assistant: Overhaul provider infrastructure (#14929)

<img width="624" alt="image"
src="https://github.com/user-attachments/assets/f492b0bd-14c3-49e2-b2ff-dc78e52b0815">

- [x] Correctly set custom model token count
- [x] How to count tokens for Gemini models?
- [x] Feature flag zed.dev provider
- [x] Figure out how to configure custom models
- [ ] Update docs

Release Notes:

- Added support for quickly switching between multiple language model
providers in the assistant panel

---------

Co-authored-by: Antonio <antonio@zed.dev>
This commit is contained in:
Bennet Bo Fenner 2024-07-23 19:48:41 +02:00 committed by GitHub
parent 17ef9a367f
commit d0f52e90e6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
55 changed files with 2757 additions and 2023 deletions

View file

@ -1,318 +0,0 @@
use crate::{count_open_ai_tokens, LanguageModelCompletionProvider};
use crate::{CompletionProvider, LanguageModel, LanguageModelRequest};
use anthropic::{stream_completion, Model as AnthropicModel, Request, RequestMessage};
use anyhow::{anyhow, Result};
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task, TextStyle, View};
use http::HttpClient;
use language_model::Role;
use settings::Settings;
use std::time::Duration;
use std::{env, sync::Arc};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
pub struct AnthropicCompletionProvider {
api_key: Option<String>,
api_url: String,
model: AnthropicModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
}
impl LanguageModelCompletionProvider for AnthropicCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
AnthropicModel::iter()
.map(LanguageModel::Anthropic)
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
let api_url = self.api_url.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = env::var("ANTHROPIC_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
})
})
}
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = None;
});
})
})
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.api_url.clone(), cx))
.into()
}
fn model(&self) -> LanguageModel {
LanguageModel::Anthropic(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_open_ai_tokens(request, cx.background_executor())
}
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_anthropic_request(request);
let http_client = self.http_client.clone();
let api_key = self.api_key.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(response) => match response {
anthropic::ResponseEvent::ContentBlockStart {
content_block, ..
} => match content_block {
anthropic::ContentBlock::Text { text } => Some(Ok(text)),
},
anthropic::ResponseEvent::ContentBlockDelta { delta, .. } => {
match delta {
anthropic::TextDelta::TextDelta { text } => Some(Ok(text)),
}
}
_ => None,
},
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
impl AnthropicCompletionProvider {
pub fn new(
model: AnthropicModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) -> Self {
Self {
api_key: None,
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
}
}
pub fn update(
&mut self,
model: AnthropicModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) {
self.model = model;
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
fn to_anthropic_request(&self, mut request: LanguageModelRequest) -> Request {
request.preprocess_anthropic();
let model = match request.model {
LanguageModel::Anthropic(model) => model,
_ => self.model.clone(),
};
let mut system_message = String::new();
if request
.messages
.first()
.map_or(false, |message| message.role == Role::System)
{
system_message = request.messages.remove(0).content;
}
Request {
model,
messages: request
.messages
.iter()
.map(|msg| RequestMessage {
role: match msg.role {
Role::User => anthropic::Role::User,
Role::Assistant => anthropic::Role::Assistant,
Role::System => unreachable!("filtered out by preprocess_request"),
},
content: msg.content.clone(),
})
.collect(),
stream: true,
system: system_message,
max_tokens: 4092,
}
}
}
struct AuthenticationPrompt {
api_key: View<Editor>,
api_url: String,
}
impl AuthenticationPrompt {
fn new(api_url: String, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
api_url,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(&self.api_url, "Bearer", api_key.as_bytes());
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, AnthropicCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
line_height: relative(1.3),
..Default::default()
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 4] = [
"To use the assistant panel or inline assistant, you need to add your Anthropic API key.",
"You can create an API key at: https://console.anthropic.com/settings/keys",
"",
"Paste your Anthropic API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the ANTHROPIC_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}

View file

@ -1,214 +0,0 @@
use crate::{
count_open_ai_tokens, CompletionProvider, LanguageModel, LanguageModelCompletionProvider,
LanguageModelRequest,
};
use anyhow::{anyhow, Result};
use client::{proto, Client};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt, TryFutureExt};
use gpui::{AnyView, AppContext, Task};
use language_model::CloudModel;
use std::{future, sync::Arc};
use strum::IntoEnumIterator;
use ui::prelude::*;
pub struct CloudCompletionProvider {
client: Arc<Client>,
model: CloudModel,
settings_version: usize,
status: client::Status,
_maintain_client_status: Task<()>,
}
impl CloudCompletionProvider {
pub fn new(
model: CloudModel,
client: Arc<Client>,
settings_version: usize,
cx: &mut AppContext,
) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
let _ = cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.status = status;
});
});
}
});
Self {
client,
model,
settings_version,
status,
_maintain_client_status: maintain_client_status,
}
}
pub fn update(&mut self, model: CloudModel, settings_version: usize) {
self.model = model;
self.settings_version = settings_version;
}
}
impl LanguageModelCompletionProvider for CloudCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
let mut custom_model = if matches!(self.model, CloudModel::Custom { .. }) {
Some(self.model.clone())
} else {
None
};
CloudModel::iter()
.filter_map(move |model| {
if let CloudModel::Custom { .. } = model {
custom_model.take()
} else {
Some(model)
}
})
.map(LanguageModel::Cloud)
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
self.status.is_connected()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |cx| async move { client.authenticate_and_connect(true, &cx).await })
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| AuthenticationPrompt).into()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn model(&self) -> LanguageModel {
LanguageModel::Cloud(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match &request.model {
LanguageModel::Cloud(CloudModel::Gpt4)
| LanguageModel::Cloud(CloudModel::Gpt4Turbo)
| LanguageModel::Cloud(CloudModel::Gpt4Omni)
| LanguageModel::Cloud(CloudModel::Gpt3Point5Turbo) => {
count_open_ai_tokens(request, cx.background_executor())
}
LanguageModel::Cloud(
CloudModel::Claude3_5Sonnet
| CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku,
) => {
// Can't find a tokenizer for Claude 3, so for now just use the same as OpenAI's as an approximation.
count_open_ai_tokens(request, cx.background_executor())
}
LanguageModel::Cloud(CloudModel::Custom { name, .. }) => {
if name.starts_with("anthropic/") {
// Can't find a tokenizer for Anthropic models, so for now just use the same as OpenAI's as an approximation.
count_open_ai_tokens(request, cx.background_executor())
} else {
let request = self.client.request(proto::CountTokensWithLanguageModel {
model: name.clone(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
});
async move {
let response = request.await?;
Ok(response.token_count as usize)
}
.boxed()
}
}
_ => future::ready(Err(anyhow!("invalid model"))).boxed(),
}
}
fn stream_completion(
&self,
mut request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
request.preprocess();
let request = proto::CompleteWithLanguageModel {
model: request.model.id().to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
};
self.client
.request_stream(request)
.map_ok(|stream| {
stream
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta?.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed()
})
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
struct AuthenticationPrompt;
impl Render for AuthenticationPrompt {
fn render(&mut self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(|_, cx| {
CompletionProvider::global(cx)
.authenticate(cx)
.detach_and_log_err(cx);
}),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}

View file

@ -1,31 +1,37 @@
mod anthropic;
mod cloud;
#[cfg(any(test, feature = "test-support"))]
mod fake;
mod ollama;
mod open_ai;
pub use anthropic::*;
use anyhow::Result;
use client::Client;
pub use cloud::*;
#[cfg(any(test, feature = "test-support"))]
pub use fake::*;
use futures::{future::BoxFuture, stream::BoxStream, StreamExt};
use gpui::{AnyView, AppContext, Task, WindowContext};
use language_model::{LanguageModel, LanguageModelRequest};
pub use ollama::*;
pub use open_ai::*;
use parking_lot::RwLock;
use anyhow::{anyhow, Result};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AppContext, Global, Model, ModelContext, Task};
use language_model::{
LanguageModel, LanguageModelProvider, LanguageModelProviderName, LanguageModelRegistry,
LanguageModelRequest,
};
use smol::lock::{Semaphore, SemaphoreGuardArc};
use std::{any::Any, pin::Pin, sync::Arc, task::Poll};
use std::{pin::Pin, sync::Arc, task::Poll};
use ui::Context;
pub struct CompletionResponse {
inner: BoxStream<'static, Result<String>>,
pub fn init(cx: &mut AppContext) {
let completion_provider = cx.new_model(|cx| LanguageModelCompletionProvider::new(cx));
cx.set_global(GlobalLanguageModelCompletionProvider(completion_provider));
}
struct GlobalLanguageModelCompletionProvider(Model<LanguageModelCompletionProvider>);
impl Global for GlobalLanguageModelCompletionProvider {}
pub struct LanguageModelCompletionProvider {
active_provider: Option<Arc<dyn LanguageModelProvider>>,
active_model: Option<Arc<dyn LanguageModel>>,
request_limiter: Arc<Semaphore>,
}
const MAX_CONCURRENT_COMPLETION_REQUESTS: usize = 4;
pub struct LanguageModelCompletionResponse {
pub inner: BoxStream<'static, Result<String>>,
_lock: SemaphoreGuardArc,
}
impl futures::Stream for CompletionResponse {
impl futures::Stream for LanguageModelCompletionResponse {
type Item = Result<String>;
fn poll_next(
@ -36,73 +42,96 @@ impl futures::Stream for CompletionResponse {
}
}
pub trait LanguageModelCompletionProvider: Send + Sync {
fn available_models(&self) -> Vec<LanguageModel>;
fn settings_version(&self) -> usize;
fn is_authenticated(&self) -> bool;
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>>;
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView;
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>>;
fn model(&self) -> LanguageModel;
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>>;
impl LanguageModelCompletionProvider {
pub fn global(cx: &AppContext) -> Model<Self> {
cx.global::<GlobalLanguageModelCompletionProvider>()
.0
.clone()
}
fn as_any_mut(&mut self) -> &mut dyn Any;
}
pub fn read_global(cx: &AppContext) -> &Self {
cx.global::<GlobalLanguageModelCompletionProvider>()
.0
.read(cx)
}
const MAX_CONCURRENT_COMPLETION_REQUESTS: usize = 4;
#[cfg(any(test, feature = "test-support"))]
pub fn test(cx: &mut AppContext) {
let provider = cx.new_model(|cx| {
let mut this = Self::new(cx);
let available_model = LanguageModelRegistry::read_global(cx)
.available_models(cx)
.first()
.unwrap()
.clone();
this.set_active_model(available_model, cx);
this
});
cx.set_global(GlobalLanguageModelCompletionProvider(provider));
}
pub struct CompletionProvider {
provider: Arc<RwLock<dyn LanguageModelCompletionProvider>>,
client: Option<Arc<Client>>,
request_limiter: Arc<Semaphore>,
}
pub fn new(cx: &mut ModelContext<Self>) -> Self {
cx.observe(&LanguageModelRegistry::global(cx), |_, _, cx| {
cx.notify();
})
.detach();
impl CompletionProvider {
pub fn new(
provider: Arc<RwLock<dyn LanguageModelCompletionProvider>>,
client: Option<Arc<Client>>,
) -> Self {
Self {
provider,
client,
active_provider: None,
active_model: None,
request_limiter: Arc::new(Semaphore::new(MAX_CONCURRENT_COMPLETION_REQUESTS)),
}
}
pub fn available_models(&self) -> Vec<LanguageModel> {
self.provider.read().available_models()
pub fn active_provider(&self) -> Option<Arc<dyn LanguageModelProvider>> {
self.active_provider.clone()
}
pub fn settings_version(&self) -> usize {
self.provider.read().settings_version()
pub fn set_active_provider(
&mut self,
provider_name: LanguageModelProviderName,
cx: &mut ModelContext<Self>,
) {
self.active_provider = LanguageModelRegistry::read_global(cx).provider(&provider_name);
self.active_model = None;
cx.notify();
}
pub fn is_authenticated(&self) -> bool {
self.provider.read().is_authenticated()
pub fn active_model(&self) -> Option<Arc<dyn LanguageModel>> {
self.active_model.clone()
}
pub fn set_active_model(&mut self, model: Arc<dyn LanguageModel>, cx: &mut ModelContext<Self>) {
if self.active_model.as_ref().map_or(false, |m| {
m.id() == model.id() && m.provider_name() == model.provider_name()
}) {
return;
}
self.active_provider =
LanguageModelRegistry::read_global(cx).provider(&model.provider_name());
self.active_model = Some(model);
cx.notify();
}
pub fn is_authenticated(&self, cx: &AppContext) -> bool {
self.active_provider
.as_ref()
.map_or(false, |provider| provider.is_authenticated(cx))
}
pub fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
self.provider.read().authenticate(cx)
}
pub fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
self.provider.read().authentication_prompt(cx)
self.active_provider
.as_ref()
.map_or(Task::ready(Ok(())), |provider| provider.authenticate(cx))
}
pub fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
self.provider.read().reset_credentials(cx)
}
pub fn model(&self) -> LanguageModel {
self.provider.read().model()
self.active_provider
.as_ref()
.map_or(Task::ready(Ok(())), |provider| {
provider.reset_credentials(cx)
})
}
pub fn count_tokens(
@ -110,25 +139,31 @@ impl CompletionProvider {
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
self.provider.read().count_tokens(request, cx)
if let Some(model) = self.active_model() {
model.count_tokens(request, cx)
} else {
std::future::ready(Err(anyhow!("No active model set"))).boxed()
}
}
pub fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> Task<Result<CompletionResponse>> {
let rate_limiter = self.request_limiter.clone();
let provider = self.provider.clone();
cx.foreground_executor().spawn(async move {
let lock = rate_limiter.acquire_arc().await;
let response = provider.read().stream_completion(request);
let response = response.await?;
Ok(CompletionResponse {
inner: response,
_lock: lock,
) -> Task<Result<LanguageModelCompletionResponse>> {
if let Some(language_model) = self.active_model() {
let rate_limiter = self.request_limiter.clone();
cx.spawn(|cx| async move {
let lock = rate_limiter.acquire_arc().await;
let response = language_model.stream_completion(request, &cx).await?;
Ok(LanguageModelCompletionResponse {
inner: response,
_lock: lock,
})
})
})
} else {
Task::ready(Err(anyhow!("No active model set")))
}
}
pub fn complete(&self, request: LanguageModelRequest, cx: &AppContext) -> Task<Result<String>> {
@ -143,63 +178,43 @@ impl CompletionProvider {
Ok(completion)
})
}
pub fn update_provider(
&mut self,
get_provider: impl FnOnce(Arc<Client>) -> Arc<RwLock<dyn LanguageModelCompletionProvider>>,
) {
if let Some(client) = &self.client {
self.provider = get_provider(Arc::clone(client));
} else {
log::warn!("completion provider cannot be updated because its client was not set");
}
}
}
impl gpui::Global for CompletionProvider {}
impl CompletionProvider {
pub fn global(cx: &AppContext) -> &Self {
cx.global::<Self>()
}
pub fn update_current_as<R, T: LanguageModelCompletionProvider + 'static>(
&mut self,
update: impl FnOnce(&mut T) -> R,
) -> Option<R> {
let mut provider = self.provider.write();
if let Some(provider) = provider.as_any_mut().downcast_mut::<T>() {
Some(update(provider))
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use futures::StreamExt;
use gpui::AppContext;
use parking_lot::RwLock;
use settings::SettingsStore;
use smol::stream::StreamExt;
use ui::Context;
use crate::{
CompletionProvider, FakeCompletionProvider, LanguageModelRequest,
MAX_CONCURRENT_COMPLETION_REQUESTS,
LanguageModelCompletionProvider, LanguageModelRequest, MAX_CONCURRENT_COMPLETION_REQUESTS,
};
use language_model::LanguageModelRegistry;
#[gpui::test]
fn test_rate_limiting(cx: &mut AppContext) {
SettingsStore::test(cx);
let fake_provider = FakeCompletionProvider::setup_test(cx);
let fake_provider = LanguageModelRegistry::test(cx);
let provider = CompletionProvider::new(Arc::new(RwLock::new(fake_provider.clone())), None);
let model = LanguageModelRegistry::read_global(cx)
.available_models(cx)
.first()
.cloned()
.unwrap();
let provider = cx.new_model(|cx| {
let mut provider = LanguageModelCompletionProvider::new(cx);
provider.set_active_model(model.clone(), cx);
provider
});
let fake_model = fake_provider.test_model();
// Enqueue some requests
for i in 0..MAX_CONCURRENT_COMPLETION_REQUESTS * 2 {
let response = provider.stream_completion(
let response = provider.read(cx).stream_completion(
LanguageModelRequest {
temperature: i as f32 / 10.0,
..Default::default()
@ -216,23 +231,18 @@ mod tests {
.detach();
}
cx.background_executor().run_until_parked();
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS
);
// Get the first completion request that is in flight and mark it as completed.
let completion = fake_provider
.pending_completions()
.into_iter()
.next()
.unwrap();
fake_provider.finish_completion(&completion);
let completion = fake_model.pending_completions().into_iter().next().unwrap();
fake_model.finish_completion(&completion);
// Ensure that the number of in-flight completion requests is reduced.
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS - 1
);
@ -240,32 +250,32 @@ mod tests {
// Ensure that another completion request was allowed to acquire the lock.
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS
);
// Mark all completion requests as finished that are in flight.
for request in fake_provider.pending_completions() {
fake_provider.finish_completion(&request);
for request in fake_model.pending_completions() {
fake_model.finish_completion(&request);
}
assert_eq!(fake_provider.completion_count(), 0);
assert_eq!(fake_model.completion_count(), 0);
// Wait until the background tasks acquire the lock again.
cx.background_executor().run_until_parked();
assert_eq!(
fake_provider.completion_count(),
fake_model.completion_count(),
MAX_CONCURRENT_COMPLETION_REQUESTS - 1
);
// Finish all remaining completion requests.
for request in fake_provider.pending_completions() {
fake_provider.finish_completion(&request);
for request in fake_model.pending_completions() {
fake_model.finish_completion(&request);
}
cx.background_executor().run_until_parked();
assert_eq!(fake_provider.completion_count(), 0);
assert_eq!(fake_model.completion_count(), 0);
}
}

View file

@ -1,115 +0,0 @@
use anyhow::Result;
use collections::HashMap;
use futures::{channel::mpsc, future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task};
use std::sync::Arc;
use ui::WindowContext;
use crate::{LanguageModel, LanguageModelCompletionProvider, LanguageModelRequest};
#[derive(Clone, Default)]
pub struct FakeCompletionProvider {
current_completion_txs: Arc<parking_lot::Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl FakeCompletionProvider {
pub fn setup_test(cx: &mut AppContext) -> Self {
use crate::CompletionProvider;
use parking_lot::RwLock;
let this = Self::default();
let provider = CompletionProvider::new(Arc::new(RwLock::new(this.clone())), None);
cx.set_global(provider);
this
}
pub fn pending_completions(&self) -> Vec<LanguageModelRequest> {
self.current_completion_txs
.lock()
.keys()
.map(|k| serde_json::from_str(k).unwrap())
.collect()
}
pub fn completion_count(&self) -> usize {
self.current_completion_txs.lock().len()
}
pub fn send_completion_chunk(&self, request: &LanguageModelRequest, chunk: String) {
let json = serde_json::to_string(request).unwrap();
self.current_completion_txs
.lock()
.get(&json)
.unwrap()
.unbounded_send(chunk)
.unwrap();
}
pub fn send_last_completion_chunk(&self, chunk: String) {
self.send_completion_chunk(self.pending_completions().last().unwrap(), chunk);
}
pub fn finish_completion(&self, request: &LanguageModelRequest) {
self.current_completion_txs
.lock()
.remove(&serde_json::to_string(request).unwrap())
.unwrap();
}
pub fn finish_last_completion(&self) {
self.finish_completion(self.pending_completions().last().unwrap());
}
}
impl LanguageModelCompletionProvider for FakeCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
vec![LanguageModel::default()]
}
fn settings_version(&self) -> usize {
0
}
fn is_authenticated(&self) -> bool {
true
}
fn authenticate(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn authentication_prompt(&self, _cx: &mut WindowContext) -> AnyView {
unimplemented!()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn model(&self) -> LanguageModel {
LanguageModel::default()
}
fn count_tokens(
&self,
_request: LanguageModelRequest,
_cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
futures::future::ready(Ok(0)).boxed()
}
fn stream_completion(
&self,
_request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let (tx, rx) = mpsc::unbounded();
self.current_completion_txs
.lock()
.insert(serde_json::to_string(&_request).unwrap(), tx);
async move { Ok(rx.map(Ok).boxed()) }.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}

View file

@ -1,347 +0,0 @@
use crate::LanguageModelCompletionProvider;
use crate::{CompletionProvider, LanguageModel, LanguageModelRequest};
use anyhow::Result;
use futures::StreamExt as _;
use futures::{future::BoxFuture, stream::BoxStream, FutureExt};
use gpui::{AnyView, AppContext, Task};
use http::HttpClient;
use language_model::Role;
use ollama::Model as OllamaModel;
use ollama::{
get_models, preload_model, stream_chat_completion, ChatMessage, ChatOptions, ChatRequest,
};
use std::sync::Arc;
use std::time::Duration;
use ui::{prelude::*, ButtonLike, ElevationIndex};
const OLLAMA_DOWNLOAD_URL: &str = "https://ollama.com/download";
const OLLAMA_LIBRARY_URL: &str = "https://ollama.com/library";
pub struct OllamaCompletionProvider {
api_url: String,
model: OllamaModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models: Vec<OllamaModel>,
}
impl LanguageModelCompletionProvider for OllamaCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
self.available_models
.iter()
.map(|m| LanguageModel::Ollama(m.clone()))
.collect()
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
!self.available_models.is_empty()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
self.fetch_models(cx)
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
let fetch_models = Box::new(move |cx: &mut WindowContext| {
cx.update_global::<CompletionProvider, _>(|provider, cx| {
provider
.update_current_as::<_, OllamaCompletionProvider>(|provider| {
provider.fetch_models(cx)
})
.unwrap_or_else(|| Task::ready(Ok(())))
})
});
cx.new_view(|cx| DownloadOllamaMessage::new(fetch_models, cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
self.fetch_models(cx)
}
fn model(&self) -> LanguageModel {
LanguageModel::Ollama(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
_cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
// There is no endpoint for this _yet_ in Ollama
// see: https://github.com/ollama/ollama/issues/1716 and https://github.com/ollama/ollama/issues/3582
let token_count = request
.messages
.iter()
.map(|msg| msg.content.chars().count())
.sum::<usize>()
/ 4;
async move { Ok(token_count) }.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_ollama_request(request);
let http_client = self.http_client.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
async move {
let request =
stream_chat_completion(http_client.as_ref(), &api_url, request, low_speed_timeout);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(delta) => {
let content = match delta.message {
ChatMessage::User { content } => content,
ChatMessage::Assistant { content } => content,
ChatMessage::System { content } => content,
};
Some(Ok(content))
}
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
impl OllamaCompletionProvider {
pub fn new(
model: OllamaModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
cx: &AppContext,
) -> Self {
cx.spawn({
let api_url = api_url.clone();
let client = http_client.clone();
let model = model.name.clone();
|_| async move {
if model.is_empty() {
return Ok(());
}
preload_model(client.as_ref(), &api_url, &model).await
}
})
.detach_and_log_err(cx);
Self {
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
available_models: Default::default(),
}
}
pub fn update(
&mut self,
model: OllamaModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
cx: &AppContext,
) {
cx.spawn({
let api_url = api_url.clone();
let client = self.http_client.clone();
let model = model.name.clone();
|_| async move { preload_model(client.as_ref(), &api_url, &model).await }
})
.detach_and_log_err(cx);
if model.name.is_empty() {
self.select_first_available_model()
} else {
self.model = model;
}
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
pub fn select_first_available_model(&mut self) {
if let Some(model) = self.available_models.first() {
self.model = model.clone();
}
}
pub fn fetch_models(&self, cx: &AppContext) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<OllamaModel> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| OllamaModel::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, OllamaCompletionProvider>(|provider| {
provider.available_models = models;
if !provider.available_models.is_empty() && provider.model.name.is_empty() {
provider.select_first_available_model()
}
});
})
})
}
fn to_ollama_request(&self, request: LanguageModelRequest) -> ChatRequest {
let model = match request.model {
LanguageModel::Ollama(model) => model,
_ => self.model.clone(),
};
ChatRequest {
model: model.name,
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => ChatMessage::User {
content: msg.content,
},
Role::Assistant => ChatMessage::Assistant {
content: msg.content,
},
Role::System => ChatMessage::System {
content: msg.content,
},
})
.collect(),
keep_alive: model.keep_alive.unwrap_or_default(),
stream: true,
options: Some(ChatOptions {
num_ctx: Some(model.max_tokens),
stop: Some(request.stop),
temperature: Some(request.temperature),
..Default::default()
}),
}
}
}
struct DownloadOllamaMessage {
retry_connection: Box<dyn Fn(&mut WindowContext) -> Task<Result<()>>>,
}
impl DownloadOllamaMessage {
pub fn new(
retry_connection: Box<dyn Fn(&mut WindowContext) -> Task<Result<()>>>,
_cx: &mut ViewContext<Self>,
) -> Self {
Self { retry_connection }
}
fn render_download_button(&self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
ButtonLike::new("download_ollama_button")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("Get Ollama"))
.on_click(move |_, cx| cx.open_url(OLLAMA_DOWNLOAD_URL))
}
fn render_retry_button(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
ButtonLike::new("retry_ollama_models")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("Retry"))
.on_click(cx.listener(move |this, _, cx| {
let connected = (this.retry_connection)(cx);
cx.spawn(|_this, _cx| async move {
connected.await?;
anyhow::Ok(())
})
.detach_and_log_err(cx)
}))
}
fn render_next_steps(&self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
v_flex()
.p_4()
.size_full()
.gap_2()
.child(
Label::new("Once Ollama is on your machine, make sure to download a model or two.")
.size(LabelSize::Large),
)
.child(
h_flex().w_full().p_4().justify_center().gap_2().child(
ButtonLike::new("view-models")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("View Available Models"))
.on_click(move |_, cx| cx.open_url(OLLAMA_LIBRARY_URL)),
),
)
}
}
impl Render for DownloadOllamaMessage {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
v_flex()
.p_4()
.size_full()
.gap_2()
.child(Label::new("To use Ollama models via the assistant, Ollama must be running on your machine with at least one model downloaded.").size(LabelSize::Large))
.child(
h_flex()
.w_full()
.p_4()
.justify_center()
.gap_2()
.child(
self.render_download_button(cx)
)
.child(
self.render_retry_button(cx)
)
)
.child(self.render_next_steps(cx))
.into_any()
}
}

View file

@ -1,362 +0,0 @@
use crate::CompletionProvider;
use crate::LanguageModelCompletionProvider;
use anyhow::{anyhow, Result};
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, Task, TextStyle, View};
use http::HttpClient;
use language_model::{CloudModel, LanguageModel, LanguageModelRequest, Role};
use open_ai::Model as OpenAiModel;
use open_ai::{stream_completion, Request, RequestMessage};
use settings::Settings;
use std::time::Duration;
use std::{env, sync::Arc};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
pub struct OpenAiCompletionProvider {
api_key: Option<String>,
api_url: String,
model: OpenAiModel,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models_from_settings: Vec<OpenAiModel>,
}
impl OpenAiCompletionProvider {
pub fn new(
model: OpenAiModel,
api_url: String,
http_client: Arc<dyn HttpClient>,
low_speed_timeout: Option<Duration>,
settings_version: usize,
available_models_from_settings: Vec<OpenAiModel>,
) -> Self {
Self {
api_key: None,
api_url,
model,
http_client,
low_speed_timeout,
settings_version,
available_models_from_settings,
}
}
pub fn update(
&mut self,
model: OpenAiModel,
api_url: String,
low_speed_timeout: Option<Duration>,
settings_version: usize,
) {
self.model = model;
self.api_url = api_url;
self.low_speed_timeout = low_speed_timeout;
self.settings_version = settings_version;
}
fn to_open_ai_request(&self, request: LanguageModelRequest) -> Request {
let model = match request.model {
LanguageModel::OpenAi(model) => model,
_ => self.model.clone(),
};
Request {
model,
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => RequestMessage::User {
content: msg.content,
},
Role::Assistant => RequestMessage::Assistant {
content: Some(msg.content),
tool_calls: Vec::new(),
},
Role::System => RequestMessage::System {
content: msg.content,
},
})
.collect(),
stream: true,
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
}
}
}
impl LanguageModelCompletionProvider for OpenAiCompletionProvider {
fn available_models(&self) -> Vec<LanguageModel> {
if self.available_models_from_settings.is_empty() {
let available_models = if matches!(self.model, OpenAiModel::Custom { .. }) {
vec![self.model.clone()]
} else {
OpenAiModel::iter()
.filter(|model| !matches!(model, OpenAiModel::Custom { .. }))
.collect()
};
available_models
.into_iter()
.map(LanguageModel::OpenAi)
.collect()
} else {
self.available_models_from_settings
.iter()
.cloned()
.map(LanguageModel::OpenAi)
.collect()
}
}
fn settings_version(&self) -> usize {
self.settings_version
}
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated() {
Task::ready(Ok(()))
} else {
let api_url = self.api_url.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = env::var("OPENAI_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.api_key = Some(api_key);
});
})
})
}
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, Self>(|provider| {
provider.api_key = None;
});
})
})
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.api_url.clone(), cx))
.into()
}
fn model(&self) -> LanguageModel {
LanguageModel::OpenAi(self.model.clone())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_open_ai_tokens(request, cx.background_executor())
}
fn stream_completion(
&self,
request: LanguageModelRequest,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_open_ai_request(request);
let http_client = self.http_client.clone();
let api_key = self.api_key.clone();
let api_url = self.api_url.clone();
let low_speed_timeout = self.low_speed_timeout;
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
}
pub fn count_open_ai_tokens(
request: LanguageModelRequest,
background_executor: &gpui::BackgroundExecutor,
) -> BoxFuture<'static, Result<usize>> {
background_executor
.spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.content),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
match request.model {
LanguageModel::Anthropic(_)
| LanguageModel::Cloud(CloudModel::Claude3_5Sonnet)
| LanguageModel::Cloud(CloudModel::Claude3Opus)
| LanguageModel::Cloud(CloudModel::Claude3Sonnet)
| LanguageModel::Cloud(CloudModel::Claude3Haiku)
| LanguageModel::Cloud(CloudModel::Custom { .. })
| LanguageModel::OpenAi(OpenAiModel::Custom { .. }) => {
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
}
_ => tiktoken_rs::num_tokens_from_messages(request.model.id(), &messages),
}
})
.boxed()
}
struct AuthenticationPrompt {
api_key: View<Editor>,
api_url: String,
}
impl AuthenticationPrompt {
fn new(api_url: String, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
api_url,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(&self.api_url, "Bearer", api_key.as_bytes());
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
cx.update_global::<CompletionProvider, _>(|provider, _cx| {
provider.update_current_as::<_, OpenAiCompletionProvider>(|provider| {
provider.api_key = Some(api_key);
});
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
line_height: relative(1.3),
..Default::default()
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 6] = [
"To use the assistant panel or inline assistant, you need to add your OpenAI API key.",
" - You can create an API key at: platform.openai.com/api-keys",
" - Make sure your OpenAI account has credits",
" - Having a subscription for another service like GitHub Copilot won't work.",
"",
"Paste your OpenAI API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the OPENAI_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}