Add support for dashed borders to GPUI (#27139)
Features: * Scales dash spacing with border width. * Laying out dashes around rounded corners. * Varying border widths with rounded corners - now uses an ellipse for the inner edge of the border. * When there are no rounded corners, each straight border is laid out separately, so that the dashes to meet at the corners. * All sides of each dash are antialiased.   Release Notes: - N/A --------- Co-authored-by: Michael Sloan <michael@zed.dev> Co-authored-by: Ben <ben@zed.dev>
This commit is contained in:
parent
2fe2028e20
commit
cd1e56d6c7
14 changed files with 869 additions and 159 deletions
|
@ -1,3 +1,33 @@
|
|||
/* Functions useful for debugging:
|
||||
|
||||
// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
|
||||
fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
|
||||
// Normalize value to 0-1 range
|
||||
let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
|
||||
|
||||
// Heat map color calculation
|
||||
let r = t * t;
|
||||
let g = 4.0 * t * (1.0 - t);
|
||||
let b = (1.0 - t) * (1.0 - t);
|
||||
let heat_color = vec3<f32>(r, g, b);
|
||||
|
||||
// Create a checkerboard pattern (black and white)
|
||||
let sum = floor(position.x / 3) + floor(position.y / 3);
|
||||
let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
|
||||
let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
|
||||
let checker_color = vec3<f32>(checker_value);
|
||||
|
||||
// Determine if value is in range (1.0 if in range, 0.0 if out of range)
|
||||
let in_range = step(minValue, value) * step(value, maxValue);
|
||||
|
||||
// Mix checkerboard and heat map based on whether value is in range
|
||||
let final_color = mix(checker_color, heat_color, in_range);
|
||||
|
||||
return vec4<f32>(final_color, 1.0);
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
struct GlobalParams {
|
||||
viewport_size: vec2<f32>,
|
||||
premultiplied_alpha: u32,
|
||||
|
@ -240,15 +270,16 @@ fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -
|
|||
return integral.y - integral.x;
|
||||
}
|
||||
|
||||
fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
|
||||
if (point.x < 0.0) {
|
||||
if (point.y < 0.0) {
|
||||
// Selects corner radius based on quadrant.
|
||||
fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
|
||||
if (center_to_point.x < 0.0) {
|
||||
if (center_to_point.y < 0.0) {
|
||||
return radii.top_left;
|
||||
} else {
|
||||
return radii.bottom_left;
|
||||
}
|
||||
} else {
|
||||
if (point.y < 0.0) {
|
||||
if (center_to_point.y < 0.0) {
|
||||
return radii.top_right;
|
||||
} else {
|
||||
return radii.bottom_right;
|
||||
|
@ -256,15 +287,36 @@ fn pick_corner_radius(point: vec2<f32>, radii: Corners) -> f32 {
|
|||
}
|
||||
}
|
||||
|
||||
// Signed distance of the point to the quad's border - positive outside the
|
||||
// border, and negative inside.
|
||||
//
|
||||
// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
|
||||
// explanation.
|
||||
fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
|
||||
let half_size = bounds.size / 2.0;
|
||||
let center = bounds.origin + half_size;
|
||||
let center_to_point = point - center;
|
||||
let corner_radius = pick_corner_radius(center_to_point, corner_radii);
|
||||
let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
|
||||
return length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
|
||||
min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
|
||||
corner_radius;
|
||||
let corner_to_point = abs(center_to_point) - half_size;
|
||||
let corner_center_to_point = corner_to_point + corner_radius;
|
||||
return quad_sdf_impl(corner_center_to_point, corner_radius);
|
||||
}
|
||||
|
||||
fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
|
||||
if (corner_radius == 0.0) {
|
||||
// Fast path for unrounded corners.
|
||||
return max(corner_center_to_point.x, corner_center_to_point.y);
|
||||
} else {
|
||||
// Signed distance of the point from a quad that is inset by corner_radius.
|
||||
// It is negative inside this quad, and positive outside.
|
||||
let signed_distance_to_inset_quad =
|
||||
// 0 inside the inset quad, and positive outside.
|
||||
length(max(vec2<f32>(0.0), corner_center_to_point)) +
|
||||
// 0 outside the inset quad, and negative inside.
|
||||
min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
|
||||
|
||||
return signed_distance_to_inset_quad - corner_radius;
|
||||
}
|
||||
}
|
||||
|
||||
// Abstract away the final color transformation based on the
|
||||
|
@ -386,7 +438,7 @@ fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
|
|||
|
||||
struct Quad {
|
||||
order: u32,
|
||||
pad: u32,
|
||||
border_style: u32,
|
||||
bounds: Bounds,
|
||||
content_mask: Bounds,
|
||||
background: Background,
|
||||
|
@ -438,54 +490,342 @@ fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
|
|||
}
|
||||
|
||||
let quad = b_quads[input.quad_id];
|
||||
let half_size = quad.bounds.size / 2.0;
|
||||
let center = quad.bounds.origin + half_size;
|
||||
let center_to_point = input.position.xy - center;
|
||||
|
||||
let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
|
||||
input.background_solid, input.background_color0, input.background_color1);
|
||||
|
||||
// Fast path when the quad is not rounded and doesn't have any border.
|
||||
if (quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 &&
|
||||
let unrounded = quad.corner_radii.top_left == 0.0 &&
|
||||
quad.corner_radii.bottom_left == 0.0 &&
|
||||
quad.corner_radii.top_right == 0.0 &&
|
||||
quad.corner_radii.bottom_right == 0.0 && quad.border_widths.top == 0.0 &&
|
||||
quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 &&
|
||||
quad.border_widths.bottom == 0.0) {
|
||||
quad.corner_radii.bottom_right == 0.0;
|
||||
|
||||
// Fast path when the quad is not rounded and doesn't have any border
|
||||
if (quad.border_widths.top == 0.0 &&
|
||||
quad.border_widths.left == 0.0 &&
|
||||
quad.border_widths.right == 0.0 &&
|
||||
quad.border_widths.bottom == 0.0 &&
|
||||
unrounded) {
|
||||
return blend_color(background_color, 1.0);
|
||||
}
|
||||
|
||||
let size = quad.bounds.size;
|
||||
let half_size = size / 2.0;
|
||||
let point = input.position.xy - quad.bounds.origin;
|
||||
let center_to_point = point - half_size;
|
||||
|
||||
// Signed distance field threshold for inclusion of pixels. Use of 0.5
|
||||
// instead of 1.0 causes the width of rounded borders to appear more
|
||||
// consistent with straight borders.
|
||||
let antialias_threshold = 0.5;
|
||||
|
||||
// Radius of the nearest corner
|
||||
let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
|
||||
let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
|
||||
let distance =
|
||||
length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
|
||||
min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
|
||||
corner_radius;
|
||||
|
||||
let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
|
||||
let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
|
||||
let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
|
||||
let point_to_inset_corner = abs(center_to_point) - inset_size;
|
||||
// Width of the nearest borders
|
||||
let border = vec2<f32>(
|
||||
select(
|
||||
quad.border_widths.right,
|
||||
quad.border_widths.left,
|
||||
center_to_point.x < 0.0),
|
||||
select(
|
||||
quad.border_widths.bottom,
|
||||
quad.border_widths.top,
|
||||
center_to_point.y < 0.0));
|
||||
|
||||
var border_width = 0.0;
|
||||
if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
|
||||
border_width = 0.0;
|
||||
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
|
||||
border_width = horizontal_border;
|
||||
} else {
|
||||
border_width = vertical_border;
|
||||
// Vector from the corner of the quad bounds to the point, after mirroring
|
||||
// the point into the bottom right quadrant. Both components are <= 0.
|
||||
let corner_to_point = abs(center_to_point) - half_size;
|
||||
|
||||
// Vector from the point to the center of the rounded corner's circle, also
|
||||
// mirrored into bottom right quadrant.
|
||||
let corner_center_to_point = corner_to_point + corner_radius;
|
||||
|
||||
// Whether the nearest point on the border is rounded
|
||||
let is_near_rounded_corner =
|
||||
corner_center_to_point.x >= 0 &&
|
||||
corner_center_to_point.y >= 0;
|
||||
|
||||
// Vector from straight border inner corner to point.
|
||||
let straight_border_inner_corner_to_point = corner_to_point + border;
|
||||
|
||||
// Whether the point is beyond the inner edge of the straight border.
|
||||
let is_beyond_inner_straight_border =
|
||||
straight_border_inner_corner_to_point.x > 0 ||
|
||||
straight_border_inner_corner_to_point.y > 0;
|
||||
|
||||
// Whether the point is far enough inside the straight border such that
|
||||
// pixels are not affected by it.
|
||||
let is_within_inner_straight_border =
|
||||
straight_border_inner_corner_to_point.x < -antialias_threshold &&
|
||||
straight_border_inner_corner_to_point.y < -antialias_threshold;
|
||||
|
||||
// Fast path for points that must be part of the background.
|
||||
//
|
||||
// This could be optimized further for large rounded corners by including
|
||||
// points in an inscribed rectangle, or some other quick linear check.
|
||||
// However, that might negatively impact performance in the case of
|
||||
// reasonable sizes for rounded corners.
|
||||
if (is_within_inner_straight_border && !is_near_rounded_corner) {
|
||||
return blend_color(background_color, 1.0);
|
||||
}
|
||||
|
||||
// Signed distance of the point to the outside edge of the quad's border. It
|
||||
// is positive outside this edge, and negative inside.
|
||||
let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
|
||||
|
||||
// Approximate signed distance of the point to the inside edge of the quad's
|
||||
// border. It is negative outside this edge (within the border), and
|
||||
// positive inside.
|
||||
//
|
||||
// This is not always an accurate signed distance:
|
||||
// * The rounded portions with varying border width use an approximation of
|
||||
// nearest-point-on-ellipse.
|
||||
// * When it is quickly known to be outside the edge, -1.0 is used.
|
||||
var inner_sdf = 0.0;
|
||||
if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
|
||||
// Fast paths for straight borders.
|
||||
inner_sdf = -max(straight_border_inner_corner_to_point.x,
|
||||
straight_border_inner_corner_to_point.y);
|
||||
} else if (is_beyond_inner_straight_border) {
|
||||
// Fast path for points that must be outside the inner edge.
|
||||
inner_sdf = -1.0;
|
||||
} else if (border.x == border.y) {
|
||||
// Fast path for circular inner edge.
|
||||
inner_sdf = -(outer_sdf + border.x);
|
||||
} else {
|
||||
let ellipse_radii = max(vec2<f32>(0.0), corner_radius - border);
|
||||
inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
|
||||
}
|
||||
|
||||
// Negative when inside the border
|
||||
let border_sdf = max(inner_sdf, outer_sdf);
|
||||
|
||||
var color = background_color;
|
||||
if (border_width > 0.0) {
|
||||
let inset_distance = distance + border_width;
|
||||
if (border_sdf < antialias_threshold) {
|
||||
var border_color = input.border_color;
|
||||
|
||||
// Dashed border logic when border_style == 1
|
||||
if (quad.border_style == 1) {
|
||||
// Position in "dash space", where each dash period has length 1
|
||||
var t = 0.0;
|
||||
|
||||
// Total number of dash periods, so that the dash spacing can be
|
||||
// adjusted to evenly divide it
|
||||
var max_t = 0.0;
|
||||
|
||||
// Since border width affects the dash size, the density of dashes
|
||||
// varies, and this is indicated by dash_velocity. It has units
|
||||
// (dash period / pixel). So a dash velocity of (1 / 10) is 1 dash
|
||||
// every 10 pixels.
|
||||
var dash_velocity = 0.0;
|
||||
|
||||
// Dash pattern: (2 * border width) dash, (1 * border width) gap
|
||||
let dash_length_per_width = 2.0;
|
||||
let dash_gap_per_width = 1.0;
|
||||
let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
|
||||
|
||||
// Dividing this by the border width gives the dash velocity
|
||||
let dv_numerator = 1.0 / dash_period_per_width;
|
||||
|
||||
if (unrounded) {
|
||||
// When corners aren't rounded, the dashes are separately laid
|
||||
// out on each straight line, rather than around the whole
|
||||
// perimeter. This way each line starts and ends with a dash.
|
||||
let is_horizontal =
|
||||
corner_center_to_point.x <
|
||||
corner_center_to_point.y;
|
||||
let border_width = select(border.y, border.x, is_horizontal);
|
||||
dash_velocity = dv_numerator / border_width;
|
||||
t = select(point.y, point.x, is_horizontal) * dash_velocity;
|
||||
max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
|
||||
} else {
|
||||
// When corners are rounded, the dashes are laid out around the
|
||||
// whole perimeter.
|
||||
|
||||
let r_tr = quad.corner_radii.top_right;
|
||||
let r_br = quad.corner_radii.bottom_right;
|
||||
let r_bl = quad.corner_radii.bottom_left;
|
||||
let r_tl = quad.corner_radii.top_left;
|
||||
|
||||
let w_t = quad.border_widths.top;
|
||||
let w_r = quad.border_widths.right;
|
||||
let w_b = quad.border_widths.bottom;
|
||||
let w_l = quad.border_widths.left;
|
||||
|
||||
// Straight side dash velocities
|
||||
let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
|
||||
let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
|
||||
let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
|
||||
let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
|
||||
|
||||
// Straight side lengths in dash space
|
||||
let s_t = (size.x - r_tl - r_tr) * dv_t;
|
||||
let s_r = (size.y - r_tr - r_br) * dv_r;
|
||||
let s_b = (size.x - r_br - r_bl) * dv_b;
|
||||
let s_l = (size.y - r_bl - r_tl) * dv_l;
|
||||
|
||||
let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
|
||||
let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
|
||||
let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
|
||||
let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
|
||||
|
||||
// Corner lengths in dash space
|
||||
let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
|
||||
let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
|
||||
let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
|
||||
let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
|
||||
|
||||
// Cumulative dash space upto each segment
|
||||
let upto_tr = s_t;
|
||||
let upto_r = upto_tr + c_tr;
|
||||
let upto_br = upto_r + s_r;
|
||||
let upto_b = upto_br + c_br;
|
||||
let upto_bl = upto_b + s_b;
|
||||
let upto_l = upto_bl + c_bl;
|
||||
let upto_tl = upto_l + s_l;
|
||||
max_t = upto_tl + c_tl;
|
||||
|
||||
if (is_near_rounded_corner) {
|
||||
let radians = atan2(corner_center_to_point.y,
|
||||
corner_center_to_point.x);
|
||||
let corner_t = radians * corner_radius;
|
||||
|
||||
if (center_to_point.x >= 0.0) {
|
||||
if (center_to_point.y < 0.0) {
|
||||
dash_velocity = corner_dash_velocity_tr;
|
||||
t = upto_r - corner_t * dash_velocity;
|
||||
} else {
|
||||
dash_velocity = corner_dash_velocity_br;
|
||||
t = upto_br + corner_t * dash_velocity;
|
||||
}
|
||||
} else {
|
||||
if (center_to_point.y >= 0.0) {
|
||||
dash_velocity = corner_dash_velocity_bl;
|
||||
t = upto_l - corner_t * dash_velocity;
|
||||
} else {
|
||||
dash_velocity = corner_dash_velocity_tl;
|
||||
t = upto_tl + corner_t * dash_velocity;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Straight borders
|
||||
let is_horizontal =
|
||||
corner_center_to_point.x <
|
||||
corner_center_to_point.y;
|
||||
if (is_horizontal) {
|
||||
if (center_to_point.y < 0.0) {
|
||||
dash_velocity = dv_t;
|
||||
t = (point.x - r_tl) * dash_velocity;
|
||||
} else {
|
||||
dash_velocity = dv_b;
|
||||
t = upto_bl - (point.x - r_bl) * dash_velocity;
|
||||
}
|
||||
} else {
|
||||
if (center_to_point.x < 0.0) {
|
||||
dash_velocity = dv_l;
|
||||
t = upto_tl - (point.y - r_tl) * dash_velocity;
|
||||
} else {
|
||||
dash_velocity = dv_r;
|
||||
t = upto_r + (point.y - r_tr) * dash_velocity;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let dash_length = dash_length_per_width / dash_period_per_width;
|
||||
let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
|
||||
|
||||
// Straight borders should start and end with a dash, so max_t is
|
||||
// reduced to cause this.
|
||||
max_t -= select(0.0, dash_length, unrounded);
|
||||
if (max_t >= 1.0) {
|
||||
// Adjust dash gap to evenly divide max_t.
|
||||
let dash_count = floor(max_t);
|
||||
let dash_period = max_t / dash_count;
|
||||
border_color.a *= dash_alpha(
|
||||
t,
|
||||
dash_period,
|
||||
dash_length,
|
||||
dash_velocity,
|
||||
antialias_threshold);
|
||||
} else if (unrounded) {
|
||||
// When there isn't enough space for the full gap between the
|
||||
// two start / end dashes of a straight border, reduce gap to
|
||||
// make them fit.
|
||||
let dash_gap = max_t - dash_length;
|
||||
if (dash_gap > 0.0) {
|
||||
let dash_period = dash_length + dash_gap;
|
||||
border_color.a *= dash_alpha(
|
||||
t,
|
||||
dash_period,
|
||||
dash_length,
|
||||
dash_velocity,
|
||||
antialias_threshold);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Blend the border on top of the background and then linearly interpolate
|
||||
// between the two as we slide inside the background.
|
||||
let blended_border = over(background_color, input.border_color);
|
||||
color = mix(blended_border, background_color,
|
||||
saturate(0.5 - inset_distance));
|
||||
let blended_border = over(background_color, border_color);
|
||||
color = mix(background_color, blended_border,
|
||||
saturate(antialias_threshold - inner_sdf));
|
||||
}
|
||||
|
||||
return blend_color(color, saturate(0.5 - distance));
|
||||
return blend_color(color, saturate(antialias_threshold - outer_sdf));
|
||||
}
|
||||
|
||||
// Returns the dash velocity of a corner given the dash velocity of the two
|
||||
// sides, by returning the slower velocity (larger dashes).
|
||||
//
|
||||
// Since 0 is used for dash velocity when the border width is 0 (instead of
|
||||
// +inf), this returns the other dash velocity in that case.
|
||||
//
|
||||
// An alternative to this might be to appropriately interpolate the dash
|
||||
// velocity around the corner, but that seems overcomplicated.
|
||||
fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
|
||||
if (dv1 == 0.0) {
|
||||
return dv2;
|
||||
} else if (dv2 == 0.0) {
|
||||
return dv1;
|
||||
} else {
|
||||
return min(dv1, dv2);
|
||||
}
|
||||
}
|
||||
|
||||
// Returns alpha used to render antialiased dashes.
|
||||
// `t` is within the dash when `fmod(t, period) < length`.
|
||||
fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
|
||||
let half_period = period / 2;
|
||||
let half_length = length / 2;
|
||||
// Value in [-half_period, half_period].
|
||||
// The dash is in [-half_length, half_length].
|
||||
let centered = fmod(t + half_period - half_length, period) - half_period;
|
||||
// Signed distance for the dash, negative values are inside the dash.
|
||||
let signed_distance = abs(centered) - half_length;
|
||||
// Antialiased alpha based on the signed distance.
|
||||
return saturate(antialias_threshold - signed_distance / dash_velocity);
|
||||
}
|
||||
|
||||
// This approximates distance to the nearest point to a quarter ellipse in a way
|
||||
// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
|
||||
// The components of `point` are expected to be positive.
|
||||
//
|
||||
// Negative on the outside and positive on the inside.
|
||||
fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
|
||||
// Scale the space to treat the ellipse like a unit circle.
|
||||
let circle_vec = point / radii;
|
||||
let unit_circle_sdf = length(circle_vec) - 1.0;
|
||||
// Approximate up-scaling of the length by using the average of the radii.
|
||||
//
|
||||
// TODO: A better solution would be to use the gradient of the implicit
|
||||
// function for an ellipse to approximate a scaling factor.
|
||||
return unit_circle_sdf * (radii.x + radii.y) * -0.5;
|
||||
}
|
||||
|
||||
// Modulus that has the same sign as `a`.
|
||||
fn fmod(a: f32, b: f32) -> f32 {
|
||||
return a - b * trunc(a / b);
|
||||
}
|
||||
|
||||
// --- shadows --- //
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue