription,
|
||||
}
|
||||
|
||||
impl State {
|
||||
fn is_authenticated(&self) -> bool {
|
||||
!self.available_models.is_empty()
|
||||
}
|
||||
|
||||
fn fetch_models(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
||||
let http_client = self.http_client.clone();
|
||||
let api_url = settings.api_url.clone();
|
||||
|
||||
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
|
||||
cx.spawn(|this, mut cx| async move {
|
||||
let models = get_models(http_client.as_ref(), &api_url, None).await?;
|
||||
|
||||
let mut models: Vec<lmstudio::Model> = models
|
||||
.into_iter()
|
||||
.filter(|model| model.r#type != ModelType::Embeddings)
|
||||
.map(|model| lmstudio::Model::new(&model.id, None, None))
|
||||
.collect();
|
||||
|
||||
models.sort_by(|a, b| a.name.cmp(&b.name));
|
||||
|
||||
this.update(&mut cx, |this, cx| {
|
||||
this.available_models = models;
|
||||
cx.notify();
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
fn restart_fetch_models_task(&mut self, cx: &mut ModelContext<Self>) {
|
||||
let task = self.fetch_models(cx);
|
||||
self.fetch_model_task.replace(task);
|
||||
}
|
||||
|
||||
fn authenticate(&mut self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
|
||||
if self.is_authenticated() {
|
||||
Task::ready(Ok(()))
|
||||
} else {
|
||||
self.fetch_models(cx)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl LmStudioLanguageModelProvider {
|
||||
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
|
||||
let this = Self {
|
||||
http_client: http_client.clone(),
|
||||
state: cx.new_model(|cx| {
|
||||
let subscription = cx.observe_global::<SettingsStore>({
|
||||
let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
|
||||
move |this: &mut State, cx| {
|
||||
let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
||||
if &settings != new_settings {
|
||||
settings = new_settings.clone();
|
||||
this.restart_fetch_models_task(cx);
|
||||
cx.notify();
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
State {
|
||||
http_client,
|
||||
available_models: Default::default(),
|
||||
fetch_model_task: None,
|
||||
_subscription: subscription,
|
||||
}
|
||||
}),
|
||||
};
|
||||
this.state
|
||||
.update(cx, |state, cx| state.restart_fetch_models_task(cx));
|
||||
this
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModelProviderState for LmStudioLanguageModelProvider {
|
||||
type ObservableEntity = State;
|
||||
|
||||
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
|
||||
Some(self.state.clone())
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModelProvider for LmStudioLanguageModelProvider {
|
||||
fn id(&self) -> LanguageModelProviderId {
|
||||
LanguageModelProviderId(PROVIDER_ID.into())
|
||||
}
|
||||
|
||||
fn name(&self) -> LanguageModelProviderName {
|
||||
LanguageModelProviderName(PROVIDER_NAME.into())
|
||||
}
|
||||
|
||||
fn icon(&self) -> IconName {
|
||||
IconName::AiLmStudio
|
||||
}
|
||||
|
||||
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
|
||||
let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
|
||||
|
||||
// Add models from the LM Studio API
|
||||
for model in self.state.read(cx).available_models.iter() {
|
||||
models.insert(model.name.clone(), model.clone());
|
||||
}
|
||||
|
||||
// Override with available models from settings
|
||||
for model in AllLanguageModelSettings::get_global(cx)
|
||||
.lmstudio
|
||||
.available_models
|
||||
.iter()
|
||||
{
|
||||
models.insert(
|
||||
model.name.clone(),
|
||||
lmstudio::Model {
|
||||
name: model.name.clone(),
|
||||
display_name: model.display_name.clone(),
|
||||
max_tokens: model.max_tokens,
|
||||
},
|
||||
);
|
||||
}
|
||||
|
||||
models
|
||||
.into_values()
|
||||
.map(|model| {
|
||||
Arc::new(LmStudioLanguageModel {
|
||||
id: LanguageModelId::from(model.name.clone()),
|
||||
model: model.clone(),
|
||||
http_client: self.http_client.clone(),
|
||||
request_limiter: RateLimiter::new(4),
|
||||
}) as Arc<dyn LanguageModel>
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn load_model(&self, model: Arc<dyn LanguageModel>, cx: &AppContext) {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
||||
let http_client = self.http_client.clone();
|
||||
let api_url = settings.api_url.clone();
|
||||
let id = model.id().0.to_string();
|
||||
cx.spawn(|_| async move { preload_model(http_client, &api_url, &id).await })
|
||||
.detach_and_log_err(cx);
|
||||
}
|
||||
|
||||
fn is_authenticated(&self, cx: &AppContext) -> bool {
|
||||
