Merge branch 'windows/dx11' into HEAD

This commit is contained in:
Kate 2025-07-17 19:59:21 +02:00
commit c1eaf3317d
No known key found for this signature in database
9 changed files with 1364 additions and 889 deletions

View file

@ -666,6 +666,7 @@ features = [
"Win32_Graphics_Direct3D",
"Win32_Graphics_Direct3D11",
"Win32_Graphics_Direct3D_Fxc",
"Win32_Graphics_DirectComposition",
"Win32_Graphics_DirectWrite",
"Win32_Graphics_Dwm",
"Win32_Graphics_Dxgi",

View file

@ -71,6 +71,7 @@ screen-capture = [
"scap",
]
windows-manifest = []
enable-renderdoc = []
[lib]
path = "src/gpui.rs"

View file

@ -13,7 +13,6 @@ mod mac;
any(target_os = "linux", target_os = "freebsd"),
any(feature = "x11", feature = "wayland")
),
target_os = "windows",
feature = "macos-blade"
))]
mod blade;

View file

@ -12,7 +12,7 @@ use windows::Win32::Graphics::{
use crate::{
AtlasKey, AtlasTextureId, AtlasTextureKind, AtlasTile, Bounds, DevicePixels, PlatformAtlas,
Size, platform::AtlasTextureList,
Point, Size, platform::AtlasTextureList,
};
pub(crate) struct DirectXAtlas(Mutex<DirectXAtlasState>);
@ -53,25 +53,6 @@ impl DirectXAtlas {
let tex = lock.texture(id);
tex.view.clone()
}
pub(crate) fn allocate(
&self,
size: Size<DevicePixels>,
texture_kind: AtlasTextureKind,
) -> Option<AtlasTile> {
self.0.lock().allocate(size, texture_kind)
}
pub(crate) fn clear_textures(&self, texture_kind: AtlasTextureKind) {
let mut lock = self.0.lock();
let textures = match texture_kind {
AtlasTextureKind::Monochrome => &mut lock.monochrome_textures,
AtlasTextureKind::Polychrome => &mut lock.polychrome_textures,
};
for texture in textures.iter_mut() {
texture.clear();
}
}
}
impl PlatformAtlas for DirectXAtlas {
@ -249,10 +230,6 @@ impl DirectXAtlasState {
}
impl DirectXAtlasTexture {
fn clear(&mut self) {
self.allocator.clear();
}
fn allocate(&mut self, size: Size<DevicePixels>) -> Option<AtlasTile> {
let allocation = self.allocator.allocate(size.into())?;
let tile = AtlasTile {
@ -301,3 +278,18 @@ impl DirectXAtlasTexture {
self.live_atlas_keys == 0
}
}
impl From<Size<DevicePixels>> for etagere::Size {
fn from(size: Size<DevicePixels>) -> Self {
etagere::Size::new(size.width.into(), size.height.into())
}
}
impl From<etagere::Point> for Point<DevicePixels> {
fn from(value: etagere::Point) -> Self {
Point {
x: DevicePixels::from(value.x),
y: DevicePixels::from(value.y),
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -181,12 +181,8 @@ fn handle_size_msg(
let new_size = size(DevicePixels(width), DevicePixels(height));
let scale_factor = lock.scale_factor;
if lock.restore_from_minimized.is_some() {
// lock.renderer
// .update_drawable_size_even_if_unchanged(new_size);
lock.renderer.resize(new_size).log_err();
lock.callbacks.request_frame = lock.restore_from_minimized.take();
} else {
// lock.renderer.update_drawable_size(new_size);
lock.renderer.resize(new_size).log_err();
}
let new_size = new_size.to_pixels(scale_factor);

View file

@ -28,13 +28,12 @@ use windows::{
core::*,
};
use crate::{platform::blade::BladeContext, *};
use crate::*;
pub(crate) struct WindowsPlatform {
state: RefCell<WindowsPlatformState>,
raw_window_handles: RwLock<SmallVec<[HWND; 4]>>,
// The below members will never change throughout the entire lifecycle of the app.
// gpu_context: BladeContext,
directx_devices: DirectXDevices,
icon: HICON,
main_receiver: flume::Receiver<Runnable>,
@ -112,7 +111,6 @@ impl WindowsPlatform {
let icon = load_icon().unwrap_or_default();
let state = RefCell::new(WindowsPlatformState::new());
let raw_window_handles = RwLock::new(SmallVec::new());
// let gpu_context = BladeContext::new().context("Unable to init GPU context")?;
let directx_devices = DirectXDevices::new().context("Unable to init directx devices.")?;
let windows_version = WindowsVersion::new().context("Error retrieve windows version")?;
@ -462,7 +460,8 @@ impl Platform for WindowsPlatform {
options,
self.generate_creation_info(),
&self.directx_devices,
)?;
)
.inspect_err(|err| show_error("Failed to open new window", err.to_string()))?;
let handle = window.get_raw_handle();
self.raw_window_handles.write().push(handle);

View file

@ -93,10 +93,9 @@ float4 to_device_position(float2 unit_vertex, Bounds bounds) {
}
float4 distance_from_clip_rect_impl(float2 position, Bounds clip_bounds) {
return float4(position.x - clip_bounds.origin.x,
clip_bounds.origin.x + clip_bounds.size.x - position.x,
position.y - clip_bounds.origin.y,
clip_bounds.origin.y + clip_bounds.size.y - position.y);
float2 tl = position - clip_bounds.origin;
float2 br = clip_bounds.origin + clip_bounds.size - position;
return float4(tl.x, br.x, tl.y, br.y);
}
float4 distance_from_clip_rect(float2 unit_vertex, Bounds bounds, Bounds clip_bounds) {
@ -240,6 +239,23 @@ float2 to_tile_position(float2 unit_vertex, AtlasTile tile) {
return (float2(tile.bounds.origin) + unit_vertex * float2(tile.bounds.size)) / atlas_size;
}
// Selects corner radius based on quadrant.
float pick_corner_radius(float2 center_to_point, Corners corner_radii) {
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
return corner_radii.top_left;
} else {
return corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
return corner_radii.top_right;
} else {
return corner_radii.bottom_right;
}
}
}
float4 to_device_position_transformed(float2 unit_vertex, Bounds bounds,
TransformationMatrix transformation) {
float2 position = unit_vertex * bounds.size + bounds.origin;
@ -248,48 +264,48 @@ float4 to_device_position_transformed(float2 unit_vertex, Bounds bounds,
return float4(device_position, 0.0, 1.0);
}
// Implementation of quad signed distance field
float quad_sdf_impl(float2 corner_center_to_point, float corner_radius) {
if (corner_radius == 0.0) {
// Fast path for unrounded corners
return max(corner_center_to_point.x, corner_center_to_point.y);
} else {
// Signed distance of the point from a quad that is inset by corner_radius
// It is negative inside this quad, and positive outside
float signed_distance_to_inset_quad =
// 0 inside the inset quad, and positive outside
length(max(float2(0.0, 0.0), corner_center_to_point)) +
// 0 outside the inset quad, and negative inside
min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
return signed_distance_to_inset_quad - corner_radius;
}
}
float quad_sdf(float2 pt, Bounds bounds, Corners corner_radii) {
float2 half_size = bounds.size / 2.;
float2 center = bounds.origin + half_size;
float2 center_to_point = pt - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_left;
} else {
corner_radius = corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_right;
} else {
corner_radius = corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
return distance;
float corner_radius = pick_corner_radius(center_to_point, corner_radii);
float2 corner_to_point = abs(center_to_point) - half_size;
float2 corner_center_to_point = corner_to_point + corner_radius;
return quad_sdf_impl(corner_center_to_point, corner_radius);
}
GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, Hsla color0, Hsla color1) {
GradientColor prepare_gradient_color(uint tag, uint color_space, Hsla solid, LinearColorStop colors[2]) {
GradientColor output;
if (tag == 0) {
if (tag == 0 || tag == 2) {
output.solid = hsla_to_rgba(solid);
} else if (tag == 1) {
output.color0 = hsla_to_rgba(color0);
output.color1 = hsla_to_rgba(color1);
output.color0 = hsla_to_rgba(colors[0].color);
output.color1 = hsla_to_rgba(colors[1].color);
// Prepare color space in vertex for avoid conversion
// in fragment shader for performance reasons
if (color_space == 1) {
// Oklab
output.color0 = srgb_to_oklab(output.color0);
output.color1 = srgb_to_oklab(output.color1);
// Oklab
output.color0 = srgb_to_oklab(output.color0);
output.color1 = srgb_to_oklab(output.color1);
}
}
@ -326,8 +342,8 @@ float4 gradient_color(Background background,
}
// Get the t value for the linear gradient with the color stop percentages.
float2 half_size = float2(bounds.size.x, bounds.size.y) / 2.;
float2 center = float2(bounds.origin.x, bounds.origin.y) + half_size;
float2 half_size = bounds.size * 0.5;
float2 center = bounds.origin + half_size;
float2 center_to_point = position - center;
float t = dot(center_to_point, direction) / length(direction);
// Check the direct to determine the use x or y
@ -376,25 +392,410 @@ float4 gradient_color(Background background,
return color;
}
// Returns the dash velocity of a corner given the dash velocity of the two
// sides, by returning the slower velocity (larger dashes).
//
// Since 0 is used for dash velocity when the border width is 0 (instead of
// +inf), this returns the other dash velocity in that case.
//
// An alternative to this might be to appropriately interpolate the dash
// velocity around the corner, but that seems overcomplicated.
float corner_dash_velocity(float dv1, float dv2) {
if (dv1 == 0.0) {
return dv2;
} else if (dv2 == 0.0) {
return dv1;
} else {
return min(dv1, dv2);
}
}
// Returns alpha used to render antialiased dashes.
// `t` is within the dash when `fmod(t, period) < length`.
float dash_alpha(
float t, float period, float length, float dash_velocity,
float antialias_threshold
) {
float half_period = period / 2.0;
float half_length = length / 2.0;
// Value in [-half_period, half_period]
// The dash is in [-half_length, half_length]
float centered = fmod(t + half_period - half_length, period) - half_period;
// Signed distance for the dash, negative values are inside the dash
float signed_distance = abs(centered) - half_length;
// Antialiased alpha based on the signed distance
return saturate(antialias_threshold - signed_distance / dash_velocity);
}
// This approximates distance to the nearest point to a quarter ellipse in a way
// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
// The components of `point` are expected to be positive.
//
// Negative on the outside and positive on the inside.
float quarter_ellipse_sdf(float2 pt, float2 radii) {
// Scale the space to treat the ellipse like a unit circle
float2 circle_vec = pt / radii;
float unit_circle_sdf = length(circle_vec) - 1.0;
// Approximate up-scaling of the length by using the average of the radii.
//
// TODO: A better solution would be to use the gradient of the implicit
// function for an ellipse to approximate a scaling factor.
return unit_circle_sdf * (radii.x + radii.y) * -0.5;
}
/*
**
** Quads
**
*/
struct Quad {
uint order;
uint border_style;
Bounds bounds;
Bounds content_mask;
Background background;
Hsla border_color;
Corners corner_radii;
Edges border_widths;
};
struct QuadVertexOutput {
nointerpolation uint quad_id: TEXCOORD0;
float4 position: SV_Position;
nointerpolation float4 border_color: COLOR0;
nointerpolation float4 background_solid: COLOR1;
nointerpolation float4 background_color0: COLOR2;
nointerpolation float4 background_color1: COLOR3;
float4 clip_distance: SV_ClipDistance;
};
struct QuadFragmentInput {
nointerpolation uint quad_id: TEXCOORD0;
float4 position: SV_Position;
nointerpolation float4 border_color: COLOR0;
nointerpolation float4 background_solid: COLOR1;
nointerpolation float4 background_color0: COLOR2;
nointerpolation float4 background_color1: COLOR3;
};
StructuredBuffer<Quad> quads: register(t1);
QuadVertexOutput quad_vertex(uint vertex_id: SV_VertexID, uint quad_id: SV_InstanceID) {
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
Quad quad = quads[quad_id];
float4 device_position = to_device_position(unit_vertex, quad.bounds);
GradientColor gradient = prepare_gradient_color(
quad.background.tag,
quad.background.color_space,
quad.background.solid,
quad.background.colors
);
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
float4 border_color = hsla_to_rgba(quad.border_color);
QuadVertexOutput output;
output.position = device_position;
output.border_color = border_color;
output.quad_id = quad_id;
output.background_solid = gradient.solid;
output.background_color0 = gradient.color0;
output.background_color1 = gradient.color1;
output.clip_distance = clip_distance;
return output;
}
float4 quad_fragment(QuadFragmentInput input): SV_Target {
Quad quad = quads[input.quad_id];
float4 background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
input.background_solid, input.background_color0, input.background_color1);
bool unrounded = quad.corner_radii.top_left == 0.0 &&
quad.corner_radii.top_right == 0.0 &&
quad.corner_radii.bottom_left == 0.0 &&
quad.corner_radii.bottom_right == 0.0;
// Fast path when the quad is not rounded and doesn't have any border
if (quad.border_widths.top == 0.0 &&
quad.border_widths.left == 0.0 &&
quad.border_widths.right == 0.0 &&
quad.border_widths.bottom == 0.0 &&
unrounded) {
return background_color;
}
float2 size = quad.bounds.size;
float2 half_size = size / 2.;
float2 the_point = input.position.xy - quad.bounds.origin;
float2 center_to_point = the_point - half_size;
// Signed distance field threshold for inclusion of pixels. 0.5 is the
// minimum distance between the center of the pixel and the edge.
const float antialias_threshold = 0.5;
// Radius of the nearest corner
float corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
float2 border = float2(
center_to_point.x < 0.0 ? quad.border_widths.left : quad.border_widths.right,
center_to_point.y < 0.0 ? quad.border_widths.top : quad.border_widths.bottom
);
// 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
// The purpose of this is to not draw antialiasing pixels in this case.
float2 reduced_border = float2(
border.x == 0.0 ? -antialias_threshold : border.x,
border.y == 0.0 ? -antialias_threshold : border.y
);
// Vector from the corner of the quad bounds to the point, after mirroring
// the point into the bottom right quadrant. Both components are <= 0.
float2 corner_to_point = abs(center_to_point) - half_size;
// Vector from the point to the center of the rounded corner's circle, also
// mirrored into bottom right quadrant.
float2 corner_center_to_point = corner_to_point + corner_radius;
// Whether the nearest point on the border is rounded
bool is_near_rounded_corner =
corner_center_to_point.x >= 0.0 &&
corner_center_to_point.y >= 0.0;
// Vector from straight border inner corner to point.
//
// 0-width borders are turned into width -1 so that inner_sdf is > 1.0 near
// the border. Without this, antialiasing pixels would be drawn.
float2 straight_border_inner_corner_to_point = corner_to_point + reduced_border;
// Whether the point is beyond the inner edge of the straight border
bool is_beyond_inner_straight_border =
straight_border_inner_corner_to_point.x > 0.0 ||
straight_border_inner_corner_to_point.y > 0.0;
// Whether the point is far enough inside the quad, such that the pixels are
// not affected by the straight border.
bool is_within_inner_straight_border =
straight_border_inner_corner_to_point.x < -antialias_threshold &&
straight_border_inner_corner_to_point.y < -antialias_threshold;
// Fast path for points that must be part of the background
if (is_within_inner_straight_border && !is_near_rounded_corner) {
return background_color;
}
// Signed distance of the point to the outside edge of the quad's border
float outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
// Approximate signed distance of the point to the inside edge of the quad's
// border. It is negative outside this edge (within the border), and
// positive inside.
//
// This is not always an accurate signed distance:
// * The rounded portions with varying border width use an approximation of
// nearest-point-on-ellipse.
// * When it is quickly known to be outside the edge, -1.0 is used.
float inner_sdf = 0.0;
if (corner_center_to_point.x <= 0.0 || corner_center_to_point.y <= 0.0) {
// Fast paths for straight borders
inner_sdf = -max(straight_border_inner_corner_to_point.x,
straight_border_inner_corner_to_point.y);
} else if (is_beyond_inner_straight_border) {
// Fast path for points that must be outside the inner edge
inner_sdf = -1.0;
} else if (reduced_border.x == reduced_border.y) {
// Fast path for circular inner edge.
inner_sdf = -(outer_sdf + reduced_border.x);
} else {
float2 ellipse_radii = max(float2(0.0, 0.0), float2(corner_radius, corner_radius) - reduced_border);
inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
}
// Negative when inside the border
float border_sdf = max(inner_sdf, outer_sdf);
float4 color = background_color;
if (border_sdf < antialias_threshold) {
float4 border_color = input.border_color;
// Dashed border logic when border_style == 1
if (quad.border_style == 1) {
// Position along the perimeter in "dash space", where each dash
// period has length 1
float t = 0.0;
// Total number of dash periods, so that the dash spacing can be
// adjusted to evenly divide it
float max_t = 0.0;
// Border width is proportional to dash size. This is the behavior
// used by browsers, but also avoids dashes from different segments
// overlapping when dash size is smaller than the border width.
//
// Dash pattern: (2 * border width) dash, (1 * border width) gap
const float dash_length_per_width = 2.0;
const float dash_gap_per_width = 1.0;
const float dash_period_per_width = dash_length_per_width + dash_gap_per_width;
// Since the dash size is determined by border width, the density of
// dashes varies. Multiplying a pixel distance by this returns a
// position in dash space - it has units (dash period / pixels). So
// a dash velocity of (1 / 10) is 1 dash every 10 pixels.
float dash_velocity = 0.0;
// Dividing this by the border width gives the dash velocity
const float dv_numerator = 1.0 / dash_period_per_width;
if (unrounded) {
// When corners aren't rounded, the dashes are separately laid
// out on each straight line, rather than around the whole
// perimeter. This way each line starts and ends with a dash.
bool is_horizontal = corner_center_to_point.x < corner_center_to_point.y;
float border_width = is_horizontal ? border.x : border.y;
dash_velocity = dv_numerator / border_width;
t = is_horizontal ? the_point.x : the_point.y;
t *= dash_velocity;
max_t = is_horizontal ? size.x : size.y;
max_t *= dash_velocity;
} else {
// When corners are rounded, the dashes are laid out clockwise
// around the whole perimeter.
float r_tr = quad.corner_radii.top_right;
float r_br = quad.corner_radii.bottom_right;
float r_bl = quad.corner_radii.bottom_left;
float r_tl = quad.corner_radii.top_left;
float w_t = quad.border_widths.top;
float w_r = quad.border_widths.right;
float w_b = quad.border_widths.bottom;
float w_l = quad.border_widths.left;
// Straight side dash velocities
float dv_t = w_t <= 0.0 ? 0.0 : dv_numerator / w_t;
float dv_r = w_r <= 0.0 ? 0.0 : dv_numerator / w_r;
float dv_b = w_b <= 0.0 ? 0.0 : dv_numerator / w_b;
float dv_l = w_l <= 0.0 ? 0.0 : dv_numerator / w_l;
// Straight side lengths in dash space
float s_t = (size.x - r_tl - r_tr) * dv_t;
float s_r = (size.y - r_tr - r_br) * dv_r;
float s_b = (size.x - r_br - r_bl) * dv_b;
float s_l = (size.y - r_bl - r_tl) * dv_l;
float corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
float corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
float corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
float corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
// Corner lengths in dash space
float c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
float c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
float c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
float c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
// Cumulative dash space upto each segment
float upto_tr = s_t;
float upto_r = upto_tr + c_tr;
float upto_br = upto_r + s_r;
float upto_b = upto_br + c_br;
float upto_bl = upto_b + s_b;
float upto_l = upto_bl + c_bl;
float upto_tl = upto_l + s_l;
max_t = upto_tl + c_tl;
if (is_near_rounded_corner) {
float radians = atan2(corner_center_to_point.y, corner_center_to_point.x);
float corner_t = radians * corner_radius;
if (center_to_point.x >= 0.0) {
if (center_to_point.y < 0.0) {
dash_velocity = corner_dash_velocity_tr;
// Subtracted because radians is pi/2 to 0 when
// going clockwise around the top right corner,
// since the y axis has been flipped
t = upto_r - corner_t * dash_velocity;
} else {
dash_velocity = corner_dash_velocity_br;
// Added because radians is 0 to pi/2 when going
// clockwise around the bottom-right corner
t = upto_br + corner_t * dash_velocity;
}
} else {
if (center_to_point.y >= 0.0) {
dash_velocity = corner_dash_velocity_bl;
// Subtracted because radians is pi/1 to 0 when
// going clockwise around the bottom-left corner,
// since the x axis has been flipped
t = upto_l - corner_t * dash_velocity;
} else {
dash_velocity = corner_dash_velocity_tl;
// Added because radians is 0 to pi/2 when going
// clockwise around the top-left corner, since both
// axis were flipped
t = upto_tl + corner_t * dash_velocity;
}
}
} else {
// Straight borders
bool is_horizontal = corner_center_to_point.x < corner_center_to_point.y;
if (is_horizontal) {
if (center_to_point.y < 0.0) {
dash_velocity = dv_t;
t = (the_point.x - r_tl) * dash_velocity;
} else {
dash_velocity = dv_b;
t = upto_bl - (the_point.x - r_bl) * dash_velocity;
}
} else {
if (center_to_point.x < 0.0) {
dash_velocity = dv_l;
t = upto_tl - (the_point.y - r_tl) * dash_velocity;
} else {
dash_velocity = dv_r;
t = upto_r + (the_point.y - r_tr) * dash_velocity;
}
}
}
}
float dash_length = dash_length_per_width / dash_period_per_width;
float desired_dash_gap = dash_gap_per_width / dash_period_per_width;
// Straight borders should start and end with a dash, so max_t is
// reduced to cause this.
max_t -= unrounded ? dash_length : 0.0;
if (max_t >= 1.0) {
// Adjust dash gap to evenly divide max_t
float dash_count = floor(max_t);
float dash_period = max_t / dash_count;
border_color.a *= dash_alpha(t, dash_period, dash_length, dash_velocity, antialias_threshold);
} else if (unrounded) {
// When there isn't enough space for the full gap between the
// two start / end dashes of a straight border, reduce gap to
// make them fit.
float dash_gap = max_t - dash_length;
if (dash_gap > 0.0) {
float dash_period = dash_length + dash_gap;
border_color.a *= dash_alpha(t, dash_period, dash_length, dash_velocity, antialias_threshold);
}
}
}
// Blend the border on top of the background and then linearly interpolate
// between the two as we slide inside the background.
float4 blended_border = over(background_color, border_color);
color = lerp(background_color, blended_border,
saturate(antialias_threshold - inner_sdf));
}
return color * float4(1.0, 1.0, 1.0, saturate(antialias_threshold - outer_sdf));
}
/*
**
** Shadows
**
*/
struct ShadowVertexOutput {
float4 position: SV_Position;
float4 color: COLOR;
uint shadow_id: FLAT;
float4 clip_distance: SV_ClipDistance;
};
struct ShadowFragmentInput {
float4 position: SV_Position;
float4 color: COLOR;
uint shadow_id: FLAT;
};
struct Shadow {
uint order;
float blur_radius;
@ -404,6 +805,19 @@ struct Shadow {
Hsla color;
};
struct ShadowVertexOutput {
nointerpolation uint shadow_id: TEXCOORD0;
float4 position: SV_Position;
nointerpolation float4 color: COLOR;
float4 clip_distance: SV_ClipDistance;
};
struct ShadowFragmentInput {
nointerpolation uint shadow_id: TEXCOORD0;
float4 position: SV_Position;
nointerpolation float4 color: COLOR;
};
StructuredBuffer<Shadow> shadows: register(t1);
ShadowVertexOutput shadow_vertex(uint vertex_id: SV_VertexID, uint shadow_id: SV_InstanceID) {
@ -434,20 +848,7 @@ float4 shadow_fragment(ShadowFragmentInput input): SV_TARGET {
float2 half_size = shadow.bounds.size / 2.;
float2 center = shadow.bounds.origin + half_size;
float2 point0 = input.position.xy - center;
float corner_radius;
if (point0.x < 0.) {
if (point0.y < 0.) {
corner_radius = shadow.corner_radii.top_left;
} else {
corner_radius = shadow.corner_radii.bottom_left;
}
} else {
if (point0.y < 0.) {
corner_radius = shadow.corner_radii.top_right;
} else {
corner_radius = shadow.corner_radii.bottom_right;
}
}
float corner_radius = pick_corner_radius(point0, shadow.corner_radii);
// The signal is only non-zero in a limited range, so don't waste samples
float low = point0.y - half_size.y;
@ -469,145 +870,18 @@ float4 shadow_fragment(ShadowFragmentInput input): SV_TARGET {
return input.color * float4(1., 1., 1., alpha);
}
/*
**
** Quads
**
*/
struct Quad {
uint order;
uint pad;
Bounds bounds;
Bounds content_mask;
Background background;
Hsla border_color;
Corners corner_radii;
Edges border_widths;
};
struct QuadVertexOutput {
float4 position: SV_Position;
nointerpolation float4 border_color: COLOR0;
nointerpolation uint quad_id: TEXCOORD0;
nointerpolation float4 background_solid: COLOR1;
nointerpolation float4 background_color0: COLOR2;
nointerpolation float4 background_color1: COLOR3;
float4 clip_distance: SV_ClipDistance;
};
struct QuadFragmentInput {
nointerpolation uint quad_id: TEXCOORD0;
float4 position: SV_Position;
nointerpolation float4 border_color: COLOR0;
nointerpolation float4 background_solid: COLOR1;
nointerpolation float4 background_color0: COLOR2;
nointerpolation float4 background_color1: COLOR3;
};
StructuredBuffer<Quad> quads: register(t1);
QuadVertexOutput quad_vertex(uint vertex_id: SV_VertexID, uint quad_id: SV_InstanceID) {
float2 unit_vertex = float2(float(vertex_id & 1u), 0.5 * float(vertex_id & 2u));
Quad quad = quads[quad_id];
float4 device_position = to_device_position(unit_vertex, quad.bounds);
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
float4 border_color = hsla_to_rgba(quad.border_color);
GradientColor gradient = prepare_gradient_color(
quad.background.tag,
quad.background.color_space,
quad.background.solid,
quad.background.colors[0].color,
quad.background.colors[1].color
);
QuadVertexOutput output;
output.position = device_position;
output.border_color = border_color;
output.quad_id = quad_id;
output.background_solid = gradient.solid;
output.background_color0 = gradient.color0;
output.background_color1 = gradient.color1;
output.clip_distance = clip_distance;
return output;
}
float4 quad_fragment(QuadFragmentInput input): SV_Target {
Quad quad = quads[input.quad_id];
float2 half_size = quad.bounds.size / 2.;
float2 center = quad.bounds.origin + half_size;
float2 center_to_point = input.position.xy - center;
float4 color = gradient_color(quad.background, input.position.xy, quad.bounds,
input.background_solid, input.background_color0, input.background_color1);
// Fast path when the quad is not rounded and doesn't have any border.
if (quad.corner_radii.top_left == 0. && quad.corner_radii.bottom_left == 0. &&
quad.corner_radii.top_right == 0. &&
quad.corner_radii.bottom_right == 0. && quad.border_widths.top == 0. &&
quad.border_widths.left == 0. && quad.border_widths.right == 0. &&
quad.border_widths.bottom == 0.) {
return color;
}
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_left;
} else {
corner_radius = quad.corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_right;
} else {
corner_radius = quad.corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
float vertical_border = center_to_point.x <= 0. ? quad.border_widths.left
: quad.border_widths.right;
float horizontal_border = center_to_point.y <= 0. ? quad.border_widths.top
: quad.border_widths.bottom;
float2 inset_size = half_size - corner_radius - float2(vertical_border, horizontal_border);
float2 point_to_inset_corner = abs(center_to_point) - inset_size;
float border_width;
if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
border_width = 0.;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
if (border_width != 0.) {
float inset_distance = distance + border_width;
// Blend the border on top of the background and then linearly interpolate
// between the two as we slide inside the background.
float4 blended_border = over(color, input.border_color);
color = lerp(blended_border, color, saturate(0.5 - inset_distance));
}
return color * float4(1., 1., 1., saturate(0.5 - distance));
}
struct PathVertex {
float2 xy_position;
Bounds content_mask;
};
/*
**
** Paths
**
*/
struct PathVertex {
float2 xy_position: POSITION;
Bounds content_mask: TEXCOORD;
uint idx: GLOBALIDX;
};
struct PathSprite {
Bounds bounds;
Background color;
@ -615,31 +889,36 @@ struct PathSprite {
struct PathVertexOutput {
float4 position: SV_Position;
nointerpolation uint sprite_id: TEXCOORD0;
nointerpolation float4 solid_color: COLOR0;
nointerpolation float4 color0: COLOR1;
nointerpolation float4 color1: COLOR2;
float4 clip_distance: SV_ClipDistance;
};
struct PathFragmentInput {
float4 position: SV_Position;
nointerpolation uint sprite_id: TEXCOORD0;
nointerpolation float4 solid_color: COLOR0;
nointerpolation float4 color0: COLOR1;
nointerpolation float4 color1: COLOR2;
};
StructuredBuffer<PathVertex> path_vertices: register(t1);
StructuredBuffer<PathSprite> path_sprites: register(t2);
StructuredBuffer<PathSprite> path_sprites: register(t1);
PathVertexOutput paths_vertex(uint vertex_id: SV_VertexID, uint instance_id: SV_InstanceID) {
PathVertex v = path_vertices[vertex_id];
PathSprite sprite = path_sprites[instance_id];
PathVertexOutput paths_vertex(PathVertex input) {
PathSprite sprite = path_sprites[input.idx];
PathVertexOutput output;
output.position = to_device_position_impl(v.xy_position);
output.clip_distance = distance_from_clip_rect_impl(v.xy_position, v.content_mask);
output.sprite_id = instance_id;
output.position = to_device_position_impl(input.xy_position);
output.clip_distance = distance_from_clip_rect_impl(input.xy_position, input.content_mask);
output.sprite_id = input.idx;
GradientColor gradient = prepare_gradient_color(
sprite.color.tag,
sprite.color.color_space,
sprite.color.solid,
sprite.color.colors[0].color,
sprite.color.colors[1].color
sprite.color.colors
);
output.solid_color = gradient.solid;
@ -648,12 +927,7 @@ PathVertexOutput paths_vertex(uint vertex_id: SV_VertexID, uint instance_id: SV_
return output;
}
float4 paths_fragment(PathVertexOutput input): SV_Target {
float4 zero = 0.0;
if (any(input.clip_distance < zero)) {
return zero;
}
float4 paths_fragment(PathFragmentInput input): SV_Target {
PathSprite sprite = path_sprites[input.sprite_id];
Background background = sprite.color;
float4 color = gradient_color(background, input.position.xy, sprite.bounds,
@ -678,16 +952,16 @@ struct Underline {
};
struct UnderlineVertexOutput {
nointerpolation uint underline_id: TEXCOORD0;
float4 position: SV_Position;
float4 color: COLOR;
uint underline_id: FLAT;
nointerpolation float4 color: COLOR;
float4 clip_distance: SV_ClipDistance;
};
struct UnderlineFragmentInput {
nointerpolation uint underline_id: TEXCOORD0;
float4 position: SV_Position;
float4 color: COLOR;
uint underline_id: FLAT;
nointerpolation float4 color: COLOR;
};
StructuredBuffer<Underline> underlines: register(t1);
@ -712,10 +986,8 @@ float4 underline_fragment(UnderlineFragmentInput input): SV_Target {
Underline underline = underlines[input.underline_id];
if (underline.wavy) {
float half_thickness = underline.thickness * 0.5;
float2 origin =
float2(underline.bounds.origin.x, underline.bounds.origin.y);
float2 st = ((input.position.xy - origin) / underline.bounds.size.y) -
float2(0., 0.5);
float2 origin = underline.bounds.origin;
float2 st = ((input.position.xy - origin) / underline.bounds.size.y) - float2(0., 0.5);
float frequency = (M_PI_F * (3. * underline.thickness)) / 8.;
float amplitude = 1. / (2. * underline.thickness);
float sine = sin(st.x * frequency) * amplitude;
@ -751,14 +1023,14 @@ struct MonochromeSprite {
struct MonochromeSpriteVertexOutput {
float4 position: SV_Position;
float2 tile_position: POSITION;
float4 color: COLOR;
nointerpolation float4 color: COLOR;
float4 clip_distance: SV_ClipDistance;
};
struct MonochromeSpriteFragmentInput {
float4 position: SV_Position;
float2 tile_position: POSITION;
float4 color: COLOR;
nointerpolation float4 color: COLOR;
};
StructuredBuffer<MonochromeSprite> mono_sprites: register(t1);
@ -795,7 +1067,9 @@ float4 monochrome_sprite_fragment(MonochromeSpriteFragmentInput input): SV_Targe
struct PolychromeSprite {
uint order;
uint pad;
uint grayscale;
float opacity;
Bounds bounds;
Bounds content_mask;
Corners corner_radii;
@ -803,16 +1077,16 @@ struct PolychromeSprite {
};
struct PolychromeSpriteVertexOutput {
nointerpolation uint sprite_id: TEXCOORD0;
float4 position: SV_Position;
float2 tile_position: POSITION;
uint sprite_id: FLAT;
float4 clip_distance: SV_ClipDistance;
};
struct PolychromeSpriteFragmentInput {
nointerpolation uint sprite_id: TEXCOORD0;
float4 position: SV_Position;
float2 tile_position: POSITION;
uint sprite_id: FLAT;
};
StructuredBuffer<PolychromeSprite> poly_sprites: register(t1);
@ -843,6 +1117,6 @@ float4 polychrome_sprite_fragment(PolychromeSpriteFragmentInput input): SV_Targe
float3 grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
color = float4(grayscale, sample.a);
}
color.a *= saturate(0.5 - distance);
color.a *= sprite.opacity * saturate(0.5 - distance);
return color;
}

View file

@ -26,7 +26,6 @@ use windows::{
core::*,
};
use crate::platform::blade::{BladeContext, BladeRenderer};
use crate::*;
pub(crate) struct WindowsWindow(pub Rc<WindowsWindowStatePtr>);
@ -80,7 +79,6 @@ pub(crate) struct WindowsWindowStatePtr {
impl WindowsWindowState {
fn new(
hwnd: HWND,
transparent: bool,
cs: &CREATESTRUCTW,
current_cursor: Option<HCURSOR>,
display: WindowsDisplay,
@ -103,8 +101,7 @@ impl WindowsWindowState {
};
let border_offset = WindowBorderOffset::default();
let restore_from_minimized = None;
// let renderer = windows_renderer::init(gpu_context, hwnd, transparent)?;
let renderer = DirectXRenderer::new(gpu_context, hwnd, transparent)?;
let renderer = DirectXRenderer::new(gpu_context, hwnd)?;
let callbacks = Callbacks::default();
let input_handler = None;
let pending_surrogate = None;
@ -207,7 +204,6 @@ impl WindowsWindowStatePtr {
fn new(context: &WindowCreateContext, hwnd: HWND, cs: &CREATESTRUCTW) -> Result<Rc<Self>> {
let state = RefCell::new(WindowsWindowState::new(
hwnd,
context.transparent,
cs,
context.current_cursor,
context.display,
@ -335,7 +331,6 @@ struct WindowCreateContext<'a> {
handle: AnyWindowHandle,
hide_title_bar: bool,
display: WindowsDisplay,
transparent: bool,
is_movable: bool,
min_size: Option<Size<Pixels>>,
executor: ForegroundExecutor,
@ -381,10 +376,13 @@ impl WindowsWindow {
.unwrap_or(""),
);
let (dwexstyle, mut dwstyle) = if params.kind == WindowKind::PopUp {
(WS_EX_TOOLWINDOW | WS_EX_LAYERED, WINDOW_STYLE(0x0))
(
WS_EX_TOOLWINDOW | WS_EX_NOREDIRECTIONBITMAP,
WINDOW_STYLE(0x0),
)
} else {
(
WS_EX_APPWINDOW | WS_EX_LAYERED,
WS_EX_APPWINDOW | WS_EX_NOREDIRECTIONBITMAP,
WS_THICKFRAME | WS_SYSMENU | WS_MAXIMIZEBOX | WS_MINIMIZEBOX,
)
};
@ -402,7 +400,6 @@ impl WindowsWindow {
handle,
hide_title_bar,
display,
transparent: true,
is_movable: params.is_movable,
min_size: params.window_min_size,
executor,
@ -454,14 +451,6 @@ impl WindowsWindow {
state: WindowOpenState::Windowed,
});
}
// The render pipeline will perform compositing on the GPU when the
// swapchain is configured correctly (see downstream of
// update_transparency).
// The following configuration is a one-time setup to ensure that the
// window is going to be composited with per-pixel alpha, but the render
// pipeline is responsible for effectively calling UpdateLayeredWindow
// at the appropriate time.
unsafe { SetLayeredWindowAttributes(hwnd, COLORREF(0), 255, LWA_ALPHA)? };
Ok(Self(state_ptr))
}
@ -486,7 +475,6 @@ impl rwh::HasDisplayHandle for WindowsWindow {
impl Drop for WindowsWindow {
fn drop(&mut self) {
// self.0.state.borrow_mut().renderer.destroy();
// clone this `Rc` to prevent early release of the pointer
let this = self.0.clone();
self.0
@ -706,25 +694,21 @@ impl PlatformWindow for WindowsWindow {
}
fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
let mut window_state = self.0.state.borrow_mut();
// todo(zjk)
// window_state
// .renderer
// .update_transparency(background_appearance != WindowBackgroundAppearance::Opaque);
let hwnd = self.0.hwnd;
match background_appearance {
WindowBackgroundAppearance::Opaque => {
// ACCENT_DISABLED
set_window_composition_attribute(window_state.hwnd, None, 0);
set_window_composition_attribute(hwnd, None, 0);
}
WindowBackgroundAppearance::Transparent => {
// Use ACCENT_ENABLE_TRANSPARENTGRADIENT for transparent background
set_window_composition_attribute(window_state.hwnd, None, 2);
set_window_composition_attribute(hwnd, None, 2);
}
WindowBackgroundAppearance::Blurred => {
// Enable acrylic blur
// ACCENT_ENABLE_ACRYLICBLURBEHIND
set_window_composition_attribute(window_state.hwnd, Some((0, 0, 0, 0)), 4);
set_window_composition_attribute(hwnd, Some((0, 0, 0, 0)), 4);
}
}
}
@ -808,13 +792,11 @@ impl PlatformWindow for WindowsWindow {
}
fn gpu_specs(&self) -> Option<GpuSpecs> {
// todo(zjk)
// Some(self.0.state.borrow().renderer.gpu_specs())
None
self.0.state.borrow().renderer.gpu_specs().log_err()
}
fn update_ime_position(&self, _bounds: Bounds<ScaledPixels>) {
// todo(windows)
// There is no such thing on Windows.
}
}
@ -1310,52 +1292,6 @@ fn set_window_composition_attribute(hwnd: HWND, color: Option<Color>, state: u32
}
}
mod windows_renderer {
use crate::platform::blade::{BladeContext, BladeRenderer, BladeSurfaceConfig};
use raw_window_handle as rwh;
use std::num::NonZeroIsize;
use windows::Win32::{Foundation::HWND, UI::WindowsAndMessaging::GWLP_HINSTANCE};
use crate::{get_window_long, show_error};
pub(super) fn init(
context: &BladeContext,
hwnd: HWND,
transparent: bool,
) -> anyhow::Result<BladeRenderer> {
let raw = RawWindow { hwnd };
let config = BladeSurfaceConfig {
size: Default::default(),
transparent,
};
BladeRenderer::new(context, &raw, config)
.inspect_err(|err| show_error("Failed to initialize BladeRenderer", err.to_string()))
}
struct RawWindow {
hwnd: HWND,
}
impl rwh::HasWindowHandle for RawWindow {
fn window_handle(&self) -> Result<rwh::WindowHandle<'_>, rwh::HandleError> {
Ok(unsafe {
let hwnd = NonZeroIsize::new_unchecked(self.hwnd.0 as isize);
let mut handle = rwh::Win32WindowHandle::new(hwnd);
let hinstance = get_window_long(self.hwnd, GWLP_HINSTANCE);
handle.hinstance = NonZeroIsize::new(hinstance);
rwh::WindowHandle::borrow_raw(handle.into())
})
}
}
impl rwh::HasDisplayHandle for RawWindow {
fn display_handle(&self) -> Result<rwh::DisplayHandle<'_>, rwh::HandleError> {
let handle = rwh::WindowsDisplayHandle::new();
Ok(unsafe { rwh::DisplayHandle::borrow_raw(handle.into()) })
}
}
}
#[cfg(test)]
mod tests {
use super::ClickState;