assistant: Overhaul provider infrastructure (#14929)

<img width="624" alt="image"
src="https://github.com/user-attachments/assets/f492b0bd-14c3-49e2-b2ff-dc78e52b0815">

- [x] Correctly set custom model token count
- [x] How to count tokens for Gemini models?
- [x] Feature flag zed.dev provider
- [x] Figure out how to configure custom models
- [ ] Update docs

Release Notes:

- Added support for quickly switching between multiple language model
providers in the assistant panel

---------

Co-authored-by: Antonio <antonio@zed.dev>
This commit is contained in:
Bennet Bo Fenner 2024-07-23 19:48:41 +02:00 committed by GitHub
parent 17ef9a367f
commit d0f52e90e6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
55 changed files with 2757 additions and 2023 deletions

View file

@ -22,12 +22,27 @@ test-support = [
[dependencies]
anthropic = { workspace = true, features = ["schemars"] }
anyhow.workspace = true
client.workspace = true
collections.workspace = true
editor.workspace = true
feature_flags.workspace = true
futures.workspace = true
gpui.workspace = true
http.workspace = true
menu.workspace = true
ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
proto = { workspace = true, features = ["test-support"] }
schemars.workspace = true
serde.workspace = true
serde_json.workspace = true
settings.workspace = true
strum.workspace = true
proto = { workspace = true, features = ["test-support"] }
theme.workspace = true
tiktoken-rs.workspace = true
ui.workspace = true
util.workspace = true
[dev-dependencies]
ctor.workspace = true

View file

@ -1,7 +1,84 @@
mod model;
pub mod provider;
mod registry;
mod request;
mod role;
pub mod settings;
use std::sync::Arc;
use anyhow::Result;
use client::Client;
use futures::{future::BoxFuture, stream::BoxStream};
use gpui::{AnyView, AppContext, AsyncAppContext, SharedString, Task, WindowContext};
pub use model::*;
pub use registry::*;
pub use request::*;
pub use role::*;
pub fn init(client: Arc<Client>, cx: &mut AppContext) {
settings::init(cx);
registry::init(client, cx);
}
pub trait LanguageModel: Send + Sync {
fn id(&self) -> LanguageModelId;
fn name(&self) -> LanguageModelName;
fn provider_name(&self) -> LanguageModelProviderName;
fn telemetry_id(&self) -> String;
fn max_token_count(&self) -> usize;
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>>;
}
pub trait LanguageModelProvider: 'static {
fn name(&self) -> LanguageModelProviderName;
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>>;
fn is_authenticated(&self, cx: &AppContext) -> bool;
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>>;
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView;
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>>;
}
pub trait LanguageModelProviderState: 'static {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription>;
}
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelName(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug)]
pub struct LanguageModelProviderName(pub SharedString);
impl From<String> for LanguageModelId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}

View file

@ -1,4 +1,5 @@
pub use anthropic::Model as AnthropicModel;
use anyhow::{anyhow, Result};
pub use ollama::Model as OllamaModel;
pub use open_ai::Model as OpenAiModel;
use schemars::JsonSchema;
@ -38,6 +39,23 @@ pub enum CloudModel {
}
impl CloudModel {
pub fn from_id(value: &str) -> Result<Self> {
match value {
"gpt-3.5-turbo" => Ok(Self::Gpt3Point5Turbo),
"gpt-4" => Ok(Self::Gpt4),
"gpt-4-turbo-preview" => Ok(Self::Gpt4Turbo),
"gpt-4o" => Ok(Self::Gpt4Omni),
"gpt-4o-mini" => Ok(Self::Gpt4OmniMini),
"claude-3-5-sonnet" => Ok(Self::Claude3_5Sonnet),
"claude-3-opus" => Ok(Self::Claude3Opus),
"claude-3-sonnet" => Ok(Self::Claude3Sonnet),
"claude-3-haiku" => Ok(Self::Claude3Haiku),
"gemini-1.5-pro" => Ok(Self::Gemini15Pro),
"gemini-1.5-flash" => Ok(Self::Gemini15Flash),
_ => Err(anyhow!("invalid model id")),
}
}
pub fn id(&self) -> &str {
match self {
Self::Gpt3Point5Turbo => "gpt-3.5-turbo",

View file

@ -4,57 +4,3 @@ pub use anthropic::Model as AnthropicModel;
pub use cloud_model::*;
pub use ollama::Model as OllamaModel;
pub use open_ai::Model as OpenAiModel;
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
pub enum LanguageModel {
Cloud(CloudModel),
OpenAi(OpenAiModel),
Anthropic(AnthropicModel),
Ollama(OllamaModel),
}
impl Default for LanguageModel {
fn default() -> Self {
LanguageModel::Cloud(CloudModel::default())
}
}
impl LanguageModel {
pub fn telemetry_id(&self) -> String {
match self {
LanguageModel::OpenAi(model) => format!("openai/{}", model.id()),
LanguageModel::Anthropic(model) => format!("anthropic/{}", model.id()),
LanguageModel::Cloud(model) => format!("zed.dev/{}", model.id()),
LanguageModel::Ollama(model) => format!("ollama/{}", model.id()),
}
}
pub fn display_name(&self) -> String {
match self {
LanguageModel::OpenAi(model) => model.display_name().into(),
LanguageModel::Anthropic(model) => model.display_name().into(),
LanguageModel::Cloud(model) => model.display_name().into(),
LanguageModel::Ollama(model) => model.display_name().into(),
}
}
pub fn max_token_count(&self) -> usize {
match self {
LanguageModel::OpenAi(model) => model.max_token_count(),
LanguageModel::Anthropic(model) => model.max_token_count(),
LanguageModel::Cloud(model) => model.max_token_count(),
LanguageModel::Ollama(model) => model.max_token_count(),
}
}
pub fn id(&self) -> &str {
match self {
LanguageModel::OpenAi(model) => model.id(),
LanguageModel::Anthropic(model) => model.id(),
LanguageModel::Cloud(model) => model.id(),
LanguageModel::Ollama(model) => model.id(),
}
}
}

View file

@ -0,0 +1,6 @@
pub mod anthropic;
pub mod cloud;
#[cfg(any(test, feature = "test-support"))]
pub mod fake;
pub mod ollama;
pub mod open_ai;

View file

@ -0,0 +1,454 @@
use anthropic::{stream_completion, Request, RequestMessage};
use anyhow::{anyhow, Result};
use collections::HashMap;
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{
AnyView, AppContext, AsyncAppContext, FontStyle, Subscription, Task, TextStyle, View,
WhiteSpace,
};
use http::HttpClient;
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, LanguageModelRequestMessage, Role,
};
const PROVIDER_NAME: &str = "anthropic";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct AnthropicSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
pub available_models: Vec<anthropic::Model>,
}
pub struct AnthropicLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
api_key: Option<String>,
settings: AnthropicSettings,
_subscription: Subscription,
}
impl AnthropicLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
let state = cx.new_model(|cx| State {
api_key: None,
settings: AnthropicSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).anthropic.clone();
cx.notify();
}),
});
Self { http_client, state }
}
}
impl LanguageModelProviderState for AnthropicLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for AnthropicLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from anthropic::Model::iter()
for model in anthropic::Model::iter() {
if !matches!(model, anthropic::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(AnthropicModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = std::env::var("ANTHROPIC_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.state.clone(), cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let state = self.state.clone();
let delete_credentials = cx.delete_credentials(&self.state.read(cx).settings.api_url);
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
state.update(&mut cx, |this, cx| {
this.api_key = None;
cx.notify();
})
})
}
}
pub struct AnthropicModel {
id: LanguageModelId,
model: anthropic::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl AnthropicModel {
fn to_anthropic_request(&self, mut request: LanguageModelRequest) -> Request {
preprocess_anthropic_request(&mut request);
let mut system_message = String::new();
if request
.messages
.first()
.map_or(false, |message| message.role == Role::System)
{
system_message = request.messages.remove(0).content;
}
Request {
model: self.model.clone(),
messages: request
.messages
.iter()
.map(|msg| RequestMessage {
role: match msg.role {
Role::User => anthropic::Role::User,
Role::Assistant => anthropic::Role::Assistant,
Role::System => unreachable!("filtered out by preprocess_request"),
},
content: msg.content.clone(),
})
.collect(),
stream: true,
system: system_message,
max_tokens: 4092,
}
}
}
pub fn count_anthropic_tokens(
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
cx.background_executor()
.spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.content),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
// Tiktoken doesn't yet support these models, so we manually use the
// same tokenizer as GPT-4.
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
})
.boxed()
}
impl LanguageModel for AnthropicModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("anthropic/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_anthropic_tokens(request, cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_anthropic_request(request);
let http_client = self.http_client.clone();
let Ok((api_key, api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.api_key.clone(),
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(response) => match response {
anthropic::ResponseEvent::ContentBlockStart {
content_block, ..
} => match content_block {
anthropic::ContentBlock::Text { text } => Some(Ok(text)),
},
anthropic::ResponseEvent::ContentBlockDelta { delta, .. } => {
match delta {
anthropic::TextDelta::TextDelta { text } => Some(Ok(text)),
}
}
_ => None,
},
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
}
pub fn preprocess_anthropic_request(request: &mut LanguageModelRequest) {
let mut new_messages: Vec<LanguageModelRequestMessage> = Vec::new();
let mut system_message = String::new();
for message in request.messages.drain(..) {
if message.content.is_empty() {
continue;
}
match message.role {
Role::User | Role::Assistant => {
if let Some(last_message) = new_messages.last_mut() {
if last_message.role == message.role {
last_message.content.push_str("\n\n");
last_message.content.push_str(&message.content);
continue;
}
}
new_messages.push(message);
}
Role::System => {
if !system_message.is_empty() {
system_message.push_str("\n\n");
}
system_message.push_str(&message.content);
}
}
}
if !system_message.is_empty() {
new_messages.insert(
0,
LanguageModelRequestMessage {
role: Role::System,
content: system_message,
},
);
}
request.messages = new_messages;
}
struct AuthenticationPrompt {
api_key: View<Editor>,
state: gpui::Model<State>,
}
impl AuthenticationPrompt {
fn new(state: gpui::Model<State>, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
state,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(
&self.state.read(cx).settings.api_url,
"Bearer",
api_key.as_bytes(),
);
let state = self.state.clone();
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
font_style: FontStyle::Normal,
line_height: relative(1.3),
background_color: None,
underline: None,
strikethrough: None,
white_space: WhiteSpace::Normal,
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 4] = [
"To use the assistant panel or inline assistant, you need to add your Anthropic API key.",
"You can create an API key at: https://console.anthropic.com/settings/keys",
"",
"Paste your Anthropic API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the ANTHROPIC_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}

View file

@ -0,0 +1,287 @@
use super::open_ai::count_open_ai_tokens;
use crate::{
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
LanguageModelName, LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
};
use anyhow::Result;
use client::Client;
use collections::HashMap;
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt, TryFutureExt};
use gpui::{AnyView, AppContext, AsyncAppContext, Subscription, Task};
use settings::{Settings, SettingsStore};
use std::sync::Arc;
use strum::IntoEnumIterator;
use ui::prelude::*;
use crate::LanguageModelProvider;
use super::anthropic::{count_anthropic_tokens, preprocess_anthropic_request};
pub const PROVIDER_NAME: &str = "zed.dev";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct ZedDotDevSettings {
pub available_models: Vec<CloudModel>,
}
pub struct CloudLanguageModelProvider {
client: Arc<Client>,
state: gpui::Model<State>,
_maintain_client_status: Task<()>,
}
struct State {
client: Arc<Client>,
status: client::Status,
settings: ZedDotDevSettings,
_subscription: Subscription,
}
impl State {
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |cx| async move { client.authenticate_and_connect(true, &cx).await })
}
}
impl CloudLanguageModelProvider {
pub fn new(client: Arc<Client>, cx: &mut AppContext) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let state = cx.new_model(|cx| State {
client: client.clone(),
status,
settings: ZedDotDevSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).zed_dot_dev.clone();
cx.notify();
}),
});
let state_ref = state.downgrade();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
if let Some(this) = state_ref.upgrade() {
_ = this.update(&mut cx, |this, cx| {
this.status = status;
cx.notify();
});
} else {
break;
}
}
});
Self {
client,
state,
_maintain_client_status: maintain_client_status,
}
}
}
impl LanguageModelProviderState for CloudLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for CloudLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from CloudModel::iter()
for model in CloudModel::iter() {
if !matches!(model, CloudModel::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(CloudLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
client: self.client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).status.is_connected()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
self.state.read(cx).authenticate(cx)
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| AuthenticationPrompt {
state: self.state.clone(),
})
.into()
}
fn reset_credentials(&self, _cx: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
pub struct CloudLanguageModel {
id: LanguageModelId,
model: CloudModel,
client: Arc<Client>,
}
impl LanguageModel for CloudLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("zed.dev/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match &self.model {
CloudModel::Gpt3Point5Turbo => {
count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
}
CloudModel::Gpt4 => count_open_ai_tokens(request, open_ai::Model::Four, cx),
CloudModel::Gpt4Turbo => count_open_ai_tokens(request, open_ai::Model::FourTurbo, cx),
CloudModel::Gpt4Omni => count_open_ai_tokens(request, open_ai::Model::FourOmni, cx),
CloudModel::Gpt4OmniMini => {
count_open_ai_tokens(request, open_ai::Model::FourOmniMini, cx)
}
CloudModel::Claude3_5Sonnet
| CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku => count_anthropic_tokens(request, cx),
_ => {
let request = self.client.request(proto::CountTokensWithLanguageModel {
model: self.model.id().to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
});
async move {
let response = request.await?;
Ok(response.token_count as usize)
}
.boxed()
}
}
}
fn stream_completion(
&self,
mut request: LanguageModelRequest,
_: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
match &self.model {
CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku
| CloudModel::Claude3_5Sonnet => preprocess_anthropic_request(&mut request),
CloudModel::Custom { name, .. } if name.starts_with("anthropic/") => {
preprocess_anthropic_request(&mut request)
}
_ => {}
}
let request = proto::CompleteWithLanguageModel {
model: self.id.0.to_string(),
messages: request
.messages
.iter()
.map(|message| message.to_proto())
.collect(),
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
};
self.client
.request_stream(request)
.map_ok(|stream| {
stream
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta?.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed()
})
.boxed()
}
}
struct AuthenticationPrompt {
state: gpui::Model<State>,
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(cx.listener(move |this, _, cx| {
this.state.update(cx, |provider, cx| {
provider.authenticate(cx).detach_and_log_err(cx);
cx.notify();
});
})),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}

View file

@ -0,0 +1,160 @@
use std::sync::{Arc, Mutex};
use collections::HashMap;
use futures::{channel::mpsc, future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use crate::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
};
use gpui::{AnyView, AppContext, AsyncAppContext, Task};
use http::Result;
use ui::WindowContext;
pub fn language_model_id() -> LanguageModelId {
LanguageModelId::from("fake".to_string())
}
pub fn language_model_name() -> LanguageModelName {
LanguageModelName::from("Fake".to_string())
}
pub fn provider_name() -> LanguageModelProviderName {
LanguageModelProviderName::from("fake".to_string())
}
#[derive(Clone, Default)]
pub struct FakeLanguageModelProvider {
current_completion_txs: Arc<Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl LanguageModelProviderState for FakeLanguageModelProvider {
fn subscribe<T: 'static>(&self, _: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
None
}
}
impl LanguageModelProvider for FakeLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
provider_name()
}
fn provided_models(&self, _: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
vec![Arc::new(FakeLanguageModel {
current_completion_txs: self.current_completion_txs.clone(),
})]
}
fn is_authenticated(&self, _: &AppContext) -> bool {
true
}
fn authenticate(&self, _: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn authentication_prompt(&self, _: &mut WindowContext) -> AnyView {
unimplemented!()
}
fn reset_credentials(&self, _: &AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
impl FakeLanguageModelProvider {
pub fn test_model(&self) -> FakeLanguageModel {
FakeLanguageModel {
current_completion_txs: self.current_completion_txs.clone(),
}
}
}
pub struct FakeLanguageModel {
current_completion_txs: Arc<Mutex<HashMap<String, mpsc::UnboundedSender<String>>>>,
}
impl FakeLanguageModel {
pub fn pending_completions(&self) -> Vec<LanguageModelRequest> {
self.current_completion_txs
.lock()
.unwrap()
.keys()
.map(|k| serde_json::from_str(k).unwrap())
.collect()
}
pub fn completion_count(&self) -> usize {
self.current_completion_txs.lock().unwrap().len()
}
pub fn send_completion_chunk(&self, request: &LanguageModelRequest, chunk: String) {
let json = serde_json::to_string(request).unwrap();
self.current_completion_txs
.lock()
.unwrap()
.get(&json)
.unwrap()
.unbounded_send(chunk)
.unwrap();
}
pub fn send_last_completion_chunk(&self, chunk: String) {
self.send_completion_chunk(self.pending_completions().last().unwrap(), chunk);
}
pub fn finish_completion(&self, request: &LanguageModelRequest) {
self.current_completion_txs
.lock()
.unwrap()
.remove(&serde_json::to_string(request).unwrap())
.unwrap();
}
pub fn finish_last_completion(&self) {
self.finish_completion(self.pending_completions().last().unwrap());
}
}
impl LanguageModel for FakeLanguageModel {
fn id(&self) -> LanguageModelId {
language_model_id()
}
fn name(&self) -> LanguageModelName {
language_model_name()
}
fn provider_name(&self) -> LanguageModelProviderName {
provider_name()
}
fn telemetry_id(&self) -> String {
"fake".to_string()
}
fn max_token_count(&self) -> usize {
1000000
}
fn count_tokens(
&self,
_: LanguageModelRequest,
_: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
futures::future::ready(Ok(0)).boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
_: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let (tx, rx) = mpsc::unbounded();
self.current_completion_txs
.lock()
.unwrap()
.insert(serde_json::to_string(&request).unwrap(), tx);
async move { Ok(rx.map(Ok).boxed()) }.boxed()
}
}

View file

@ -0,0 +1,368 @@
use anyhow::{anyhow, Result};
use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
use http::HttpClient;
use ollama::{get_models, stream_chat_completion, ChatMessage, ChatOptions, ChatRequest};
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use ui::{prelude::*, ButtonLike, ElevationIndex};
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, Role,
};
const OLLAMA_DOWNLOAD_URL: &str = "https://ollama.com/download";
const OLLAMA_LIBRARY_URL: &str = "https://ollama.com/library";
const PROVIDER_NAME: &str = "ollama";
#[derive(Default, Debug, Clone, PartialEq)]
pub struct OllamaSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
}
pub struct OllamaLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
http_client: Arc<dyn HttpClient>,
available_models: Vec<ollama::Model>,
settings: OllamaSettings,
_subscription: Subscription,
}
impl State {
fn fetch_models(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.settings.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|this, mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<ollama::Model> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| ollama::Model::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
this.update(&mut cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
}
impl OllamaLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
Self {
http_client: http_client.clone(),
state: cx.new_model(|cx| State {
http_client,
available_models: Default::default(),
settings: OllamaSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).ollama.clone();
cx.notify();
}),
}),
}
}
fn fetch_models(&self, cx: &AppContext) -> Task<Result<()>> {
let http_client = self.http_client.clone();
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(|mut cx| async move {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<ollama::Model> = models
.into_iter()
// Since there is no metadata from the Ollama API
// indicating which models are embedding models,
// simply filter out models with "-embed" in their name
.filter(|model| !model.name.contains("-embed"))
.map(|model| ollama::Model::new(&model.name))
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
state.update(&mut cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
}
impl LanguageModelProviderState for OllamaLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for OllamaLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
self.state
.read(cx)
.available_models
.iter()
.map(|model| {
Arc::new(OllamaLanguageModel {
id: LanguageModelId::from(model.name.clone()),
model: model.clone(),
http_client: self.http_client.clone(),
state: self.state.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
!self.state.read(cx).available_models.is_empty()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
self.fetch_models(cx)
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
let state = self.state.clone();
let fetch_models = Box::new(move |cx: &mut WindowContext| {
state.update(cx, |this, cx| this.fetch_models(cx))
});
cx.new_view(|cx| DownloadOllamaMessage::new(fetch_models, cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
self.fetch_models(cx)
}
}
pub struct OllamaLanguageModel {
id: LanguageModelId,
model: ollama::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl OllamaLanguageModel {
fn to_ollama_request(&self, request: LanguageModelRequest) -> ChatRequest {
ChatRequest {
model: self.model.name.clone(),
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => ChatMessage::User {
content: msg.content,
},
Role::Assistant => ChatMessage::Assistant {
content: msg.content,
},
Role::System => ChatMessage::System {
content: msg.content,
},
})
.collect(),
keep_alive: self.model.keep_alive.clone().unwrap_or_default(),
stream: true,
options: Some(ChatOptions {
num_ctx: Some(self.model.max_tokens),
stop: Some(request.stop),
temperature: Some(request.temperature),
..Default::default()
}),
}
}
}
impl LanguageModel for OllamaLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn telemetry_id(&self) -> String {
format!("ollama/{}", self.model.id())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn count_tokens(
&self,
request: LanguageModelRequest,
_cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
// There is no endpoint for this _yet_ in Ollama
// see: https://github.com/ollama/ollama/issues/1716 and https://github.com/ollama/ollama/issues/3582
let token_count = request
.messages
.iter()
.map(|msg| msg.content.chars().count())
.sum::<usize>()
/ 4;
async move { Ok(token_count) }.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
let request = self.to_ollama_request(request);
let http_client = self.http_client.clone();
let Ok((api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let request =
stream_chat_completion(http_client.as_ref(), &api_url, request, low_speed_timeout);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(delta) => {
let content = match delta.message {
ChatMessage::User { content } => content,
ChatMessage::Assistant { content } => content,
ChatMessage::System { content } => content,
};
Some(Ok(content))
}
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
}
struct DownloadOllamaMessage {
retry_connection: Box<dyn Fn(&mut WindowContext) -> Task<Result<()>>>,
}
impl DownloadOllamaMessage {
pub fn new(
retry_connection: Box<dyn Fn(&mut WindowContext) -> Task<Result<()>>>,
_cx: &mut ViewContext<Self>,
) -> Self {
Self { retry_connection }
}
fn render_download_button(&self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
ButtonLike::new("download_ollama_button")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("Get Ollama"))
.on_click(move |_, cx| cx.open_url(OLLAMA_DOWNLOAD_URL))
}
fn render_retry_button(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
ButtonLike::new("retry_ollama_models")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("Retry"))
.on_click(cx.listener(move |this, _, cx| {
let connected = (this.retry_connection)(cx);
cx.spawn(|_this, _cx| async move {
connected.await?;
anyhow::Ok(())
})
.detach_and_log_err(cx)
}))
}
fn render_next_steps(&self, _cx: &mut ViewContext<Self>) -> impl IntoElement {
v_flex()
.p_4()
.size_full()
.gap_2()
.child(
Label::new("Once Ollama is on your machine, make sure to download a model or two.")
.size(LabelSize::Large),
)
.child(
h_flex().w_full().p_4().justify_center().gap_2().child(
ButtonLike::new("view-models")
.style(ButtonStyle::Filled)
.size(ButtonSize::Large)
.layer(ElevationIndex::ModalSurface)
.child(Label::new("View Available Models"))
.on_click(move |_, cx| cx.open_url(OLLAMA_LIBRARY_URL)),
),
)
}
}
impl Render for DownloadOllamaMessage {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
v_flex()
.p_4()
.size_full()
.gap_2()
.child(Label::new("To use Ollama models via the assistant, Ollama must be running on your machine with at least one model downloaded.").size(LabelSize::Large))
.child(
h_flex()
.w_full()
.p_4()
.justify_center()
.gap_2()
.child(
self.render_download_button(cx)
)
.child(
self.render_retry_button(cx)
)
)
.child(self.render_next_steps(cx))
.into_any()
}
}

View file

@ -0,0 +1,398 @@
use anyhow::{anyhow, Result};
use collections::HashMap;
use editor::{Editor, EditorElement, EditorStyle};
use futures::{future::BoxFuture, FutureExt, StreamExt};
use gpui::{
AnyView, AppContext, AsyncAppContext, FontStyle, Subscription, Task, TextStyle, View,
WhiteSpace,
};
use http::HttpClient;
use open_ai::{stream_completion, Request, RequestMessage};
use settings::{Settings, SettingsStore};
use std::{sync::Arc, time::Duration};
use strum::IntoEnumIterator;
use theme::ThemeSettings;
use ui::prelude::*;
use util::ResultExt;
use crate::{
settings::AllLanguageModelSettings, LanguageModel, LanguageModelId, LanguageModelName,
LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, Role,
};
const PROVIDER_NAME: &str = "openai";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct OpenAiSettings {
pub api_url: String,
pub low_speed_timeout: Option<Duration>,
pub available_models: Vec<open_ai::Model>,
}
pub struct OpenAiLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Model<State>,
}
struct State {
api_key: Option<String>,
settings: OpenAiSettings,
_subscription: Subscription,
}
impl OpenAiLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut AppContext) -> Self {
let state = cx.new_model(|cx| State {
api_key: None,
settings: OpenAiSettings::default(),
_subscription: cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
this.settings = AllLanguageModelSettings::get_global(cx).open_ai.clone();
cx.notify();
}),
});
Self { http_client, state }
}
}
impl LanguageModelProviderState for OpenAiLanguageModelProvider {
fn subscribe<T: 'static>(&self, cx: &mut gpui::ModelContext<T>) -> Option<gpui::Subscription> {
Some(cx.observe(&self.state, |_, _, cx| {
cx.notify();
}))
}
}
impl LanguageModelProvider for OpenAiLanguageModelProvider {
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = HashMap::default();
// Add base models from open_ai::Model::iter()
for model in open_ai::Model::iter() {
if !matches!(model, open_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &self.state.read(cx).settings.available_models {
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(OpenAiLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
self.state.read(cx).api_key.is_some()
}
fn authenticate(&self, cx: &AppContext) -> Task<Result<()>> {
if self.is_authenticated(cx) {
Task::ready(Ok(()))
} else {
let api_url = self.state.read(cx).settings.api_url.clone();
let state = self.state.clone();
cx.spawn(|mut cx| async move {
let api_key = if let Ok(api_key) = std::env::var("OPENAI_API_KEY") {
api_key
} else {
let (_, api_key) = cx
.update(|cx| cx.read_credentials(&api_url))?
.await?
.ok_or_else(|| anyhow!("credentials not found"))?;
String::from_utf8(api_key)?
};
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
}
fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|cx| AuthenticationPrompt::new(self.state.clone(), cx))
.into()
}
fn reset_credentials(&self, cx: &AppContext) -> Task<Result<()>> {
let delete_credentials = cx.delete_credentials(&self.state.read(cx).settings.api_url);
let state = self.state.clone();
cx.spawn(|mut cx| async move {
delete_credentials.await.log_err();
state.update(&mut cx, |this, cx| {
this.api_key = None;
cx.notify();
})
})
}
}
pub struct OpenAiLanguageModel {
id: LanguageModelId,
model: open_ai::Model,
state: gpui::Model<State>,
http_client: Arc<dyn HttpClient>,
}
impl OpenAiLanguageModel {
fn to_open_ai_request(&self, request: LanguageModelRequest) -> Request {
Request {
model: self.model.clone(),
messages: request
.messages
.into_iter()
.map(|msg| match msg.role {
Role::User => RequestMessage::User {
content: msg.content,
},
Role::Assistant => RequestMessage::Assistant {
content: Some(msg.content),
tool_calls: Vec::new(),
},
Role::System => RequestMessage::System {
content: msg.content,
},
})
.collect(),
stream: true,
stop: request.stop,
temperature: request.temperature,
tools: Vec::new(),
tool_choice: None,
}
}
}
impl LanguageModel for OpenAiLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("openai/{}", self.model.id())
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
count_open_ai_tokens(request, self.model.clone(), cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<String>>>> {
let request = self.to_open_ai_request(request);
let http_client = self.http_client.clone();
let Ok((api_key, api_url, low_speed_timeout)) = cx.read_model(&self.state, |state, _| {
(
state.api_key.clone(),
state.settings.api_url.clone(),
state.settings.low_speed_timeout,
)
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
async move {
let api_key = api_key.ok_or_else(|| anyhow!("missing api key"))?;
let request = stream_completion(
http_client.as_ref(),
&api_url,
&api_key,
request,
low_speed_timeout,
);
let response = request.await?;
let stream = response
.filter_map(|response| async move {
match response {
Ok(mut response) => Some(Ok(response.choices.pop()?.delta.content?)),
Err(error) => Some(Err(error)),
}
})
.boxed();
Ok(stream)
}
.boxed()
}
}
pub fn count_open_ai_tokens(
request: LanguageModelRequest,
model: open_ai::Model,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
cx.background_executor()
.spawn(async move {
let messages = request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.content),
name: None,
function_call: None,
})
.collect::<Vec<_>>();
if let open_ai::Model::Custom { .. } = model {
tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
} else {
tiktoken_rs::num_tokens_from_messages(model.id(), &messages)
}
})
.boxed()
}
struct AuthenticationPrompt {
api_key: View<Editor>,
state: gpui::Model<State>,
}
impl AuthenticationPrompt {
fn new(state: gpui::Model<State>, cx: &mut WindowContext) -> Self {
Self {
api_key: cx.new_view(|cx| {
let mut editor = Editor::single_line(cx);
editor.set_placeholder_text(
"sk-000000000000000000000000000000000000000000000000",
cx,
);
editor
}),
state,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, cx: &mut ViewContext<Self>) {
let api_key = self.api_key.read(cx).text(cx);
if api_key.is_empty() {
return;
}
let write_credentials = cx.write_credentials(
&self.state.read(cx).settings.api_url,
"Bearer",
api_key.as_bytes(),
);
let state = self.state.clone();
cx.spawn(|_, mut cx| async move {
write_credentials.await?;
state.update(&mut cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
.detach_and_log_err(cx);
}
fn render_api_key_editor(&self, cx: &mut ViewContext<Self>) -> impl IntoElement {
let settings = ThemeSettings::get_global(cx);
let text_style = TextStyle {
color: cx.theme().colors().text,
font_family: settings.ui_font.family.clone(),
font_features: settings.ui_font.features.clone(),
font_size: rems(0.875).into(),
font_weight: settings.ui_font.weight,
font_style: FontStyle::Normal,
line_height: relative(1.3),
background_color: None,
underline: None,
strikethrough: None,
white_space: WhiteSpace::Normal,
};
EditorElement::new(
&self.api_key,
EditorStyle {
background: cx.theme().colors().editor_background,
local_player: cx.theme().players().local(),
text: text_style,
..Default::default()
},
)
}
}
impl Render for AuthenticationPrompt {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const INSTRUCTIONS: [&str; 6] = [
"To use the assistant panel or inline assistant, you need to add your OpenAI API key.",
" - You can create an API key at: platform.openai.com/api-keys",
" - Make sure your OpenAI account has credits",
" - Having a subscription for another service like GitHub Copilot won't work.",
"",
"Paste your OpenAI API key below and hit enter to use the assistant:",
];
v_flex()
.p_4()
.size_full()
.on_action(cx.listener(Self::save_api_key))
.children(
INSTRUCTIONS.map(|instruction| Label::new(instruction).size(LabelSize::Small)),
)
.child(
h_flex()
.w_full()
.my_2()
.px_2()
.py_1()
.bg(cx.theme().colors().editor_background)
.rounded_md()
.child(self.render_api_key_editor(cx)),
)
.child(
Label::new(
"You can also assign the OPENAI_API_KEY environment variable and restart Zed.",
)
.size(LabelSize::Small),
)
.child(
h_flex()
.gap_2()
.child(Label::new("Click on").size(LabelSize::Small))
.child(Icon::new(IconName::ZedAssistant).size(IconSize::XSmall))
.child(
Label::new("in the status bar to close this panel.").size(LabelSize::Small),
),
)
.into_any()
}
}

View file

@ -0,0 +1,172 @@
use client::Client;
use collections::HashMap;
use gpui::{AppContext, Global, Model, ModelContext};
use std::sync::Arc;
use ui::Context;
use crate::{
provider::{
anthropic::AnthropicLanguageModelProvider, cloud::CloudLanguageModelProvider,
ollama::OllamaLanguageModelProvider, open_ai::OpenAiLanguageModelProvider,
},
LanguageModel, LanguageModelProvider, LanguageModelProviderName, LanguageModelProviderState,
};
pub fn init(client: Arc<Client>, cx: &mut AppContext) {
let registry = cx.new_model(|cx| {
let mut registry = LanguageModelRegistry::default();
register_language_model_providers(&mut registry, client, cx);
registry
});
cx.set_global(GlobalLanguageModelRegistry(registry));
}
fn register_language_model_providers(
registry: &mut LanguageModelRegistry,
client: Arc<Client>,
cx: &mut ModelContext<LanguageModelRegistry>,
) {
use feature_flags::FeatureFlagAppExt;
registry.register_provider(
AnthropicLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OpenAiLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OllamaLanguageModelProvider::new(client.http_client(), cx),
cx,
);
cx.observe_flag::<feature_flags::LanguageModels, _>(move |enabled, cx| {
let client = client.clone();
LanguageModelRegistry::global(cx).update(cx, move |registry, cx| {
if enabled {
registry.register_provider(CloudLanguageModelProvider::new(client.clone(), cx), cx);
} else {
registry.unregister_provider(
&LanguageModelProviderName::from(
crate::provider::cloud::PROVIDER_NAME.to_string(),
),
cx,
);
}
});
})
.detach();
}
struct GlobalLanguageModelRegistry(Model<LanguageModelRegistry>);
impl Global for GlobalLanguageModelRegistry {}
#[derive(Default)]
pub struct LanguageModelRegistry {
providers: HashMap<LanguageModelProviderName, Arc<dyn LanguageModelProvider>>,
}
impl LanguageModelRegistry {
pub fn global(cx: &AppContext) -> Model<Self> {
cx.global::<GlobalLanguageModelRegistry>().0.clone()
}
pub fn read_global(cx: &AppContext) -> &Self {
cx.global::<GlobalLanguageModelRegistry>().0.read(cx)
}
#[cfg(any(test, feature = "test-support"))]
pub fn test(cx: &mut AppContext) -> crate::provider::fake::FakeLanguageModelProvider {
let fake_provider = crate::provider::fake::FakeLanguageModelProvider::default();
let registry = cx.new_model(|cx| {
let mut registry = Self::default();
registry.register_provider(fake_provider.clone(), cx);
registry
});
cx.set_global(GlobalLanguageModelRegistry(registry));
fake_provider
}
pub fn register_provider<T: LanguageModelProvider + LanguageModelProviderState>(
&mut self,
provider: T,
cx: &mut ModelContext<Self>,
) {
let name = provider.name();
if let Some(subscription) = provider.subscribe(cx) {
subscription.detach();
}
self.providers.insert(name, Arc::new(provider));
cx.notify();
}
pub fn unregister_provider(
&mut self,
name: &LanguageModelProviderName,
cx: &mut ModelContext<Self>,
) {
if self.providers.remove(name).is_some() {
cx.notify();
}
}
pub fn providers(
&self,
) -> impl Iterator<Item = (&LanguageModelProviderName, &Arc<dyn LanguageModelProvider>)> {
self.providers.iter()
}
pub fn available_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
self.providers
.values()
.flat_map(|provider| provider.provided_models(cx))
.collect()
}
pub fn available_models_grouped_by_provider(
&self,
cx: &AppContext,
) -> HashMap<LanguageModelProviderName, Vec<Arc<dyn LanguageModel>>> {
self.providers
.iter()
.map(|(name, provider)| (name.clone(), provider.provided_models(cx)))
.collect()
}
pub fn provider(
&self,
name: &LanguageModelProviderName,
) -> Option<Arc<dyn LanguageModelProvider>> {
self.providers.get(name).cloned()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::provider::fake::FakeLanguageModelProvider;
#[gpui::test]
fn test_register_providers(cx: &mut AppContext) {
let registry = cx.new_model(|_| LanguageModelRegistry::default());
registry.update(cx, |registry, cx| {
registry.register_provider(FakeLanguageModelProvider::default(), cx);
});
let providers = registry.read(cx).providers().collect::<Vec<_>>();
assert_eq!(providers.len(), 1);
assert_eq!(providers[0].0, &crate::provider::fake::provider_name());
registry.update(cx, |registry, cx| {
registry.unregister_provider(&crate::provider::fake::provider_name(), cx);
});
let providers = registry.read(cx).providers().collect::<Vec<_>>();
assert!(providers.is_empty());
}
}

View file

@ -1,7 +1,4 @@
use crate::{
model::{CloudModel, LanguageModel},
role::Role,
};
use crate::{role::Role, LanguageModelId};
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
@ -23,16 +20,15 @@ impl LanguageModelRequestMessage {
#[derive(Debug, Default, Serialize, Deserialize)]
pub struct LanguageModelRequest {
pub model: LanguageModel,
pub messages: Vec<LanguageModelRequestMessage>,
pub stop: Vec<String>,
pub temperature: f32,
}
impl LanguageModelRequest {
pub fn to_proto(&self) -> proto::CompleteWithLanguageModel {
pub fn to_proto(&self, model_id: LanguageModelId) -> proto::CompleteWithLanguageModel {
proto::CompleteWithLanguageModel {
model: self.model.id().to_string(),
model: model_id.0.to_string(),
messages: self.messages.iter().map(|m| m.to_proto()).collect(),
stop: self.stop.clone(),
temperature: self.temperature,
@ -40,70 +36,6 @@ impl LanguageModelRequest {
tools: Vec::new(),
}
}
/// Before we send the request to the server, we can perform fixups on it appropriate to the model.
pub fn preprocess(&mut self) {
match &self.model {
LanguageModel::OpenAi(_) => {}
LanguageModel::Anthropic(_) => self.preprocess_anthropic(),
LanguageModel::Ollama(_) => {}
LanguageModel::Cloud(model) => match model {
CloudModel::Claude3Opus
| CloudModel::Claude3Sonnet
| CloudModel::Claude3Haiku
| CloudModel::Claude3_5Sonnet => {
self.preprocess_anthropic();
}
CloudModel::Custom { name, .. } if name.starts_with("anthropic/") => {
self.preprocess_anthropic();
}
_ => {}
},
}
}
pub fn preprocess_anthropic(&mut self) {
let mut new_messages: Vec<LanguageModelRequestMessage> = Vec::new();
let mut system_message = String::new();
for message in self.messages.drain(..) {
if message.content.is_empty() {
continue;
}
match message.role {
Role::User | Role::Assistant => {
if let Some(last_message) = new_messages.last_mut() {
if last_message.role == message.role {
last_message.content.push_str("\n\n");
last_message.content.push_str(&message.content);
continue;
}
}
new_messages.push(message);
}
Role::System => {
if !system_message.is_empty() {
system_message.push_str("\n\n");
}
system_message.push_str(&message.content);
}
}
}
if !system_message.is_empty() {
new_messages.insert(
0,
LanguageModelRequestMessage {
role: Role::System,
content: system_message,
},
);
}
self.messages = new_messages;
}
}
#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]

View file

@ -0,0 +1,143 @@
use std::time::Duration;
use anyhow::Result;
use gpui::AppContext;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsSources};
use crate::{
provider::{
anthropic::AnthropicSettings, cloud::ZedDotDevSettings, ollama::OllamaSettings,
open_ai::OpenAiSettings,
},
CloudModel,
};
/// Initializes the language model settings.
pub fn init(cx: &mut AppContext) {
AllLanguageModelSettings::register(cx);
}
#[derive(Default)]
pub struct AllLanguageModelSettings {
pub open_ai: OpenAiSettings,
pub anthropic: AnthropicSettings,
pub ollama: OllamaSettings,
pub zed_dot_dev: ZedDotDevSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option<AnthropicSettingsContent>,
pub ollama: Option<OllamaSettingsContent>,
pub open_ai: Option<OpenAiSettingsContent>,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option<ZedDotDevSettingsContent>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AnthropicSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
pub available_models: Option<Vec<anthropic::Model>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct OllamaSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct OpenAiSettingsContent {
pub api_url: Option<String>,
pub low_speed_timeout_in_seconds: Option<u64>,
pub available_models: Option<Vec<open_ai::Model>>,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct ZedDotDevSettingsContent {
available_models: Option<Vec<CloudModel>>,
}
impl settings::Settings for AllLanguageModelSettings {
const KEY: Option<&'static str> = Some("language_models");
type FileContent = AllLanguageModelSettingsContent;
fn load(sources: SettingsSources<Self::FileContent>, _: &mut AppContext) -> Result<Self> {
fn merge<T>(target: &mut T, value: Option<T>) {
if let Some(value) = value {
*target = value;
}
}
let mut settings = AllLanguageModelSettings::default();
for value in sources.defaults_and_customizations() {
merge(
&mut settings.anthropic.api_url,
value.anthropic.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.anthropic
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.anthropic.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.anthropic.available_models,
value
.anthropic
.as_ref()
.and_then(|s| s.available_models.clone()),
);
merge(
&mut settings.ollama.api_url,
value.ollama.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.ollama
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.ollama.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.open_ai.api_url,
value.open_ai.as_ref().and_then(|s| s.api_url.clone()),
);
if let Some(low_speed_timeout_in_seconds) = value
.open_ai
.as_ref()
.and_then(|s| s.low_speed_timeout_in_seconds)
{
settings.open_ai.low_speed_timeout =
Some(Duration::from_secs(low_speed_timeout_in_seconds));
}
merge(
&mut settings.open_ai.available_models,
value
.open_ai
.as_ref()
.and_then(|s| s.available_models.clone()),
);
merge(
&mut settings.zed_dot_dev.available_models,
value
.zed_dot_dev
.as_ref()
.and_then(|s| s.available_models.clone()),
);
}
Ok(settings)
}
}