self.state.read(cx).is_authenticated()
|
||||
}
|
||||
|
||||
fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
|
||||
self.state.update(cx, |state, cx| state.authenticate(cx))
|
||||
}
|
||||
|
||||
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
|
||||
let state = self.state.clone();
|
||||
cx.new_view(|cx| ConfigurationView::new(state, cx)).into()
|
||||
}
|
||||
|
||||
fn reset_credentials(&self, cx: &mut AppContext) -> Task<Result<()>> {
|
||||
self.state.update(cx, |state, cx| state.fetch_models(cx))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct LmStudioLanguageModel {
|
||||
id: LanguageModelId,
|
||||
model: lmstudio::Model,
|
||||
http_client: Arc<dyn HttpClient>,
|
||||
request_limiter: RateLimiter,
|
||||
}
|
||||
|
||||
impl LmStudioLanguageModel {
|
||||
fn to_lmstudio_request(&self, request: LanguageModelRequest) -> ChatCompletionRequest {
|
||||
ChatCompletionRequest {
|
||||
model: self.model.name.clone(),
|
||||
messages: request
|
||||
.messages
|
||||
.into_iter()
|
||||
.map(|msg| match msg.role {
|
||||
Role::User => ChatMessage::User {
|
||||
content: msg.string_contents(),
|
||||
},
|
||||
Role::Assistant => ChatMessage::Assistant {
|
||||
content: Some(msg.string_contents()),
|
||||
tool_calls: None,
|
||||
},
|
||||
Role::System => ChatMessage::System {
|
||||
content: msg.string_contents(),
|
||||
},
|
||||
})
|
||||
.collect(),
|
||||
stream: true,
|
||||
max_tokens: Some(-1),
|
||||
stop: Some(request.stop),
|
||||
temperature: request.temperature.or(Some(0.0)),
|
||||
tools: vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl LanguageModel for LmStudioLanguageModel {
|
||||
fn id(&self) -> LanguageModelId {
|
||||
self.id.clone()
|
||||
}
|
||||
|
||||
fn name(&self) -> LanguageModelName {
|
||||
LanguageModelName::from(self.model.display_name().to_string())
|
||||
}
|
||||
|
||||
fn provider_id(&self) -> LanguageModelProviderId {
|
||||
LanguageModelProviderId(PROVIDER_ID.into())
|
||||
}
|
||||
|
||||
fn provider_name(&self) -> LanguageModelProviderName {
|
||||
LanguageModelProviderName(PROVIDER_NAME.into())
|
||||
}
|
||||
|
||||
fn telemetry_id(&self) -> String {
|
||||
format!("lmstudio/{}", self.model.id())
|
||||
}
|
||||
|
||||
fn max_token_count(&self) -> usize {
|
||||
self.model.max_token_count()
|
||||
}
|
||||
|
||||
fn count_tokens(
|
||||
&self,
|
||||
request: LanguageModelRequest,
|
||||
_cx: &AppContext,
|
||||
) -> BoxFuture<'static, Result<usize>> {
|
||||
// Endpoint for this is coming soon. In the meantime, hacky estimation
|
||||
let token_count = request
|
||||
.messages
|
||||
.iter()
|
||||
.map(|msg| msg.string_contents().split_whitespace().count())
|
||||
.sum::<usize>();
|
||||
|
||||
let estimated_tokens = (token_count as f64 * 0.75) as usize;
|
||||
async move { Ok(estimated_tokens) }.boxed()
|
||||
}
|
||||
|
||||
fn stream_completion(
|
||||
&self,
|
||||
request: LanguageModelRequest,
|
||||
cx: &AsyncAppContext,
|
||||
) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
|
||||
let request = self.to_lmstudio_request(request);
|
||||
|
||||
let http_client = self.http_client.clone();
|
||||
let Ok(api_url) = cx.update(|cx| {
|
||||
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
||||
settings.api_url.clone()
|
||||
}) else {
|
||||
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
|
||||
};
|
||||
|
||||
let future = self.request_limiter.stream(async move {
|
||||
let response = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
|
||||
let stream = response
|
||||
.filter_map(|response| async move {
|
||||
match response {
|
||||
Ok(fragment) => {
|
||||
// Skip empty deltas
|
||||
if fragment.choices[0].delta.is_object()
|
||||
&& fragment.choices[0].delta.as_object().unwrap().is_empty()
|
||||
{
|
||||
return None;
|
||||
}
|
||||
|
||||
// Try to parse the delta as ChatMessage
|
||||
if let Ok(chat_message) = serde_json::from_value::<ChatMessage>(
|
||||
fragment.choices[0].delta.clone(),
|
||||
) {
|
||||
let content = match chat_message {
|
||||
ChatMessage::User { content } => content,
|
||||
ChatMessage::Assistant { content, .. } => {
|
||||
content.unwrap_or_default()
|
||||
}
|
||||
ChatMessage::System { content } => content,
|
||||
};
|
||||
if !content.is_empty() {
|
||||
Some(Ok(content))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
Err(error) => Some(Err(error)),
|
||||
}
|
||||
})
|
||||
.boxed();
|
||||
Ok(stream)
|
||||
});
|
||||
|
||||
async move {
|
||||
Ok(future
|
||||
.await?
|
||||
.map(|result| result.map(LanguageModelCompletionEvent::Text))
|
||||
.boxed())
|
||||
}
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn use_any_tool(
|
||||
&self,
|
||||
_request: LanguageModelRequest,
|
||||
_tool_name: String,
|
||||
_tool_description: String,
|
||||
_schema: serde_json::Value,
|
||||
_cx: &AsyncAppContext,
|
||||
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
|
||||
async move { Ok(futures::stream::empty().boxed()) }.boxed()
|
||||
}
|
||||
}
|
||||
|
||||
struct ConfigurationView {
|
||||
state: gpui::Model<State>,
|
||||
loading_models_task: Option<Task<()>>,
|
||||
}
|
||||
|
||||
impl ConfigurationView {
|
||||
pub fn new(state: gpui::Model<State>, cx: &mut ViewContext<Self>) -> Self {
|
||||
let loading_models_task = Some(cx.spawn({
|
||||
let state = state.clone();
|
||||
|this, mut cx| async move {
|
||||
if let Some(task) = state
|
||||
.update(&mut cx, |state, cx| state.authenticate(cx))
|
||||
.log_err()
|
||||
{
|
||||
task.await.log_err();
|
||||
}
|
||||
this.update(&mut cx, |this, cx| {
|
||||
this.loading_models_task = None;
|
||||
cx.notify();
|
||||
})
|
||||
.log_err();
|
||||
}
|
||||
}));
|
||||
|
||||
Self {
|
||||
state,
|
||||
loading_models_task,
|
||||
}
|
||||
}
|
||||
|
||||
fn retry_connection(&self, cx: &mut WindowContext) {
|
||||
self.state
|
||||
.update(cx, |state, cx| state.fetch_models(cx))
|
||||
.detach_and_log_err(cx);
|
||||
}
|
||||
}
|
||||
|
||||
impl Render for ConfigurationView {
|
||||
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
|
||||
let is_authenticated = self.state.read(cx).is_authenticated();
|
||||
|
||||
let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
|
||||
let lmstudio_reqs =
|
||||
"To use LM Studio as a provider for Zed assistant, it needs to be running with at least one model downloaded.";
|
||||
|
||||
let mut inline_code_bg = cx.theme().colors().editor_background;
|
||||
inline_code_bg.fade_out(0.5);
|
||||
|
||||
if self.loading_models_task.is_some() {
|
||||
div().child(Label::new("Loading models...")).into_any()
|
||||
} else {
|
||||
v_flex()
|
||||
.size_full()
|
||||
.gap_3()
|
||||
.child(
|
||||
v_flex()
|
||||
.size_full()
|
||||
.gap_2()
|
||||
.p_1()
|
||||
.child(Label::new(lmstudio_intro))
|
||||
.child(Label::new(lmstudio_reqs))
|
||||
.child(
|
||||
h_flex()
|
||||
.gap_0p5()
|
||||
.child(Label::new("To get your first model, try running "))
|
||||
.child(
|
||||
div()
|
||||
.bg(inline_code_bg)
|
||||
.px_1p5()
|
||||
.rounded_md()
|
||||
.child(Label::new("lms get qwen2.5-coder-7b")),
|
||||
),
|
||||
),
|
||||
)
|
||||
.child(
|
||||
h_flex()
|
||||
.w_full()
|
||||
.pt_2()
|
||||
.justify_between()
|
||||
.gap_2()
|
||||
.child(
|
||||
h_flex()
|
||||
.w_full()
|
||||
.gap_2()
|
||||
.map(|this| {
|
||||
if is_authenticated {
|
||||
this.child(
|
||||
Button::new("lmstudio-site", "LM Studio")
|
||||
.style(ButtonStyle::Subtle)
|
||||
.icon(IconName::ExternalLink)
|
||||
.icon_size(IconSize::XSmall)
|
||||
.icon_color(Color::Muted)
|
||||
.on_click(move |_, cx| cx.open_url(LMSTUDIO_SITE))
|
||||
.into_any_element(),
|
||||
)
|
||||
} else {
|
||||
this.child(
|
||||
Button::new(
|
||||
"download_lmstudio_button",
|
||||
"Download LM Studio",
|
||||
)
|
||||
.style(ButtonStyle::Subtle)
|
||||
.icon(IconName::ExternalLink)
|
||||
.icon_size(IconSize::XSmall)
|
||||
.icon_color(Color::Muted)
|
||||
.on_click(move |_, cx| {
|
||||
cx.open_url(LMSTUDIO_DOWNLOAD_URL)
|
||||
})
|
||||
.into_any_element(),
|
||||
)
|
||||
}
|
||||
})
|
||||
.child(
|
||||
Button::new("view-models", "Model Catalog")
|
||||
.style(ButtonStyle::Subtle)
|
||||
.icon(IconName::ExternalLink)
|
||||
.icon_size(IconSize::XSmall)
|
||||
.icon_color(Color::Muted)
|
||||
.on_click(move |_, cx| cx.open_url(LMSTUDIO_CATALOG_URL)),
|
||||
),
|
||||
)
|
||||
.child(if is_authenticated {
|
||||
// This is only a button to ensure the spacing is correct
|
||||
// it should stay disabled
|
||||
ButtonLike::new("connected")
|
||||
.disabled(true)
|
||||
// Since this won't ever be clickable, we can use the arrow cursor
|
||||
.cursor_style(gpui::CursorStyle::Arrow)
|
||||
.child(
|
||||
h_flex()
|
||||
.gap_2()
|
||||
.child(Indicator::dot().color(Color::Success))
|
||||
.child(Label::new("Connected"))
|
||||
.into_any_element(),
|
||||
)
|
||||
.into_any_element()
|
||||
} else {
|
||||
Button::new("retry_lmstudio_models", "Connect")
|
||||
.icon_position(IconPosition::Start)
|
||||
.icon(IconName::ArrowCircle)
|
||||
.on_click(cx.listener(move |this, _, cx| this.retry_connection(cx)))
|
||||
.into_any_element()
|
||||
}),
|
||||
)
|
||||
.into_any()
|
||||
}
|
||||
}
|
||||
}
|
|
@ -14,6 +14,7 @@ use crate::provider::{
|
|||
cloud::{self, ZedDotDevSettings},
|
||||
copilot_chat::CopilotChatSettings,
|
||||
google::GoogleSettings,
|
||||
lmstudio::LmStudioSettings,
|
||||
ollama::OllamaSettings,
|
||||
open_ai::OpenAiSettings,
|
||||
};
|
||||
|
@ -59,12 +60,14 @@ pub struct AllLanguageModelSettings {
|
|||
pub zed_dot_dev: ZedDotDevSettings,
|
||||
pub google: GoogleSettings,
|
||||
pub copilot_chat: CopilotChatSettings,
|
||||
pub lmstudio: LmStudioSettings,
|
||||
}
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
pub struct AllLanguageModelSettingsContent {
|
||||
pub anthropic: Option<AnthropicSettingsContent>,
|
||||
pub ollama: Option<OllamaSettingsContent>,
|
||||
pub lmstudio: Option<LmStudioSettingsContent>,
|
||||
pub openai: Option<OpenAiSettingsContent>,
|
||||
#[serde(rename = "zed.dev")]
|
||||
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
|
||||
|
@ -153,6 +156,12 @@ pub struct OllamaSettingsContent {
|
|||
pub available_models: Option<Vec<provider::ollama::AvailableModel>>,
|
||||
}
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
pub struct LmStudioSettingsContent {
|
||||
pub api_url: Option<String>,
|
||||
pub available_models: Option<Vec<provider::lmstudio::AvailableModel>>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
|
||||
#[serde(untagged)]
|
||||
pub enum OpenAiSettingsContent {
|
||||
|
@ -278,6 +287,18 @@ impl settings::Settings for AllLanguageModelSettings {
|
|||
ollama.as_ref().and_then(|s| s.available_models.clone()),
|
||||
);
|
||||
|
||||
// LM Studio
|
||||
let lmstudio = value.lmstudio.clone();
|
||||
|
||||
merge(
|
||||
&mut settings.lmstudio.api_url,
|
||||
value.lmstudio.as_ref().and_then(|s| s.api_url.clone()),
|
||||
);
|
||||
merge(
|
||||
&mut settings.lmstudio.available_models,
|
||||
lmstudio.as_ref().and_then(|s| s.available_models.clone()),
|
||||
);
|
||||
|
||||
// OpenAI
|
||||
let (openai, upgraded) = match value.openai.clone().map(|s| s.upgrade()) {
|
||||
Some((content, upgraded)) => (Some(content), upgraded),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue