Checkpoint

This commit is contained in:
Antonio Scandurra 2023-10-21 16:01:47 +02:00
parent f3979a9f28
commit e4fe9538d7
107 changed files with 81 additions and 81 deletions

View file

@ -0,0 +1,151 @@
use anyhow::anyhow;
use serde::Deserialize;
use smallvec::SmallVec;
use std::fmt::Write;
#[derive(Clone, Debug, Eq, PartialEq, Default, Deserialize, Hash)]
pub struct Keystroke {
pub modifiers: Modifiers,
/// key is the character printed on the key that was pressed
/// e.g. for option-s, key is "s"
pub key: String,
/// ime_key is the character inserted by the IME engine when that key was pressed.
/// e.g. for option-s, ime_key is "ß"
pub ime_key: Option<String>,
}
impl Keystroke {
// When matching a key we cannot know whether the user intended to type
// the ime_key or the key. On some non-US keyboards keys we use in our
// bindings are behind option (for example `$` is typed `alt-ç` on a Czech keyboard),
// and on some keyboards the IME handler converts a sequence of keys into a
// specific character (for example `"` is typed as `" space` on a brazillian keyboard).
pub fn match_candidates(&self) -> SmallVec<[Keystroke; 2]> {
let mut possibilities = SmallVec::new();
match self.ime_key.as_ref() {
None => possibilities.push(self.clone()),
Some(ime_key) => {
possibilities.push(Keystroke {
modifiers: Modifiers {
control: self.modifiers.control,
alt: false,
shift: false,
command: false,
function: false,
},
key: ime_key.to_string(),
ime_key: None,
});
possibilities.push(Keystroke {
ime_key: None,
..self.clone()
});
}
}
possibilities
}
/// key syntax is:
/// [ctrl-][alt-][shift-][cmd-][fn-]key[->ime_key]
/// ime_key is only used for generating test events,
/// when matching a key with an ime_key set will be matched without it.
pub fn parse(source: &str) -> anyhow::Result<Self> {
let mut control = false;
let mut alt = false;
let mut shift = false;
let mut command = false;
let mut function = false;
let mut key = None;
let mut ime_key = None;
let mut components = source.split('-').peekable();
while let Some(component) = components.next() {
match component {
"ctrl" => control = true,
"alt" => alt = true,
"shift" => shift = true,
"cmd" => command = true,
"fn" => function = true,
_ => {
if let Some(next) = components.peek() {
if next.is_empty() && source.ends_with('-') {
key = Some(String::from("-"));
break;
} else if next.len() > 1 && next.starts_with('>') {
key = Some(String::from(component));
ime_key = Some(String::from(&next[1..]));
components.next();
} else {
return Err(anyhow!("Invalid keystroke `{}`", source));
}
} else {
key = Some(String::from(component));
}
}
}
}
let key = key.ok_or_else(|| anyhow!("Invalid keystroke `{}`", source))?;
Ok(Keystroke {
modifiers: Modifiers {
control,
alt,
shift,
command,
function,
},
key,
ime_key,
})
}
}
impl std::fmt::Display for Keystroke {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.modifiers.control {
f.write_char('^')?;
}
if self.modifiers.alt {
f.write_char('⌥')?;
}
if self.modifiers.command {
f.write_char('⌘')?;
}
if self.modifiers.shift {
f.write_char('⇧')?;
}
let key = match self.key.as_str() {
"backspace" => '⌫',
"up" => '↑',
"down" => '↓',
"left" => '←',
"right" => '→',
"tab" => '⇥',
"escape" => '⎋',
key => {
if key.len() == 1 {
key.chars().next().unwrap().to_ascii_uppercase()
} else {
return f.write_str(key);
}
}
};
f.write_char(key)
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Default, Deserialize, Hash)]
pub struct Modifiers {
pub control: bool,
pub alt: bool,
pub shift: bool,
pub command: bool,
pub function: bool,
}
impl Modifiers {
pub fn modified(&self) -> bool {
self.control || self.alt || self.shift || self.command || self.function
}
}

View file

@ -0,0 +1,165 @@
///! Macos screen have a y axis that goings up from the bottom of the screen and
///! an origin at the bottom left of the main display.
mod dispatcher;
mod display;
mod display_linker;
mod events;
mod metal_atlas;
mod metal_renderer;
mod open_type;
mod platform;
mod text_system;
mod window;
mod window_appearence;
use crate::{px, size, GlobalPixels, Pixels, Size};
use anyhow::anyhow;
use cocoa::{
base::{id, nil},
foundation::{NSAutoreleasePool, NSNotFound, NSRect, NSSize, NSString, NSUInteger, NSURL},
};
use metal_renderer::*;
use objc::{
msg_send,
runtime::{BOOL, NO, YES},
sel, sel_impl,
};
use std::{
ffi::{c_char, CStr, OsStr},
ops::Range,
os::unix::prelude::OsStrExt,
path::PathBuf,
};
pub use dispatcher::*;
pub use display::*;
pub use display_linker::*;
pub use metal_atlas::*;
pub use platform::*;
pub use text_system::*;
pub use window::*;
trait BoolExt {
fn to_objc(self) -> BOOL;
}
impl BoolExt for bool {
fn to_objc(self) -> BOOL {
if self {
YES
} else {
NO
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
struct NSRange {
pub location: NSUInteger,
pub length: NSUInteger,
}
impl NSRange {
fn invalid() -> Self {
Self {
location: NSNotFound as NSUInteger,
length: 0,
}
}
fn is_valid(&self) -> bool {
self.location != NSNotFound as NSUInteger
}
fn to_range(self) -> Option<Range<usize>> {
if self.is_valid() {
let start = self.location as usize;
let end = start + self.length as usize;
Some(start..end)
} else {
None
}
}
}
impl From<Range<usize>> for NSRange {
fn from(range: Range<usize>) -> Self {
NSRange {
location: range.start as NSUInteger,
length: range.len() as NSUInteger,
}
}
}
unsafe impl objc::Encode for NSRange {
fn encode() -> objc::Encoding {
let encoding = format!(
"{{NSRange={}{}}}",
NSUInteger::encode().as_str(),
NSUInteger::encode().as_str()
);
unsafe { objc::Encoding::from_str(&encoding) }
}
}
unsafe fn ns_string(string: &str) -> id {
NSString::alloc(nil).init_str(string).autorelease()
}
impl From<NSSize> for Size<Pixels> {
fn from(value: NSSize) -> Self {
Size {
width: px(value.width as f32),
height: px(value.height as f32),
}
}
}
pub trait NSRectExt {
fn size(&self) -> Size<Pixels>;
fn intersects(&self, other: Self) -> bool;
}
impl From<NSRect> for Size<Pixels> {
fn from(rect: NSRect) -> Self {
let NSSize { width, height } = rect.size;
size(width.into(), height.into())
}
}
impl From<NSRect> for Size<GlobalPixels> {
fn from(rect: NSRect) -> Self {
let NSSize { width, height } = rect.size;
size(width.into(), height.into())
}
}
// impl NSRectExt for NSRect {
// fn intersects(&self, other: Self) -> bool {
// self.size.width > 0.
// && self.size.height > 0.
// && other.size.width > 0.
// && other.size.height > 0.
// && self.origin.x <= other.origin.x + other.size.width
// && self.origin.x + self.size.width >= other.origin.x
// && self.origin.y <= other.origin.y + other.size.height
// && self.origin.y + self.size.height >= other.origin.y
// }
// }
// todo!
#[allow(unused)]
unsafe fn ns_url_to_path(url: id) -> crate::Result<PathBuf> {
let path: *mut c_char = msg_send![url, fileSystemRepresentation];
if path.is_null() {
Err(anyhow!(
"url is not a file path: {}",
CStr::from_ptr(url.absoluteString().UTF8String()).to_string_lossy()
))
} else {
Ok(PathBuf::from(OsStr::from_bytes(
CStr::from_ptr(path).to_bytes(),
)))
}
}

View file

@ -0,0 +1 @@
#include <dispatch/dispatch.h>

View file

@ -0,0 +1,73 @@
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use crate::PlatformDispatcher;
use async_task::Runnable;
use objc::{
class, msg_send,
runtime::{BOOL, YES},
sel, sel_impl,
};
use std::ffi::c_void;
include!(concat!(env!("OUT_DIR"), "/dispatch_sys.rs"));
pub fn dispatch_get_main_queue() -> dispatch_queue_t {
unsafe { &_dispatch_main_q as *const _ as dispatch_queue_t }
}
pub struct MacDispatcher;
impl PlatformDispatcher for MacDispatcher {
fn is_main_thread(&self) -> bool {
let is_main_thread: BOOL = unsafe { msg_send![class!(NSThread), isMainThread] };
is_main_thread == YES
}
fn dispatch(&self, runnable: Runnable) {
unsafe {
dispatch_async_f(
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT.try_into().unwrap(), 0),
runnable.into_raw() as *mut c_void,
Some(trampoline),
);
}
}
fn dispatch_on_main_thread(&self, runnable: Runnable) {
unsafe {
dispatch_async_f(
dispatch_get_main_queue(),
runnable.into_raw() as *mut c_void,
Some(trampoline),
);
}
}
}
extern "C" fn trampoline(runnable: *mut c_void) {
let task = unsafe { Runnable::from_raw(runnable as *mut ()) };
task.run();
}
// #include <dispatch/dispatch.h>
// int main(void) {
// dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
// // Do some lengthy background work here...
// printf("Background Work\n");
// dispatch_async(dispatch_get_main_queue(), ^{
// // Once done, update your UI on the main queue here.
// printf("UI Updated\n");
// });
// });
// sleep(3); // prevent the program from terminating immediately
// return 0;
// }
// ```

View file

@ -0,0 +1,101 @@
use crate::{point, size, Bounds, DisplayId, GlobalPixels, PlatformDisplay};
use core_graphics::{
display::{CGDirectDisplayID, CGDisplayBounds, CGGetActiveDisplayList},
geometry::{CGPoint, CGRect, CGSize},
};
use std::any::Any;
#[derive(Debug)]
pub struct MacDisplay(pub(crate) CGDirectDisplayID);
unsafe impl Send for MacDisplay {}
impl MacDisplay {
/// Get the screen with the given UUID.
pub fn find_by_id(id: DisplayId) -> Option<Self> {
Self::all().find(|screen| screen.id() == id)
}
/// Get the primary screen - the one with the menu bar, and whose bottom left
/// corner is at the origin of the AppKit coordinate system.
pub fn primary() -> Self {
Self::all().next().unwrap()
}
pub fn all() -> impl Iterator<Item = Self> {
unsafe {
let mut display_count: u32 = 0;
let result = CGGetActiveDisplayList(0, std::ptr::null_mut(), &mut display_count);
if result == 0 {
let mut displays = Vec::with_capacity(display_count as usize);
CGGetActiveDisplayList(display_count, displays.as_mut_ptr(), &mut display_count);
displays.set_len(display_count as usize);
displays.into_iter().map(|display| MacDisplay(display))
} else {
panic!("Failed to get active display list");
}
}
}
}
/// Convert the given rectangle from CoreGraphics' native coordinate space to GPUI's coordinate space.
///
/// CoreGraphics' coordinate space has its origin at the bottom left of the primary screen,
/// with the Y axis pointing upwards.
///
/// Conversely, in GPUI's coordinate system, the origin is placed at the top left of the primary
/// screen, with the Y axis pointing downwards.
pub(crate) fn display_bounds_from_native(rect: CGRect) -> Bounds<GlobalPixels> {
let primary_screen_size = unsafe { CGDisplayBounds(MacDisplay::primary().id().0) }.size;
Bounds {
origin: point(
GlobalPixels(rect.origin.x as f32),
GlobalPixels(
primary_screen_size.height as f32 - rect.origin.y as f32 - rect.size.height as f32,
),
),
size: size(
GlobalPixels(rect.size.width as f32),
GlobalPixels(rect.size.height as f32),
),
}
}
/// Convert the given rectangle from GPUI's coordinate system to CoreGraphics' native coordinate space.
///
/// CoreGraphics' coordinate space has its origin at the bottom left of the primary screen,
/// with the Y axis pointing upwards.
///
/// Conversely, in GPUI's coordinate system, the origin is placed at the top left of the primary
/// screen, with the Y axis pointing downwards.
pub(crate) fn display_bounds_to_native(bounds: Bounds<GlobalPixels>) -> CGRect {
let primary_screen_height = MacDisplay::primary().bounds().size.height;
CGRect::new(
&CGPoint::new(
bounds.origin.x.into(),
(primary_screen_height - bounds.origin.y - bounds.size.height).into(),
),
&CGSize::new(bounds.size.width.into(), bounds.size.height.into()),
)
}
impl PlatformDisplay for MacDisplay {
fn id(&self) -> DisplayId {
DisplayId(self.0)
}
fn as_any(&self) -> &dyn Any {
self
}
fn bounds(&self) -> Bounds<GlobalPixels> {
unsafe {
let native_bounds = CGDisplayBounds(self.0);
display_bounds_from_native(native_bounds)
}
}
}

View file

@ -0,0 +1,274 @@
use std::{
ffi::c_void,
mem,
sync::{Arc, Weak},
};
use crate::DisplayId;
use collections::HashMap;
use parking_lot::Mutex;
pub use sys::CVTimeStamp as VideoTimestamp;
pub(crate) struct MacDisplayLinker {
links: HashMap<DisplayId, MacDisplayLink>,
}
struct MacDisplayLink {
system_link: sys::DisplayLink,
_output_callback: Arc<OutputCallback>,
}
impl MacDisplayLinker {
pub fn new() -> Self {
MacDisplayLinker {
links: Default::default(),
}
}
}
type OutputCallback = Mutex<Box<dyn FnMut(&VideoTimestamp, &VideoTimestamp)>>;
impl MacDisplayLinker {
pub fn set_output_callback(
&mut self,
display_id: DisplayId,
output_callback: Box<dyn FnMut(&VideoTimestamp, &VideoTimestamp)>,
) {
if let Some(mut system_link) = unsafe { sys::DisplayLink::on_display(display_id.0) } {
let callback = Arc::new(Mutex::new(output_callback));
let weak_callback_ptr: *const OutputCallback = Arc::downgrade(&callback).into_raw();
unsafe { system_link.set_output_callback(trampoline, weak_callback_ptr as *mut c_void) }
self.links.insert(
display_id,
MacDisplayLink {
_output_callback: callback,
system_link,
},
);
} else {
log::warn!("DisplayLink could not be obtained for {:?}", display_id);
return;
}
}
pub fn start(&mut self, display_id: DisplayId) {
if let Some(link) = self.links.get_mut(&display_id) {
unsafe {
link.system_link.start();
}
} else {
log::warn!("No DisplayLink callback registered for {:?}", display_id)
}
}
pub fn stop(&mut self, display_id: DisplayId) {
if let Some(link) = self.links.get_mut(&display_id) {
unsafe {
link.system_link.stop();
}
} else {
log::warn!("No DisplayLink callback registered for {:?}", display_id)
}
}
}
unsafe extern "C" fn trampoline(
_display_link_out: *mut sys::CVDisplayLink,
current_time: *const sys::CVTimeStamp,
output_time: *const sys::CVTimeStamp,
_flags_in: i64,
_flags_out: *mut i64,
user_data: *mut c_void,
) -> i32 {
if let Some((current_time, output_time)) = current_time.as_ref().zip(output_time.as_ref()) {
let output_callback: Weak<OutputCallback> =
Weak::from_raw(user_data as *mut OutputCallback);
if let Some(output_callback) = output_callback.upgrade() {
(output_callback.lock())(current_time, output_time)
}
mem::forget(output_callback);
}
0
}
mod sys {
//! Derived from display-link crate under the fololwing license:
//! https://github.com/BrainiumLLC/display-link/blob/master/LICENSE-MIT
//! Apple docs: [CVDisplayLink](https://developer.apple.com/documentation/corevideo/cvdisplaylinkoutputcallback?language=objc)
#![allow(dead_code, non_upper_case_globals)]
use foreign_types::{foreign_type, ForeignType};
use std::{
ffi::c_void,
fmt::{Debug, Formatter, Result},
};
#[derive(Debug)]
pub enum CVDisplayLink {}
foreign_type! {
type CType = CVDisplayLink;
fn drop = CVDisplayLinkRelease;
fn clone = CVDisplayLinkRetain;
pub struct DisplayLink;
pub struct DisplayLinkRef;
}
impl Debug for DisplayLink {
fn fmt(&self, formatter: &mut Formatter) -> Result {
formatter
.debug_tuple("DisplayLink")
.field(&self.as_ptr())
.finish()
}
}
#[repr(C)]
#[derive(Clone, Copy)]
pub struct CVTimeStamp {
pub version: u32,
pub video_time_scale: i32,
pub video_time: i64,
pub host_time: u64,
pub rate_scalar: f64,
pub video_refresh_period: i64,
pub smpte_time: CVSMPTETime,
pub flags: u64,
pub reserved: u64,
}
pub type CVTimeStampFlags = u64;
pub const kCVTimeStampVideoTimeValid: CVTimeStampFlags = 1 << 0;
pub const kCVTimeStampHostTimeValid: CVTimeStampFlags = 1 << 1;
pub const kCVTimeStampSMPTETimeValid: CVTimeStampFlags = 1 << 2;
pub const kCVTimeStampVideoRefreshPeriodValid: CVTimeStampFlags = 1 << 3;
pub const kCVTimeStampRateScalarValid: CVTimeStampFlags = 1 << 4;
pub const kCVTimeStampTopField: CVTimeStampFlags = 1 << 16;
pub const kCVTimeStampBottomField: CVTimeStampFlags = 1 << 17;
pub const kCVTimeStampVideoHostTimeValid: CVTimeStampFlags =
kCVTimeStampVideoTimeValid | kCVTimeStampHostTimeValid;
pub const kCVTimeStampIsInterlaced: CVTimeStampFlags =
kCVTimeStampTopField | kCVTimeStampBottomField;
#[repr(C)]
#[derive(Clone, Copy)]
pub struct CVSMPTETime {
pub subframes: i16,
pub subframe_divisor: i16,
pub counter: u32,
pub time_type: u32,
pub flags: u32,
pub hours: i16,
pub minutes: i16,
pub seconds: i16,
pub frames: i16,
}
pub type CVSMPTETimeType = u32;
pub const kCVSMPTETimeType24: CVSMPTETimeType = 0;
pub const kCVSMPTETimeType25: CVSMPTETimeType = 1;
pub const kCVSMPTETimeType30Drop: CVSMPTETimeType = 2;
pub const kCVSMPTETimeType30: CVSMPTETimeType = 3;
pub const kCVSMPTETimeType2997: CVSMPTETimeType = 4;
pub const kCVSMPTETimeType2997Drop: CVSMPTETimeType = 5;
pub const kCVSMPTETimeType60: CVSMPTETimeType = 6;
pub const kCVSMPTETimeType5994: CVSMPTETimeType = 7;
pub type CVSMPTETimeFlags = u32;
pub const kCVSMPTETimeValid: CVSMPTETimeFlags = 1 << 0;
pub const kCVSMPTETimeRunning: CVSMPTETimeFlags = 1 << 1;
pub type CVDisplayLinkOutputCallback = unsafe extern "C" fn(
display_link_out: *mut CVDisplayLink,
// A pointer to the current timestamp. This represents the timestamp when the callback is called.
current_time: *const CVTimeStamp,
// A pointer to the output timestamp. This represents the timestamp for when the frame will be displayed.
output_time: *const CVTimeStamp,
// Unused
flags_in: i64,
// Unused
flags_out: *mut i64,
// A pointer to app-defined data.
display_link_context: *mut c_void,
) -> i32;
#[link(name = "CoreFoundation", kind = "framework")]
#[link(name = "CoreVideo", kind = "framework")]
#[allow(improper_ctypes)]
extern "C" {
pub fn CVDisplayLinkCreateWithActiveCGDisplays(
display_link_out: *mut *mut CVDisplayLink,
) -> i32;
pub fn CVDisplayLinkCreateWithCGDisplay(
display_id: u32,
display_link_out: *mut *mut CVDisplayLink,
) -> i32;
pub fn CVDisplayLinkSetOutputCallback(
display_link: &mut DisplayLinkRef,
callback: CVDisplayLinkOutputCallback,
user_info: *mut c_void,
) -> i32;
pub fn CVDisplayLinkSetCurrentCGDisplay(
display_link: &mut DisplayLinkRef,
display_id: u32,
) -> i32;
pub fn CVDisplayLinkStart(display_link: &mut DisplayLinkRef) -> i32;
pub fn CVDisplayLinkStop(display_link: &mut DisplayLinkRef) -> i32;
pub fn CVDisplayLinkRelease(display_link: *mut CVDisplayLink);
pub fn CVDisplayLinkRetain(display_link: *mut CVDisplayLink) -> *mut CVDisplayLink;
}
impl DisplayLink {
/// Apple docs: [CVDisplayLinkCreateWithActiveCGDisplays](https://developer.apple.com/documentation/corevideo/1456863-cvdisplaylinkcreatewithactivecgd?language=objc)
pub unsafe fn new() -> Option<Self> {
let mut display_link: *mut CVDisplayLink = 0 as _;
let code = CVDisplayLinkCreateWithActiveCGDisplays(&mut display_link);
if code == 0 {
Some(DisplayLink::from_ptr(display_link))
} else {
None
}
}
/// Apple docs: [CVDisplayLinkCreateWithCGDisplay](https://developer.apple.com/documentation/corevideo/1456981-cvdisplaylinkcreatewithcgdisplay?language=objc)
pub unsafe fn on_display(display_id: u32) -> Option<Self> {
let mut display_link: *mut CVDisplayLink = 0 as _;
let code = CVDisplayLinkCreateWithCGDisplay(display_id, &mut display_link);
if code == 0 {
Some(DisplayLink::from_ptr(display_link))
} else {
None
}
}
}
impl DisplayLinkRef {
/// Apple docs: [CVDisplayLinkSetOutputCallback](https://developer.apple.com/documentation/corevideo/1457096-cvdisplaylinksetoutputcallback?language=objc)
pub unsafe fn set_output_callback(
&mut self,
callback: CVDisplayLinkOutputCallback,
user_info: *mut c_void,
) {
assert_eq!(CVDisplayLinkSetOutputCallback(self, callback, user_info), 0);
}
/// Apple docs: [CVDisplayLinkSetCurrentCGDisplay](https://developer.apple.com/documentation/corevideo/1456768-cvdisplaylinksetcurrentcgdisplay?language=objc)
pub unsafe fn set_current_display(&mut self, display_id: u32) {
assert_eq!(CVDisplayLinkSetCurrentCGDisplay(self, display_id), 0);
}
/// Apple docs: [CVDisplayLinkStart](https://developer.apple.com/documentation/corevideo/1457193-cvdisplaylinkstart?language=objc)
pub unsafe fn start(&mut self) {
assert_eq!(CVDisplayLinkStart(self), 0);
}
/// Apple docs: [CVDisplayLinkStop](https://developer.apple.com/documentation/corevideo/1457281-cvdisplaylinkstop?language=objc)
pub unsafe fn stop(&mut self) {
assert_eq!(CVDisplayLinkStop(self), 0);
}
}
}

View file

@ -0,0 +1,357 @@
use crate::{
point, px, InputEvent, KeyDownEvent, KeyUpEvent, Keystroke, Modifiers, ModifiersChangedEvent,
MouseButton, MouseDownEvent, MouseExitEvent, MouseMoveEvent, MouseUpEvent, NavigationDirection,
Pixels, ScrollDelta, ScrollWheelEvent, TouchPhase,
};
use cocoa::{
appkit::{NSEvent, NSEventModifierFlags, NSEventPhase, NSEventType},
base::{id, YES},
foundation::NSString as _,
};
use core_graphics::{
event::{CGEvent, CGEventFlags, CGKeyCode},
event_source::{CGEventSource, CGEventSourceStateID},
};
use ctor::ctor;
use foreign_types::ForeignType;
use objc::{class, msg_send, sel, sel_impl};
use std::{borrow::Cow, ffi::CStr, mem, os::raw::c_char, ptr};
const BACKSPACE_KEY: u16 = 0x7f;
const SPACE_KEY: u16 = b' ' as u16;
const ENTER_KEY: u16 = 0x0d;
const NUMPAD_ENTER_KEY: u16 = 0x03;
const ESCAPE_KEY: u16 = 0x1b;
const TAB_KEY: u16 = 0x09;
const SHIFT_TAB_KEY: u16 = 0x19;
static mut EVENT_SOURCE: core_graphics::sys::CGEventSourceRef = ptr::null_mut();
#[ctor]
unsafe fn build_event_source() {
let source = CGEventSource::new(CGEventSourceStateID::Private).unwrap();
EVENT_SOURCE = source.as_ptr();
mem::forget(source);
}
// todo!
#[allow(unused)]
pub fn key_to_native(key: &str) -> Cow<str> {
use cocoa::appkit::*;
let code = match key {
"space" => SPACE_KEY,
"backspace" => BACKSPACE_KEY,
"up" => NSUpArrowFunctionKey,
"down" => NSDownArrowFunctionKey,
"left" => NSLeftArrowFunctionKey,
"right" => NSRightArrowFunctionKey,
"pageup" => NSPageUpFunctionKey,
"pagedown" => NSPageDownFunctionKey,
"home" => NSHomeFunctionKey,
"end" => NSEndFunctionKey,
"delete" => NSDeleteFunctionKey,
"f1" => NSF1FunctionKey,
"f2" => NSF2FunctionKey,
"f3" => NSF3FunctionKey,
"f4" => NSF4FunctionKey,
"f5" => NSF5FunctionKey,
"f6" => NSF6FunctionKey,
"f7" => NSF7FunctionKey,
"f8" => NSF8FunctionKey,
"f9" => NSF9FunctionKey,
"f10" => NSF10FunctionKey,
"f11" => NSF11FunctionKey,
"f12" => NSF12FunctionKey,
_ => return Cow::Borrowed(key),
};
Cow::Owned(String::from_utf16(&[code]).unwrap())
}
unsafe fn read_modifiers(native_event: id) -> Modifiers {
let modifiers = native_event.modifierFlags();
let control = modifiers.contains(NSEventModifierFlags::NSControlKeyMask);
let alt = modifiers.contains(NSEventModifierFlags::NSAlternateKeyMask);
let shift = modifiers.contains(NSEventModifierFlags::NSShiftKeyMask);
let command = modifiers.contains(NSEventModifierFlags::NSCommandKeyMask);
let function = modifiers.contains(NSEventModifierFlags::NSFunctionKeyMask);
Modifiers {
control,
alt,
shift,
command,
function,
}
}
impl InputEvent {
pub unsafe fn from_native(native_event: id, window_height: Option<Pixels>) -> Option<Self> {
let event_type = native_event.eventType();
// Filter out event types that aren't in the NSEventType enum.
// See https://github.com/servo/cocoa-rs/issues/155#issuecomment-323482792 for details.
match event_type as u64 {
0 | 21 | 32 | 33 | 35 | 36 | 37 => {
return None;
}
_ => {}
}
match event_type {
NSEventType::NSFlagsChanged => Some(Self::ModifiersChanged(ModifiersChangedEvent {
modifiers: read_modifiers(native_event),
})),
NSEventType::NSKeyDown => Some(Self::KeyDown(KeyDownEvent {
keystroke: parse_keystroke(native_event),
is_held: native_event.isARepeat() == YES,
})),
NSEventType::NSKeyUp => Some(Self::KeyUp(KeyUpEvent {
keystroke: parse_keystroke(native_event),
})),
NSEventType::NSLeftMouseDown
| NSEventType::NSRightMouseDown
| NSEventType::NSOtherMouseDown => {
let button = match native_event.buttonNumber() {
0 => MouseButton::Left,
1 => MouseButton::Right,
2 => MouseButton::Middle,
3 => MouseButton::Navigate(NavigationDirection::Back),
4 => MouseButton::Navigate(NavigationDirection::Forward),
// Other mouse buttons aren't tracked currently
_ => return None,
};
window_height.map(|window_height| {
Self::MouseDown(MouseDownEvent {
button,
position: point(
px(native_event.locationInWindow().x as f32),
// MacOS screen coordinates are relative to bottom left
window_height - px(native_event.locationInWindow().y as f32),
),
modifiers: read_modifiers(native_event),
click_count: native_event.clickCount() as usize,
})
})
}
NSEventType::NSLeftMouseUp
| NSEventType::NSRightMouseUp
| NSEventType::NSOtherMouseUp => {
let button = match native_event.buttonNumber() {
0 => MouseButton::Left,
1 => MouseButton::Right,
2 => MouseButton::Middle,
3 => MouseButton::Navigate(NavigationDirection::Back),
4 => MouseButton::Navigate(NavigationDirection::Forward),
// Other mouse buttons aren't tracked currently
_ => return None,
};
window_height.map(|window_height| {
Self::MouseUp(MouseUpEvent {
button,
position: point(
px(native_event.locationInWindow().x as f32),
window_height - px(native_event.locationInWindow().y as f32),
),
modifiers: read_modifiers(native_event),
click_count: native_event.clickCount() as usize,
})
})
}
NSEventType::NSScrollWheel => window_height.map(|window_height| {
let phase = match native_event.phase() {
NSEventPhase::NSEventPhaseMayBegin | NSEventPhase::NSEventPhaseBegan => {
TouchPhase::Started
}
NSEventPhase::NSEventPhaseEnded => TouchPhase::Ended,
_ => TouchPhase::Moved,
};
let raw_data = point(
native_event.scrollingDeltaX() as f32,
native_event.scrollingDeltaY() as f32,
);
let delta = if native_event.hasPreciseScrollingDeltas() == YES {
ScrollDelta::Pixels(raw_data.map(px))
} else {
ScrollDelta::Lines(raw_data)
};
Self::ScrollWheel(ScrollWheelEvent {
position: point(
px(native_event.locationInWindow().x as f32),
window_height - px(native_event.locationInWindow().y as f32),
),
delta,
touch_phase: phase,
modifiers: read_modifiers(native_event),
})
}),
NSEventType::NSLeftMouseDragged
| NSEventType::NSRightMouseDragged
| NSEventType::NSOtherMouseDragged => {
let pressed_button = match native_event.buttonNumber() {
0 => MouseButton::Left,
1 => MouseButton::Right,
2 => MouseButton::Middle,
3 => MouseButton::Navigate(NavigationDirection::Back),
4 => MouseButton::Navigate(NavigationDirection::Forward),
// Other mouse buttons aren't tracked currently
_ => return None,
};
window_height.map(|window_height| {
Self::MouseMoved(MouseMoveEvent {
pressed_button: Some(pressed_button),
position: point(
px(native_event.locationInWindow().x as f32),
window_height - px(native_event.locationInWindow().y as f32),
),
modifiers: read_modifiers(native_event),
})
})
}
NSEventType::NSMouseMoved => window_height.map(|window_height| {
Self::MouseMoved(MouseMoveEvent {
position: point(
px(native_event.locationInWindow().x as f32),
window_height - px(native_event.locationInWindow().y as f32),
),
pressed_button: None,
modifiers: read_modifiers(native_event),
})
}),
NSEventType::NSMouseExited => window_height.map(|window_height| {
Self::MouseExited(MouseExitEvent {
position: point(
px(native_event.locationInWindow().x as f32),
window_height - px(native_event.locationInWindow().y as f32),
),
pressed_button: None,
modifiers: read_modifiers(native_event),
})
}),
_ => None,
}
}
}
unsafe fn parse_keystroke(native_event: id) -> Keystroke {
use cocoa::appkit::*;
let mut chars_ignoring_modifiers =
CStr::from_ptr(native_event.charactersIgnoringModifiers().UTF8String() as *mut c_char)
.to_str()
.unwrap()
.to_string();
let first_char = chars_ignoring_modifiers.chars().next().map(|ch| ch as u16);
let modifiers = native_event.modifierFlags();
let control = modifiers.contains(NSEventModifierFlags::NSControlKeyMask);
let alt = modifiers.contains(NSEventModifierFlags::NSAlternateKeyMask);
let mut shift = modifiers.contains(NSEventModifierFlags::NSShiftKeyMask);
let command = modifiers.contains(NSEventModifierFlags::NSCommandKeyMask);
let function = modifiers.contains(NSEventModifierFlags::NSFunctionKeyMask)
&& first_char.map_or(true, |ch| {
!(NSUpArrowFunctionKey..=NSModeSwitchFunctionKey).contains(&ch)
});
#[allow(non_upper_case_globals)]
let key = match first_char {
Some(SPACE_KEY) => "space".to_string(),
Some(BACKSPACE_KEY) => "backspace".to_string(),
Some(ENTER_KEY) | Some(NUMPAD_ENTER_KEY) => "enter".to_string(),
Some(ESCAPE_KEY) => "escape".to_string(),
Some(TAB_KEY) => "tab".to_string(),
Some(SHIFT_TAB_KEY) => "tab".to_string(),
Some(NSUpArrowFunctionKey) => "up".to_string(),
Some(NSDownArrowFunctionKey) => "down".to_string(),
Some(NSLeftArrowFunctionKey) => "left".to_string(),
Some(NSRightArrowFunctionKey) => "right".to_string(),
Some(NSPageUpFunctionKey) => "pageup".to_string(),
Some(NSPageDownFunctionKey) => "pagedown".to_string(),
Some(NSHomeFunctionKey) => "home".to_string(),
Some(NSEndFunctionKey) => "end".to_string(),
Some(NSDeleteFunctionKey) => "delete".to_string(),
Some(NSF1FunctionKey) => "f1".to_string(),
Some(NSF2FunctionKey) => "f2".to_string(),
Some(NSF3FunctionKey) => "f3".to_string(),
Some(NSF4FunctionKey) => "f4".to_string(),
Some(NSF5FunctionKey) => "f5".to_string(),
Some(NSF6FunctionKey) => "f6".to_string(),
Some(NSF7FunctionKey) => "f7".to_string(),
Some(NSF8FunctionKey) => "f8".to_string(),
Some(NSF9FunctionKey) => "f9".to_string(),
Some(NSF10FunctionKey) => "f10".to_string(),
Some(NSF11FunctionKey) => "f11".to_string(),
Some(NSF12FunctionKey) => "f12".to_string(),
_ => {
let mut chars_ignoring_modifiers_and_shift =
chars_for_modified_key(native_event.keyCode(), false, false);
// Honor ⌘ when Dvorak-QWERTY is used.
let chars_with_cmd = chars_for_modified_key(native_event.keyCode(), true, false);
if command && chars_ignoring_modifiers_and_shift != chars_with_cmd {
chars_ignoring_modifiers =
chars_for_modified_key(native_event.keyCode(), true, shift);
chars_ignoring_modifiers_and_shift = chars_with_cmd;
}
if shift {
if chars_ignoring_modifiers_and_shift
== chars_ignoring_modifiers.to_ascii_lowercase()
{
chars_ignoring_modifiers_and_shift
} else if chars_ignoring_modifiers_and_shift != chars_ignoring_modifiers {
shift = false;
chars_ignoring_modifiers
} else {
chars_ignoring_modifiers
}
} else {
chars_ignoring_modifiers
}
}
};
Keystroke {
modifiers: Modifiers {
control,
alt,
shift,
command,
function,
},
key,
ime_key: None,
}
}
fn chars_for_modified_key(code: CGKeyCode, cmd: bool, shift: bool) -> String {
// Ideally, we would use `[NSEvent charactersByApplyingModifiers]` but that
// always returns an empty string with certain keyboards, e.g. Japanese. Synthesizing
// an event with the given flags instead lets us access `characters`, which always
// returns a valid string.
let source = unsafe { core_graphics::event_source::CGEventSource::from_ptr(EVENT_SOURCE) };
let event = CGEvent::new_keyboard_event(source.clone(), code, true).unwrap();
mem::forget(source);
let mut flags = CGEventFlags::empty();
if cmd {
flags |= CGEventFlags::CGEventFlagCommand;
}
if shift {
flags |= CGEventFlags::CGEventFlagShift;
}
event.set_flags(flags);
unsafe {
let event: id = msg_send![class!(NSEvent), eventWithCGEvent: &*event];
CStr::from_ptr(event.characters().UTF8String())
.to_str()
.unwrap()
.to_string()
}
}

View file

@ -0,0 +1,256 @@
use crate::{
AtlasKey, AtlasTextureId, AtlasTextureKind, AtlasTile, Bounds, DevicePixels, PlatformAtlas,
Point, Size,
};
use anyhow::Result;
use collections::HashMap;
use derive_more::{Deref, DerefMut};
use etagere::BucketedAtlasAllocator;
use metal::Device;
use parking_lot::Mutex;
use std::borrow::Cow;
pub struct MetalAtlas(Mutex<MetalAtlasState>);
impl MetalAtlas {
pub fn new(device: Device) -> Self {
MetalAtlas(Mutex::new(MetalAtlasState {
device: AssertSend(device),
monochrome_textures: Default::default(),
polychrome_textures: Default::default(),
path_textures: Default::default(),
tiles_by_key: Default::default(),
}))
}
pub(crate) fn metal_texture(&self, id: AtlasTextureId) -> metal::Texture {
self.0.lock().texture(id).metal_texture.clone()
}
pub(crate) fn allocate(
&self,
size: Size<DevicePixels>,
texture_kind: AtlasTextureKind,
) -> AtlasTile {
self.0.lock().allocate(size, texture_kind)
}
pub(crate) fn clear_textures(&self, texture_kind: AtlasTextureKind) {
let mut lock = self.0.lock();
let textures = match texture_kind {
AtlasTextureKind::Monochrome => &mut lock.monochrome_textures,
AtlasTextureKind::Polychrome => &mut lock.polychrome_textures,
AtlasTextureKind::Path => &mut lock.path_textures,
};
for texture in textures {
texture.clear();
}
}
}
struct MetalAtlasState {
device: AssertSend<Device>,
monochrome_textures: Vec<MetalAtlasTexture>,
polychrome_textures: Vec<MetalAtlasTexture>,
path_textures: Vec<MetalAtlasTexture>,
tiles_by_key: HashMap<AtlasKey, AtlasTile>,
}
impl PlatformAtlas for MetalAtlas {
fn get_or_insert_with<'a>(
&self,
key: &AtlasKey,
build: &mut dyn FnMut() -> Result<(Size<DevicePixels>, Cow<'a, [u8]>)>,
) -> Result<AtlasTile> {
let mut lock = self.0.lock();
if let Some(tile) = lock.tiles_by_key.get(key) {
return Ok(tile.clone());
} else {
let (size, bytes) = build()?;
let tile = lock.allocate(size, key.texture_kind());
let texture = lock.texture(tile.texture_id);
texture.upload(tile.bounds, &bytes);
lock.tiles_by_key.insert(key.clone(), tile.clone());
Ok(tile)
}
}
fn clear(&self) {
let mut lock = self.0.lock();
lock.tiles_by_key.clear();
for texture in &mut lock.monochrome_textures {
texture.clear();
}
for texture in &mut lock.polychrome_textures {
texture.clear();
}
for texture in &mut lock.path_textures {
texture.clear();
}
}
}
impl MetalAtlasState {
fn allocate(&mut self, size: Size<DevicePixels>, texture_kind: AtlasTextureKind) -> AtlasTile {
let textures = match texture_kind {
AtlasTextureKind::Monochrome => &mut self.monochrome_textures,
AtlasTextureKind::Polychrome => &mut self.polychrome_textures,
AtlasTextureKind::Path => &mut self.path_textures,
};
textures
.iter_mut()
.rev()
.find_map(|texture| texture.allocate(size))
.unwrap_or_else(|| {
let texture = self.push_texture(size, texture_kind);
texture.allocate(size).unwrap()
})
}
fn push_texture(
&mut self,
min_size: Size<DevicePixels>,
kind: AtlasTextureKind,
) -> &mut MetalAtlasTexture {
const DEFAULT_ATLAS_SIZE: Size<DevicePixels> = Size {
width: DevicePixels(1024),
height: DevicePixels(1024),
};
let size = min_size.max(&DEFAULT_ATLAS_SIZE);
let texture_descriptor = metal::TextureDescriptor::new();
texture_descriptor.set_width(size.width.into());
texture_descriptor.set_height(size.height.into());
let pixel_format;
let usage;
match kind {
AtlasTextureKind::Monochrome => {
pixel_format = metal::MTLPixelFormat::A8Unorm;
usage = metal::MTLTextureUsage::ShaderRead;
}
AtlasTextureKind::Polychrome => {
pixel_format = metal::MTLPixelFormat::BGRA8Unorm;
usage = metal::MTLTextureUsage::ShaderRead;
}
AtlasTextureKind::Path => {
pixel_format = metal::MTLPixelFormat::R16Float;
usage = metal::MTLTextureUsage::RenderTarget | metal::MTLTextureUsage::ShaderRead;
}
}
texture_descriptor.set_pixel_format(pixel_format);
texture_descriptor.set_usage(usage);
let metal_texture = self.device.new_texture(&texture_descriptor);
let textures = match kind {
AtlasTextureKind::Monochrome => &mut self.monochrome_textures,
AtlasTextureKind::Polychrome => &mut self.polychrome_textures,
AtlasTextureKind::Path => &mut self.path_textures,
};
let atlas_texture = MetalAtlasTexture {
id: AtlasTextureId {
index: textures.len() as u32,
kind,
},
allocator: etagere::BucketedAtlasAllocator::new(size.into()),
metal_texture: AssertSend(metal_texture),
};
textures.push(atlas_texture);
textures.last_mut().unwrap()
}
fn texture(&self, id: AtlasTextureId) -> &MetalAtlasTexture {
let textures = match id.kind {
crate::AtlasTextureKind::Monochrome => &self.monochrome_textures,
crate::AtlasTextureKind::Polychrome => &self.polychrome_textures,
crate::AtlasTextureKind::Path => &self.path_textures,
};
&textures[id.index as usize]
}
}
struct MetalAtlasTexture {
id: AtlasTextureId,
allocator: BucketedAtlasAllocator,
metal_texture: AssertSend<metal::Texture>,
}
impl MetalAtlasTexture {
fn clear(&mut self) {
self.allocator.clear();
}
fn allocate(&mut self, size: Size<DevicePixels>) -> Option<AtlasTile> {
let allocation = self.allocator.allocate(size.into())?;
let tile = AtlasTile {
texture_id: self.id,
tile_id: allocation.id.into(),
bounds: Bounds {
origin: allocation.rectangle.min.into(),
size,
},
};
Some(tile)
}
fn upload(&self, bounds: Bounds<DevicePixels>, bytes: &[u8]) {
let region = metal::MTLRegion::new_2d(
bounds.origin.x.into(),
bounds.origin.y.into(),
bounds.size.width.into(),
bounds.size.height.into(),
);
self.metal_texture.replace_region(
region,
0,
bytes.as_ptr() as *const _,
u32::from(bounds.size.width.to_bytes(self.bytes_per_pixel())) as u64,
);
}
fn bytes_per_pixel(&self) -> u8 {
use metal::MTLPixelFormat::*;
match self.metal_texture.pixel_format() {
A8Unorm | R8Unorm => 1,
RGBA8Unorm | BGRA8Unorm => 4,
_ => unimplemented!(),
}
}
}
impl From<Size<DevicePixels>> for etagere::Size {
fn from(size: Size<DevicePixels>) -> Self {
etagere::Size::new(size.width.into(), size.height.into())
}
}
impl From<etagere::Point> for Point<DevicePixels> {
fn from(value: etagere::Point) -> Self {
Point {
x: DevicePixels::from(value.x),
y: DevicePixels::from(value.y),
}
}
}
impl From<etagere::Size> for Size<DevicePixels> {
fn from(size: etagere::Size) -> Self {
Size {
width: DevicePixels::from(size.width),
height: DevicePixels::from(size.height),
}
}
}
impl From<etagere::Rectangle> for Bounds<DevicePixels> {
fn from(rectangle: etagere::Rectangle) -> Self {
Bounds {
origin: rectangle.min.into(),
size: rectangle.size().into(),
}
}
}
#[derive(Deref, DerefMut)]
struct AssertSend<T>(T);
unsafe impl<T> Send for AssertSend<T> {}

View file

@ -0,0 +1,880 @@
use crate::{
point, size, AtlasTextureId, AtlasTextureKind, AtlasTile, Bounds, ContentMask, DevicePixels,
Hsla, MetalAtlas, MonochromeSprite, Path, PathId, PathVertex, PolychromeSprite, PrimitiveBatch,
Quad, ScaledPixels, Scene, Shadow, Size, Underline,
};
use cocoa::{
base::{NO, YES},
foundation::NSUInteger,
quartzcore::AutoresizingMask,
};
use collections::HashMap;
use metal::{CommandQueue, MTLPixelFormat, MTLResourceOptions, NSRange};
use objc::{self, msg_send, sel, sel_impl};
use smallvec::SmallVec;
use std::{ffi::c_void, mem, ptr, sync::Arc};
const SHADERS_METALLIB: &[u8] = include_bytes!(concat!(env!("OUT_DIR"), "/shaders.metallib"));
const INSTANCE_BUFFER_SIZE: usize = 8192 * 1024; // This is an arbitrary decision. There's probably a more optimal value.
pub(crate) struct MetalRenderer {
layer: metal::MetalLayer,
command_queue: CommandQueue,
paths_rasterization_pipeline_state: metal::RenderPipelineState,
path_sprites_pipeline_state: metal::RenderPipelineState,
shadows_pipeline_state: metal::RenderPipelineState,
quads_pipeline_state: metal::RenderPipelineState,
underlines_pipeline_state: metal::RenderPipelineState,
monochrome_sprites_pipeline_state: metal::RenderPipelineState,
polychrome_sprites_pipeline_state: metal::RenderPipelineState,
unit_vertices: metal::Buffer,
instances: metal::Buffer,
sprite_atlas: Arc<MetalAtlas>,
}
impl MetalRenderer {
pub fn new(is_opaque: bool) -> Self {
let device: metal::Device = if let Some(device) = metal::Device::system_default() {
device
} else {
log::error!("unable to access a compatible graphics device");
std::process::exit(1);
};
let layer = metal::MetalLayer::new();
layer.set_device(&device);
layer.set_pixel_format(MTLPixelFormat::BGRA8Unorm);
layer.set_presents_with_transaction(true);
layer.set_opaque(is_opaque);
unsafe {
let _: () = msg_send![&*layer, setAllowsNextDrawableTimeout: NO];
let _: () = msg_send![&*layer, setNeedsDisplayOnBoundsChange: YES];
let _: () = msg_send![
&*layer,
setAutoresizingMask: AutoresizingMask::WIDTH_SIZABLE
| AutoresizingMask::HEIGHT_SIZABLE
];
}
let library = device
.new_library_with_data(SHADERS_METALLIB)
.expect("error building metal library");
fn to_float2_bits(point: crate::PointF) -> u64 {
unsafe {
let mut output = mem::transmute::<_, u32>(point.y.to_bits()) as u64;
output <<= 32;
output |= mem::transmute::<_, u32>(point.x.to_bits()) as u64;
output
}
}
let unit_vertices = [
to_float2_bits(point(0., 0.)),
to_float2_bits(point(1., 0.)),
to_float2_bits(point(0., 1.)),
to_float2_bits(point(0., 1.)),
to_float2_bits(point(1., 0.)),
to_float2_bits(point(1., 1.)),
];
let unit_vertices = device.new_buffer_with_data(
unit_vertices.as_ptr() as *const c_void,
(unit_vertices.len() * mem::size_of::<u64>()) as u64,
MTLResourceOptions::StorageModeManaged,
);
let instances = device.new_buffer(
INSTANCE_BUFFER_SIZE as u64,
MTLResourceOptions::StorageModeManaged,
);
let paths_rasterization_pipeline_state = build_pipeline_state(
&device,
&library,
"paths_rasterization",
"path_rasterization_vertex",
"path_rasterization_fragment",
MTLPixelFormat::R16Float,
);
let path_sprites_pipeline_state = build_pipeline_state(
&device,
&library,
"path_sprites",
"path_sprite_vertex",
"path_sprite_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let shadows_pipeline_state = build_pipeline_state(
&device,
&library,
"shadows",
"shadow_vertex",
"shadow_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let quads_pipeline_state = build_pipeline_state(
&device,
&library,
"quads",
"quad_vertex",
"quad_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let underlines_pipeline_state = build_pipeline_state(
&device,
&library,
"underlines",
"underline_vertex",
"underline_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let monochrome_sprites_pipeline_state = build_pipeline_state(
&device,
&library,
"monochrome_sprites",
"monochrome_sprite_vertex",
"monochrome_sprite_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let polychrome_sprites_pipeline_state = build_pipeline_state(
&device,
&library,
"polychrome_sprites",
"polychrome_sprite_vertex",
"polychrome_sprite_fragment",
MTLPixelFormat::BGRA8Unorm,
);
let command_queue = device.new_command_queue();
let sprite_atlas = Arc::new(MetalAtlas::new(device.clone()));
Self {
layer,
command_queue,
paths_rasterization_pipeline_state,
path_sprites_pipeline_state,
shadows_pipeline_state,
quads_pipeline_state,
underlines_pipeline_state,
monochrome_sprites_pipeline_state,
polychrome_sprites_pipeline_state,
unit_vertices,
instances,
sprite_atlas,
}
}
pub fn layer(&self) -> &metal::MetalLayerRef {
&*self.layer
}
pub fn sprite_atlas(&self) -> &Arc<MetalAtlas> {
&self.sprite_atlas
}
pub fn draw(&mut self, scene: &Scene) {
let layer = self.layer.clone();
let viewport_size = layer.drawable_size();
let viewport_size: Size<DevicePixels> = size(
(viewport_size.width.ceil() as i32).into(),
(viewport_size.height.ceil() as i32).into(),
);
let drawable = if let Some(drawable) = layer.next_drawable() {
drawable
} else {
log::error!(
"failed to retrieve next drawable, drawable size: {:?}",
viewport_size
);
return;
};
let command_queue = self.command_queue.clone();
let command_buffer = command_queue.new_command_buffer();
let mut instance_offset = 0;
let path_tiles = self.rasterize_paths(scene.paths(), &mut instance_offset, &command_buffer);
let render_pass_descriptor = metal::RenderPassDescriptor::new();
let color_attachment = render_pass_descriptor
.color_attachments()
.object_at(0)
.unwrap();
color_attachment.set_texture(Some(drawable.texture()));
color_attachment.set_load_action(metal::MTLLoadAction::Clear);
color_attachment.set_store_action(metal::MTLStoreAction::Store);
let alpha = if self.layer.is_opaque() { 1. } else { 0. };
color_attachment.set_clear_color(metal::MTLClearColor::new(0., 0., 0., alpha));
let command_encoder = command_buffer.new_render_command_encoder(render_pass_descriptor);
command_encoder.set_viewport(metal::MTLViewport {
originX: 0.0,
originY: 0.0,
width: i32::from(viewport_size.width) as f64,
height: i32::from(viewport_size.height) as f64,
znear: 0.0,
zfar: 1.0,
});
for batch in scene.batches() {
match batch {
PrimitiveBatch::Shadows(shadows) => {
self.draw_shadows(
shadows,
&mut instance_offset,
viewport_size,
command_encoder,
);
}
PrimitiveBatch::Quads(quads) => {
self.draw_quads(quads, &mut instance_offset, viewport_size, command_encoder);
}
PrimitiveBatch::Paths(paths) => {
self.draw_paths(
paths,
&path_tiles,
&mut instance_offset,
viewport_size,
command_encoder,
);
}
PrimitiveBatch::Underlines(underlines) => {
self.draw_underlines(
underlines,
&mut instance_offset,
viewport_size,
command_encoder,
);
}
PrimitiveBatch::MonochromeSprites {
texture_id,
sprites,
} => {
self.draw_monochrome_sprites(
texture_id,
sprites,
&mut instance_offset,
viewport_size,
command_encoder,
);
}
PrimitiveBatch::PolychromeSprites {
texture_id,
sprites,
} => {
self.draw_polychrome_sprites(
texture_id,
sprites,
&mut instance_offset,
viewport_size,
command_encoder,
);
}
}
}
command_encoder.end_encoding();
self.instances.did_modify_range(NSRange {
location: 0,
length: instance_offset as NSUInteger,
});
command_buffer.commit();
self.sprite_atlas.clear_textures(AtlasTextureKind::Path);
command_buffer.wait_until_completed();
drawable.present();
}
fn rasterize_paths(
&mut self,
paths: &[Path<ScaledPixels>],
offset: &mut usize,
command_buffer: &metal::CommandBufferRef,
) -> HashMap<PathId, AtlasTile> {
let mut tiles = HashMap::default();
let mut vertices_by_texture_id = HashMap::default();
for path in paths {
let clipped_bounds = path.bounds.intersect(&path.content_mask.bounds);
let tile = self
.sprite_atlas
.allocate(clipped_bounds.size.map(Into::into), AtlasTextureKind::Path);
vertices_by_texture_id
.entry(tile.texture_id)
.or_insert(Vec::new())
.extend(path.vertices.iter().map(|vertex| PathVertex {
xy_position: vertex.xy_position - path.bounds.origin
+ tile.bounds.origin.map(Into::into),
st_position: vertex.st_position,
content_mask: ContentMask {
bounds: tile.bounds.map(Into::into),
},
}));
tiles.insert(path.id, tile);
}
for (texture_id, vertices) in vertices_by_texture_id {
align_offset(offset);
let next_offset = *offset + vertices.len() * mem::size_of::<PathVertex<ScaledPixels>>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
let render_pass_descriptor = metal::RenderPassDescriptor::new();
let color_attachment = render_pass_descriptor
.color_attachments()
.object_at(0)
.unwrap();
let texture = self.sprite_atlas.metal_texture(texture_id);
color_attachment.set_texture(Some(&texture));
color_attachment.set_load_action(metal::MTLLoadAction::Clear);
color_attachment.set_store_action(metal::MTLStoreAction::Store);
color_attachment.set_clear_color(metal::MTLClearColor::new(0., 0., 0., 1.));
let command_encoder = command_buffer.new_render_command_encoder(render_pass_descriptor);
command_encoder.set_render_pipeline_state(&self.paths_rasterization_pipeline_state);
command_encoder.set_vertex_buffer(
PathRasterizationInputIndex::Vertices as u64,
Some(&self.instances),
*offset as u64,
);
let texture_size = Size {
width: DevicePixels::from(texture.width()),
height: DevicePixels::from(texture.height()),
};
command_encoder.set_vertex_bytes(
PathRasterizationInputIndex::AtlasTextureSize as u64,
mem::size_of_val(&texture_size) as u64,
&texture_size as *const Size<DevicePixels> as *const _,
);
let vertices_bytes_len = mem::size_of::<PathVertex<ScaledPixels>>() * vertices.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
vertices.as_ptr() as *const u8,
buffer_contents,
vertices_bytes_len,
);
}
command_encoder.draw_primitives(
metal::MTLPrimitiveType::Triangle,
0,
vertices.len() as u64,
);
command_encoder.end_encoding();
*offset = next_offset;
}
tiles
}
fn draw_shadows(
&mut self,
shadows: &[Shadow],
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if shadows.is_empty() {
return;
}
align_offset(offset);
command_encoder.set_render_pipeline_state(&self.shadows_pipeline_state);
command_encoder.set_vertex_buffer(
ShadowInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
ShadowInputIndex::Shadows as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_fragment_buffer(
ShadowInputIndex::Shadows as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
ShadowInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
let shadow_bytes_len = mem::size_of::<Shadow>() * shadows.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
shadows.as_ptr() as *const u8,
buffer_contents,
shadow_bytes_len,
);
}
let next_offset = *offset + shadow_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
shadows.len() as u64,
);
*offset = next_offset;
}
fn draw_quads(
&mut self,
quads: &[Quad],
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if quads.is_empty() {
return;
}
align_offset(offset);
command_encoder.set_render_pipeline_state(&self.quads_pipeline_state);
command_encoder.set_vertex_buffer(
QuadInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
QuadInputIndex::Quads as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_fragment_buffer(
QuadInputIndex::Quads as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
QuadInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
let quad_bytes_len = mem::size_of::<Quad>() * quads.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(quads.as_ptr() as *const u8, buffer_contents, quad_bytes_len);
}
let next_offset = *offset + quad_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
quads.len() as u64,
);
*offset = next_offset;
}
fn draw_paths(
&mut self,
paths: &[Path<ScaledPixels>],
tiles_by_path_id: &HashMap<PathId, AtlasTile>,
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if paths.is_empty() {
return;
}
command_encoder.set_render_pipeline_state(&self.path_sprites_pipeline_state);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
let mut prev_texture_id = None;
let mut sprites = SmallVec::<[_; 1]>::new();
let mut paths_and_tiles = paths
.into_iter()
.map(|path| (path, tiles_by_path_id.get(&path.id).unwrap()))
.peekable();
loop {
if let Some((path, tile)) = paths_and_tiles.peek() {
if prev_texture_id.map_or(true, |texture_id| texture_id == tile.texture_id) {
prev_texture_id = Some(tile.texture_id);
sprites.push(PathSprite {
bounds: Bounds {
origin: path.bounds.origin.map(|p| p.floor()),
size: tile.bounds.size.map(Into::into),
},
color: path.color,
tile: (*tile).clone(),
});
paths_and_tiles.next();
continue;
}
}
if sprites.is_empty() {
break;
} else {
align_offset(offset);
let texture_id = prev_texture_id.take().unwrap();
let texture: metal::Texture = self.sprite_atlas.metal_texture(texture_id);
let texture_size = size(
DevicePixels(texture.width() as i32),
DevicePixels(texture.height() as i32),
);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::AtlasTextureSize as u64,
mem::size_of_val(&texture_size) as u64,
&texture_size as *const Size<DevicePixels> as *const _,
);
command_encoder.set_fragment_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder
.set_fragment_texture(SpriteInputIndex::AtlasTexture as u64, Some(&texture));
let sprite_bytes_len = mem::size_of::<MonochromeSprite>() * sprites.len();
let buffer_contents =
unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
sprites.as_ptr() as *const u8,
buffer_contents,
sprite_bytes_len,
);
}
let next_offset = *offset + sprite_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
sprites.len() as u64,
);
*offset = next_offset;
sprites.clear();
}
}
}
fn draw_underlines(
&mut self,
underlines: &[Underline],
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if underlines.is_empty() {
return;
}
align_offset(offset);
command_encoder.set_render_pipeline_state(&self.underlines_pipeline_state);
command_encoder.set_vertex_buffer(
UnderlineInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
UnderlineInputIndex::Underlines as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_fragment_buffer(
UnderlineInputIndex::Underlines as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
UnderlineInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
let quad_bytes_len = mem::size_of::<Underline>() * underlines.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
underlines.as_ptr() as *const u8,
buffer_contents,
quad_bytes_len,
);
}
let next_offset = *offset + quad_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
underlines.len() as u64,
);
*offset = next_offset;
}
fn draw_monochrome_sprites(
&mut self,
texture_id: AtlasTextureId,
sprites: &[MonochromeSprite],
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if sprites.is_empty() {
return;
}
align_offset(offset);
let texture = self.sprite_atlas.metal_texture(texture_id);
let texture_size = size(
DevicePixels(texture.width() as i32),
DevicePixels(texture.height() as i32),
);
command_encoder.set_render_pipeline_state(&self.monochrome_sprites_pipeline_state);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::AtlasTextureSize as u64,
mem::size_of_val(&texture_size) as u64,
&texture_size as *const Size<DevicePixels> as *const _,
);
command_encoder.set_fragment_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_fragment_texture(SpriteInputIndex::AtlasTexture as u64, Some(&texture));
let sprite_bytes_len = mem::size_of::<MonochromeSprite>() * sprites.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
sprites.as_ptr() as *const u8,
buffer_contents,
sprite_bytes_len,
);
}
let next_offset = *offset + sprite_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
sprites.len() as u64,
);
*offset = next_offset;
}
fn draw_polychrome_sprites(
&mut self,
texture_id: AtlasTextureId,
sprites: &[PolychromeSprite],
offset: &mut usize,
viewport_size: Size<DevicePixels>,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if sprites.is_empty() {
return;
}
align_offset(offset);
let texture = self.sprite_atlas.metal_texture(texture_id);
let texture_size = size(
DevicePixels(texture.width() as i32),
DevicePixels(texture.height() as i32),
);
command_encoder.set_render_pipeline_state(&self.polychrome_sprites_pipeline_state);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Vertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::ViewportSize as u64,
mem::size_of_val(&viewport_size) as u64,
&viewport_size as *const Size<DevicePixels> as *const _,
);
command_encoder.set_vertex_bytes(
SpriteInputIndex::AtlasTextureSize as u64,
mem::size_of_val(&texture_size) as u64,
&texture_size as *const Size<DevicePixels> as *const _,
);
command_encoder.set_fragment_buffer(
SpriteInputIndex::Sprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_fragment_texture(SpriteInputIndex::AtlasTexture as u64, Some(&texture));
let sprite_bytes_len = mem::size_of::<PolychromeSprite>() * sprites.len();
let buffer_contents = unsafe { (self.instances.contents() as *mut u8).add(*offset) };
unsafe {
ptr::copy_nonoverlapping(
sprites.as_ptr() as *const u8,
buffer_contents,
sprite_bytes_len,
);
}
let next_offset = *offset + sprite_bytes_len;
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
sprites.len() as u64,
);
*offset = next_offset;
}
}
fn build_pipeline_state(
device: &metal::DeviceRef,
library: &metal::LibraryRef,
label: &str,
vertex_fn_name: &str,
fragment_fn_name: &str,
pixel_format: metal::MTLPixelFormat,
) -> metal::RenderPipelineState {
let vertex_fn = library
.get_function(vertex_fn_name, None)
.expect("error locating vertex function");
let fragment_fn = library
.get_function(fragment_fn_name, None)
.expect("error locating fragment function");
let descriptor = metal::RenderPipelineDescriptor::new();
descriptor.set_label(label);
descriptor.set_vertex_function(Some(vertex_fn.as_ref()));
descriptor.set_fragment_function(Some(fragment_fn.as_ref()));
let color_attachment = descriptor.color_attachments().object_at(0).unwrap();
color_attachment.set_pixel_format(pixel_format);
color_attachment.set_blending_enabled(true);
color_attachment.set_rgb_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_alpha_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_source_rgb_blend_factor(metal::MTLBlendFactor::SourceAlpha);
color_attachment.set_source_alpha_blend_factor(metal::MTLBlendFactor::One);
color_attachment.set_destination_rgb_blend_factor(metal::MTLBlendFactor::OneMinusSourceAlpha);
color_attachment.set_destination_alpha_blend_factor(metal::MTLBlendFactor::One);
descriptor.set_depth_attachment_pixel_format(MTLPixelFormat::Invalid);
device
.new_render_pipeline_state(&descriptor)
.expect("could not create render pipeline state")
}
// Align to multiples of 256 make Metal happy.
fn align_offset(offset: &mut usize) {
*offset = ((*offset + 255) / 256) * 256;
}
#[repr(C)]
enum ShadowInputIndex {
Vertices = 0,
Shadows = 1,
ViewportSize = 2,
}
#[repr(C)]
enum QuadInputIndex {
Vertices = 0,
Quads = 1,
ViewportSize = 2,
}
#[repr(C)]
enum UnderlineInputIndex {
Vertices = 0,
Underlines = 1,
ViewportSize = 2,
}
#[repr(C)]
enum SpriteInputIndex {
Vertices = 0,
Sprites = 1,
ViewportSize = 2,
AtlasTextureSize = 3,
AtlasTexture = 4,
}
#[repr(C)]
enum PathRasterizationInputIndex {
Vertices = 0,
AtlasTextureSize = 1,
}
#[derive(Clone, Debug, Eq, PartialEq)]
#[repr(C)]
pub struct PathSprite {
pub bounds: Bounds<ScaledPixels>,
pub color: Hsla,
pub tile: AtlasTile,
}

View file

@ -0,0 +1,394 @@
#![allow(unused, non_upper_case_globals)]
use crate::FontFeatures;
use cocoa::appkit::CGFloat;
use core_foundation::{base::TCFType, number::CFNumber};
use core_graphics::geometry::CGAffineTransform;
use core_text::{
font::{CTFont, CTFontRef},
font_descriptor::{
CTFontDescriptor, CTFontDescriptorCreateCopyWithFeature, CTFontDescriptorRef,
},
};
use font_kit::font::Font;
use std::ptr;
const kCaseSensitiveLayoutOffSelector: i32 = 1;
const kCaseSensitiveLayoutOnSelector: i32 = 0;
const kCaseSensitiveLayoutType: i32 = 33;
const kCaseSensitiveSpacingOffSelector: i32 = 3;
const kCaseSensitiveSpacingOnSelector: i32 = 2;
const kCharacterAlternativesType: i32 = 17;
const kCommonLigaturesOffSelector: i32 = 3;
const kCommonLigaturesOnSelector: i32 = 2;
const kContextualAlternatesOffSelector: i32 = 1;
const kContextualAlternatesOnSelector: i32 = 0;
const kContextualAlternatesType: i32 = 36;
const kContextualLigaturesOffSelector: i32 = 19;
const kContextualLigaturesOnSelector: i32 = 18;
const kContextualSwashAlternatesOffSelector: i32 = 5;
const kContextualSwashAlternatesOnSelector: i32 = 4;
const kDefaultLowerCaseSelector: i32 = 0;
const kDefaultUpperCaseSelector: i32 = 0;
const kDiagonalFractionsSelector: i32 = 2;
const kFractionsType: i32 = 11;
const kHistoricalLigaturesOffSelector: i32 = 21;
const kHistoricalLigaturesOnSelector: i32 = 20;
const kHojoCharactersSelector: i32 = 12;
const kInferiorsSelector: i32 = 2;
const kJIS2004CharactersSelector: i32 = 11;
const kLigaturesType: i32 = 1;
const kLowerCasePetiteCapsSelector: i32 = 2;
const kLowerCaseSmallCapsSelector: i32 = 1;
const kLowerCaseType: i32 = 37;
const kLowerCaseNumbersSelector: i32 = 0;
const kMathematicalGreekOffSelector: i32 = 11;
const kMathematicalGreekOnSelector: i32 = 10;
const kMonospacedNumbersSelector: i32 = 0;
const kNLCCharactersSelector: i32 = 13;
const kNoFractionsSelector: i32 = 0;
const kNormalPositionSelector: i32 = 0;
const kNoStyleOptionsSelector: i32 = 0;
const kNumberCaseType: i32 = 21;
const kNumberSpacingType: i32 = 6;
const kOrdinalsSelector: i32 = 3;
const kProportionalNumbersSelector: i32 = 1;
const kQuarterWidthTextSelector: i32 = 4;
const kScientificInferiorsSelector: i32 = 4;
const kSlashedZeroOffSelector: i32 = 5;
const kSlashedZeroOnSelector: i32 = 4;
const kStyleOptionsType: i32 = 19;
const kStylisticAltEighteenOffSelector: i32 = 37;
const kStylisticAltEighteenOnSelector: i32 = 36;
const kStylisticAltEightOffSelector: i32 = 17;
const kStylisticAltEightOnSelector: i32 = 16;
const kStylisticAltElevenOffSelector: i32 = 23;
const kStylisticAltElevenOnSelector: i32 = 22;
const kStylisticAlternativesType: i32 = 35;
const kStylisticAltFifteenOffSelector: i32 = 31;
const kStylisticAltFifteenOnSelector: i32 = 30;
const kStylisticAltFiveOffSelector: i32 = 11;
const kStylisticAltFiveOnSelector: i32 = 10;
const kStylisticAltFourOffSelector: i32 = 9;
const kStylisticAltFourOnSelector: i32 = 8;
const kStylisticAltFourteenOffSelector: i32 = 29;
const kStylisticAltFourteenOnSelector: i32 = 28;
const kStylisticAltNineOffSelector: i32 = 19;
const kStylisticAltNineOnSelector: i32 = 18;
const kStylisticAltNineteenOffSelector: i32 = 39;
const kStylisticAltNineteenOnSelector: i32 = 38;
const kStylisticAltOneOffSelector: i32 = 3;
const kStylisticAltOneOnSelector: i32 = 2;
const kStylisticAltSevenOffSelector: i32 = 15;
const kStylisticAltSevenOnSelector: i32 = 14;
const kStylisticAltSeventeenOffSelector: i32 = 35;
const kStylisticAltSeventeenOnSelector: i32 = 34;
const kStylisticAltSixOffSelector: i32 = 13;
const kStylisticAltSixOnSelector: i32 = 12;
const kStylisticAltSixteenOffSelector: i32 = 33;
const kStylisticAltSixteenOnSelector: i32 = 32;
const kStylisticAltTenOffSelector: i32 = 21;
const kStylisticAltTenOnSelector: i32 = 20;
const kStylisticAltThirteenOffSelector: i32 = 27;
const kStylisticAltThirteenOnSelector: i32 = 26;
const kStylisticAltThreeOffSelector: i32 = 7;
const kStylisticAltThreeOnSelector: i32 = 6;
const kStylisticAltTwelveOffSelector: i32 = 25;
const kStylisticAltTwelveOnSelector: i32 = 24;
const kStylisticAltTwentyOffSelector: i32 = 41;
const kStylisticAltTwentyOnSelector: i32 = 40;
const kStylisticAltTwoOffSelector: i32 = 5;
const kStylisticAltTwoOnSelector: i32 = 4;
const kSuperiorsSelector: i32 = 1;
const kSwashAlternatesOffSelector: i32 = 3;
const kSwashAlternatesOnSelector: i32 = 2;
const kTitlingCapsSelector: i32 = 4;
const kTypographicExtrasType: i32 = 14;
const kVerticalFractionsSelector: i32 = 1;
const kVerticalPositionType: i32 = 10;
pub fn apply_features(font: &mut Font, features: FontFeatures) {
// See https://chromium.googlesource.com/chromium/src/+/66.0.3359.158/third_party/harfbuzz-ng/src/hb-coretext.cc
// for a reference implementation.
toggle_open_type_feature(
font,
features.calt(),
kContextualAlternatesType,
kContextualAlternatesOnSelector,
kContextualAlternatesOffSelector,
);
toggle_open_type_feature(
font,
features.case(),
kCaseSensitiveLayoutType,
kCaseSensitiveLayoutOnSelector,
kCaseSensitiveLayoutOffSelector,
);
toggle_open_type_feature(
font,
features.cpsp(),
kCaseSensitiveLayoutType,
kCaseSensitiveSpacingOnSelector,
kCaseSensitiveSpacingOffSelector,
);
toggle_open_type_feature(
font,
features.frac(),
kFractionsType,
kDiagonalFractionsSelector,
kNoFractionsSelector,
);
toggle_open_type_feature(
font,
features.liga(),
kLigaturesType,
kCommonLigaturesOnSelector,
kCommonLigaturesOffSelector,
);
toggle_open_type_feature(
font,
features.onum(),
kNumberCaseType,
kLowerCaseNumbersSelector,
2,
);
toggle_open_type_feature(
font,
features.ordn(),
kVerticalPositionType,
kOrdinalsSelector,
kNormalPositionSelector,
);
toggle_open_type_feature(
font,
features.pnum(),
kNumberSpacingType,
kProportionalNumbersSelector,
4,
);
toggle_open_type_feature(
font,
features.ss01(),
kStylisticAlternativesType,
kStylisticAltOneOnSelector,
kStylisticAltOneOffSelector,
);
toggle_open_type_feature(
font,
features.ss02(),
kStylisticAlternativesType,
kStylisticAltTwoOnSelector,
kStylisticAltTwoOffSelector,
);
toggle_open_type_feature(
font,
features.ss03(),
kStylisticAlternativesType,
kStylisticAltThreeOnSelector,
kStylisticAltThreeOffSelector,
);
toggle_open_type_feature(
font,
features.ss04(),
kStylisticAlternativesType,
kStylisticAltFourOnSelector,
kStylisticAltFourOffSelector,
);
toggle_open_type_feature(
font,
features.ss05(),
kStylisticAlternativesType,
kStylisticAltFiveOnSelector,
kStylisticAltFiveOffSelector,
);
toggle_open_type_feature(
font,
features.ss06(),
kStylisticAlternativesType,
kStylisticAltSixOnSelector,
kStylisticAltSixOffSelector,
);
toggle_open_type_feature(
font,
features.ss07(),
kStylisticAlternativesType,
kStylisticAltSevenOnSelector,
kStylisticAltSevenOffSelector,
);
toggle_open_type_feature(
font,
features.ss08(),
kStylisticAlternativesType,
kStylisticAltEightOnSelector,
kStylisticAltEightOffSelector,
);
toggle_open_type_feature(
font,
features.ss09(),
kStylisticAlternativesType,
kStylisticAltNineOnSelector,
kStylisticAltNineOffSelector,
);
toggle_open_type_feature(
font,
features.ss10(),
kStylisticAlternativesType,
kStylisticAltTenOnSelector,
kStylisticAltTenOffSelector,
);
toggle_open_type_feature(
font,
features.ss11(),
kStylisticAlternativesType,
kStylisticAltElevenOnSelector,
kStylisticAltElevenOffSelector,
);
toggle_open_type_feature(
font,
features.ss12(),
kStylisticAlternativesType,
kStylisticAltTwelveOnSelector,
kStylisticAltTwelveOffSelector,
);
toggle_open_type_feature(
font,
features.ss13(),
kStylisticAlternativesType,
kStylisticAltThirteenOnSelector,
kStylisticAltThirteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss14(),
kStylisticAlternativesType,
kStylisticAltFourteenOnSelector,
kStylisticAltFourteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss15(),
kStylisticAlternativesType,
kStylisticAltFifteenOnSelector,
kStylisticAltFifteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss16(),
kStylisticAlternativesType,
kStylisticAltSixteenOnSelector,
kStylisticAltSixteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss17(),
kStylisticAlternativesType,
kStylisticAltSeventeenOnSelector,
kStylisticAltSeventeenOffSelector,
);
toggle_open_type_feature(
font,
features.ss18(),
kStylisticAlternativesType,
kStylisticAltEighteenOnSelector,
kStylisticAltEighteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss19(),
kStylisticAlternativesType,
kStylisticAltNineteenOnSelector,
kStylisticAltNineteenOffSelector,
);
toggle_open_type_feature(
font,
features.ss20(),
kStylisticAlternativesType,
kStylisticAltTwentyOnSelector,
kStylisticAltTwentyOffSelector,
);
toggle_open_type_feature(
font,
features.subs(),
kVerticalPositionType,
kInferiorsSelector,
kNormalPositionSelector,
);
toggle_open_type_feature(
font,
features.sups(),
kVerticalPositionType,
kSuperiorsSelector,
kNormalPositionSelector,
);
toggle_open_type_feature(
font,
features.swsh(),
kContextualAlternatesType,
kSwashAlternatesOnSelector,
kSwashAlternatesOffSelector,
);
toggle_open_type_feature(
font,
features.titl(),
kStyleOptionsType,
kTitlingCapsSelector,
kNoStyleOptionsSelector,
);
toggle_open_type_feature(
font,
features.tnum(),
kNumberSpacingType,
kMonospacedNumbersSelector,
4,
);
toggle_open_type_feature(
font,
features.zero(),
kTypographicExtrasType,
kSlashedZeroOnSelector,
kSlashedZeroOffSelector,
);
}
fn toggle_open_type_feature(
font: &mut Font,
enabled: Option<bool>,
type_identifier: i32,
on_selector_identifier: i32,
off_selector_identifier: i32,
) {
if let Some(enabled) = enabled {
let native_font = font.native_font();
unsafe {
let selector_identifier = if enabled {
on_selector_identifier
} else {
off_selector_identifier
};
let new_descriptor = CTFontDescriptorCreateCopyWithFeature(
native_font.copy_descriptor().as_concrete_TypeRef(),
CFNumber::from(type_identifier).as_concrete_TypeRef(),
CFNumber::from(selector_identifier).as_concrete_TypeRef(),
);
let new_descriptor = CTFontDescriptor::wrap_under_create_rule(new_descriptor);
let new_font = CTFontCreateCopyWithAttributes(
font.native_font().as_concrete_TypeRef(),
0.0,
ptr::null(),
new_descriptor.as_concrete_TypeRef(),
);
let new_font = CTFont::wrap_under_create_rule(new_font);
*font = Font::from_native_font(new_font);
}
}
}
#[link(name = "CoreText", kind = "framework")]
extern "C" {
fn CTFontCreateCopyWithAttributes(
font: CTFontRef,
size: CGFloat,
matrix: *const CGAffineTransform,
attributes: CTFontDescriptorRef,
) -> CTFontRef;
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,553 @@
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
float4 hsla_to_rgba(Hsla hsla);
float4 to_device_position(float2 unit_vertex, Bounds_ScaledPixels bounds,
Bounds_ScaledPixels clip_bounds,
constant Size_DevicePixels *viewport_size);
float2 to_tile_position(float2 unit_vertex, AtlasTile tile,
constant Size_DevicePixels *atlas_size);
float quad_sdf(float2 point, Bounds_ScaledPixels bounds,
Corners_ScaledPixels corner_radii);
float gaussian(float x, float sigma);
float2 erf(float2 x);
float blur_along_x(float x, float y, float sigma, float corner,
float2 half_size);
struct QuadVertexOutput {
float4 position [[position]];
float4 background_color [[flat]];
float4 border_color [[flat]];
uint quad_id [[flat]];
};
vertex QuadVertexOutput quad_vertex(uint unit_vertex_id [[vertex_id]],
uint quad_id [[instance_id]],
constant float2 *unit_vertices
[[buffer(QuadInputIndex_Vertices)]],
constant Quad *quads
[[buffer(QuadInputIndex_Quads)]],
constant Size_DevicePixels *viewport_size
[[buffer(QuadInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Quad quad = quads[quad_id];
float4 device_position = to_device_position(
unit_vertex, quad.bounds, quad.content_mask.bounds, viewport_size);
float4 background_color = hsla_to_rgba(quad.background);
float4 border_color = hsla_to_rgba(quad.border_color);
return QuadVertexOutput{device_position, background_color, border_color,
quad_id};
}
fragment float4 quad_fragment(QuadVertexOutput input [[stage_in]],
constant Quad *quads
[[buffer(QuadInputIndex_Quads)]]) {
Quad quad = quads[input.quad_id];
float2 half_size =
float2(quad.bounds.size.width, quad.bounds.size.height) / 2.;
float2 center =
float2(quad.bounds.origin.x, quad.bounds.origin.y) + half_size;
float2 center_to_point = input.position.xy - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_left;
} else {
corner_radius = quad.corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_right;
} else {
corner_radius = quad.corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point =
fabs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
float vertical_border = center_to_point.x <= 0. ? quad.border_widths.left
: quad.border_widths.right;
float horizontal_border = center_to_point.y <= 0. ? quad.border_widths.top
: quad.border_widths.bottom;
float2 inset_size =
half_size - corner_radius - float2(vertical_border, horizontal_border);
float2 point_to_inset_corner = fabs(center_to_point) - inset_size;
float border_width;
if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
border_width = 0.;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
float4 color;
if (border_width == 0.) {
color = input.background_color;
} else {
float inset_distance = distance + border_width;
// Decrease border's opacity as we move inside the background.
input.border_color.a *= 1. - saturate(0.5 - inset_distance);
// Alpha-blend the border and the background.
float output_alpha =
quad.border_color.a + quad.background.a * (1. - quad.border_color.a);
float3 premultiplied_border_rgb =
input.border_color.rgb * quad.border_color.a;
float3 premultiplied_background_rgb =
input.background_color.rgb * input.background_color.a;
float3 premultiplied_output_rgb =
premultiplied_border_rgb +
premultiplied_background_rgb * (1. - input.border_color.a);
color = float4(premultiplied_output_rgb, output_alpha);
}
return color * float4(1., 1., 1., saturate(0.5 - distance));
}
struct ShadowVertexOutput {
float4 position [[position]];
float4 color [[flat]];
uint shadow_id [[flat]];
};
vertex ShadowVertexOutput shadow_vertex(
uint unit_vertex_id [[vertex_id]], uint shadow_id [[instance_id]],
constant float2 *unit_vertices [[buffer(ShadowInputIndex_Vertices)]],
constant Shadow *shadows [[buffer(ShadowInputIndex_Shadows)]],
constant Size_DevicePixels *viewport_size
[[buffer(ShadowInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Shadow shadow = shadows[shadow_id];
float margin = 3. * shadow.blur_radius;
// Set the bounds of the shadow and adjust its size based on the shadow's
// spread radius to achieve the spreading effect
Bounds_ScaledPixels bounds = shadow.bounds;
bounds.origin.x -= margin;
bounds.origin.y -= margin;
bounds.size.width += 2. * margin;
bounds.size.height += 2. * margin;
float4 device_position = to_device_position(
unit_vertex, bounds, shadow.content_mask.bounds, viewport_size);
float4 color = hsla_to_rgba(shadow.color);
return ShadowVertexOutput{
device_position,
color,
shadow_id,
};
}
fragment float4 shadow_fragment(ShadowVertexOutput input [[stage_in]],
constant Shadow *shadows
[[buffer(ShadowInputIndex_Shadows)]]) {
Shadow shadow = shadows[input.shadow_id];
float2 origin = float2(shadow.bounds.origin.x, shadow.bounds.origin.y);
float2 size = float2(shadow.bounds.size.width, shadow.bounds.size.height);
float2 half_size = size / 2.;
float2 center = origin + half_size;
float2 point = input.position.xy - center;
float corner_radius;
if (point.x < 0.) {
if (point.y < 0.) {
corner_radius = shadow.corner_radii.top_left;
} else {
corner_radius = shadow.corner_radii.bottom_left;
}
} else {
if (point.y < 0.) {
corner_radius = shadow.corner_radii.top_right;
} else {
corner_radius = shadow.corner_radii.bottom_right;
}
}
// The signal is only non-zero in a limited range, so don't waste samples
float low = point.y - half_size.y;
float high = point.y + half_size.y;
float start = clamp(-3. * shadow.blur_radius, low, high);
float end = clamp(3. * shadow.blur_radius, low, high);
// Accumulate samples (we can get away with surprisingly few samples)
float step = (end - start) / 4.;
float y = start + step * 0.5;
float alpha = 0.;
for (int i = 0; i < 4; i++) {
alpha += blur_along_x(point.x, point.y - y, shadow.blur_radius,
corner_radius, half_size) *
gaussian(y, shadow.blur_radius) * step;
y += step;
}
return input.color * float4(1., 1., 1., alpha);
}
struct UnderlineVertexOutput {
float4 position [[position]];
float4 color [[flat]];
uint underline_id [[flat]];
};
vertex UnderlineVertexOutput underline_vertex(
uint unit_vertex_id [[vertex_id]], uint underline_id [[instance_id]],
constant float2 *unit_vertices [[buffer(UnderlineInputIndex_Vertices)]],
constant Underline *underlines [[buffer(UnderlineInputIndex_Underlines)]],
constant Size_DevicePixels *viewport_size
[[buffer(ShadowInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Underline underline = underlines[underline_id];
float4 device_position =
to_device_position(unit_vertex, underline.bounds,
underline.content_mask.bounds, viewport_size);
float4 color = hsla_to_rgba(underline.color);
return UnderlineVertexOutput{device_position, color, underline_id};
}
fragment float4 underline_fragment(UnderlineVertexOutput input [[stage_in]],
constant Underline *underlines
[[buffer(UnderlineInputIndex_Underlines)]]) {
Underline underline = underlines[input.underline_id];
if (underline.wavy) {
float half_thickness = underline.thickness * 0.5;
float2 origin =
float2(underline.bounds.origin.x, underline.bounds.origin.y);
float2 st = ((input.position.xy - origin) / underline.bounds.size.height) -
float2(0., 0.5);
float frequency = (M_PI_F * (3. * underline.thickness)) / 8.;
float amplitude = 1. / (2. * underline.thickness);
float sine = sin(st.x * frequency) * amplitude;
float dSine = cos(st.x * frequency) * amplitude * frequency;
float distance = (st.y - sine) / sqrt(1. + dSine * dSine);
float distance_in_pixels = distance * underline.bounds.size.height;
float distance_from_top_border = distance_in_pixels - half_thickness;
float distance_from_bottom_border = distance_in_pixels + half_thickness;
float alpha = saturate(
0.5 - max(-distance_from_bottom_border, distance_from_top_border));
return input.color * float4(1., 1., 1., alpha);
} else {
return input.color;
}
}
struct MonochromeSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
float4 color [[flat]];
uint sprite_id [[flat]];
};
vertex MonochromeSpriteVertexOutput monochrome_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant MonochromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
MonochromeSprite sprite = sprites[sprite_id];
// Don't apply content mask at the vertex level because we don't have time
// to make sampling from the texture match the mask.
float4 device_position = to_device_position(unit_vertex, sprite.bounds,
sprite.bounds, viewport_size);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
float4 color = hsla_to_rgba(sprite.color);
return MonochromeSpriteVertexOutput{device_position, tile_position, color,
sprite_id};
}
fragment float4 monochrome_sprite_fragment(
MonochromeSpriteVertexOutput input [[stage_in]],
constant MonochromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
MonochromeSprite sprite = sprites[input.sprite_id];
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float clip_distance = quad_sdf(input.position.xy, sprite.content_mask.bounds,
Corners_ScaledPixels{0., 0., 0., 0.});
float4 color = input.color;
color.a *= sample.a * saturate(0.5 - clip_distance);
return color;
}
struct PolychromeSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
uint sprite_id [[flat]];
};
vertex PolychromeSpriteVertexOutput polychrome_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant PolychromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
PolychromeSprite sprite = sprites[sprite_id];
// Don't apply content mask at the vertex level because we don't have time
// to make sampling from the texture match the mask.
float4 device_position = to_device_position(unit_vertex, sprite.bounds,
sprite.bounds, viewport_size);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
return PolychromeSpriteVertexOutput{device_position, tile_position,
sprite_id};
}
fragment float4 polychrome_sprite_fragment(
PolychromeSpriteVertexOutput input [[stage_in]],
constant PolychromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
PolychromeSprite sprite = sprites[input.sprite_id];
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float quad_distance =
quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
float clip_distance = quad_sdf(input.position.xy, sprite.content_mask.bounds,
Corners_ScaledPixels{0., 0., 0., 0.});
float distance = max(quad_distance, clip_distance);
float4 color = sample;
if (sprite.grayscale) {
float grayscale = 0.2126 * color.r + 0.7152 * color.g + 0.0722 * color.b;
color.r = grayscale;
color.g = grayscale;
color.b = grayscale;
}
color.a *= saturate(0.5 - distance);
return color;
}
struct PathRasterizationVertexOutput {
float4 position [[position]];
float2 st_position;
float clip_rect_distance [[clip_distance]][4];
};
struct PathRasterizationFragmentInput {
float4 position [[position]];
float2 st_position;
};
vertex PathRasterizationVertexOutput path_rasterization_vertex(
uint vertex_id [[vertex_id]],
constant PathVertex_ScaledPixels *vertices
[[buffer(PathRasterizationInputIndex_Vertices)]],
constant Size_DevicePixels *atlas_size
[[buffer(PathRasterizationInputIndex_AtlasTextureSize)]]) {
PathVertex_ScaledPixels v = vertices[vertex_id];
float2 vertex_position = float2(v.xy_position.x, v.xy_position.y);
float2 viewport_size = float2(atlas_size->width, atlas_size->height);
return PathRasterizationVertexOutput{
float4(vertex_position / viewport_size * float2(2., -2.) +
float2(-1., 1.),
0., 1.),
float2(v.st_position.x, v.st_position.y),
{v.xy_position.x - v.content_mask.bounds.origin.x,
v.content_mask.bounds.origin.x + v.content_mask.bounds.size.width -
v.xy_position.x,
v.xy_position.y - v.content_mask.bounds.origin.y,
v.content_mask.bounds.origin.y + v.content_mask.bounds.size.height -
v.xy_position.y}};
}
fragment float4 path_rasterization_fragment(PathRasterizationFragmentInput input
[[stage_in]]) {
float2 dx = dfdx(input.st_position);
float2 dy = dfdy(input.st_position);
float2 gradient = float2((2. * input.st_position.x) * dx.x - dx.y,
(2. * input.st_position.x) * dy.x - dy.y);
float f = (input.st_position.x * input.st_position.x) - input.st_position.y;
float distance = f / length(gradient);
float alpha = saturate(0.5 - distance);
return float4(alpha, 0., 0., 1.);
}
struct PathSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
float4 color [[flat]];
uint sprite_id [[flat]];
};
vertex PathSpriteVertexOutput path_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant PathSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
PathSprite sprite = sprites[sprite_id];
// Don't apply content mask because it was already accounted for when
// rasterizing the path.
float4 device_position = to_device_position(unit_vertex, sprite.bounds,
sprite.bounds, viewport_size);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
float4 color = hsla_to_rgba(sprite.color);
return PathSpriteVertexOutput{device_position, tile_position, color,
sprite_id};
}
fragment float4 path_sprite_fragment(
PathSpriteVertexOutput input [[stage_in]],
constant PathSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
PathSprite sprite = sprites[input.sprite_id];
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float mask = 1. - abs(1. - fmod(sample.r, 2.));
float4 color = input.color;
color.a *= mask;
return color;
}
float4 hsla_to_rgba(Hsla hsla) {
float h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
float s = hsla.s;
float l = hsla.l;
float a = hsla.a;
float c = (1.0 - fabs(2.0 * l - 1.0)) * s;
float x = c * (1.0 - fabs(fmod(h, 2.0) - 1.0));
float m = l - c / 2.0;
float r = 0.0;
float g = 0.0;
float b = 0.0;
if (h >= 0.0 && h < 1.0) {
r = c;
g = x;
b = 0.0;
} else if (h >= 1.0 && h < 2.0) {
r = x;
g = c;
b = 0.0;
} else if (h >= 2.0 && h < 3.0) {
r = 0.0;
g = c;
b = x;
} else if (h >= 3.0 && h < 4.0) {
r = 0.0;
g = x;
b = c;
} else if (h >= 4.0 && h < 5.0) {
r = x;
g = 0.0;
b = c;
} else {
r = c;
g = 0.0;
b = x;
}
float4 rgba;
rgba.x = (r + m);
rgba.y = (g + m);
rgba.z = (b + m);
rgba.w = a;
return rgba;
}
float4 to_device_position(float2 unit_vertex, Bounds_ScaledPixels bounds,
Bounds_ScaledPixels clip_bounds,
constant Size_DevicePixels *input_viewport_size) {
float2 position =
unit_vertex * float2(bounds.size.width, bounds.size.height) +
float2(bounds.origin.x, bounds.origin.y);
position.x = max(clip_bounds.origin.x, position.x);
position.x = min(clip_bounds.origin.x + clip_bounds.size.width, position.x);
position.y = max(clip_bounds.origin.y, position.y);
position.y = min(clip_bounds.origin.y + clip_bounds.size.height, position.y);
float2 viewport_size = float2((float)input_viewport_size->width,
(float)input_viewport_size->height);
float2 device_position =
position / viewport_size * float2(2., -2.) + float2(-1., 1.);
return float4(device_position, 0., 1.);
}
float2 to_tile_position(float2 unit_vertex, AtlasTile tile,
constant Size_DevicePixels *atlas_size) {
float2 tile_origin = float2(tile.bounds.origin.x, tile.bounds.origin.y);
float2 tile_size = float2(tile.bounds.size.width, tile.bounds.size.height);
return (tile_origin + unit_vertex * tile_size) /
float2((float)atlas_size->width, (float)atlas_size->height);
}
float quad_sdf(float2 point, Bounds_ScaledPixels bounds,
Corners_ScaledPixels corner_radii) {
float2 half_size = float2(bounds.size.width, bounds.size.height) / 2.;
float2 center = float2(bounds.origin.x, bounds.origin.y) + half_size;
float2 center_to_point = point - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_left;
} else {
corner_radius = corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_right;
} else {
corner_radius = corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point =
abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
return distance;
}
// A standard gaussian function, used for weighting samples
float gaussian(float x, float sigma) {
return exp(-(x * x) / (2. * sigma * sigma)) / (sqrt(2. * M_PI_F) * sigma);
}
// This approximates the error function, needed for the gaussian integral
float2 erf(float2 x) {
float2 s = sign(x);
float2 a = abs(x);
x = 1. + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
x *= x;
return s - s / (x * x);
}
float blur_along_x(float x, float y, float sigma, float corner,
float2 half_size) {
float delta = min(half_size.y - corner - abs(y), 0.);
float curved =
half_size.x - corner + sqrt(max(0., corner * corner - delta * delta));
float2 integral =
0.5 + 0.5 * erf((x + float2(-curved, curved)) * (sqrt(0.5) / sigma));
return integral.y - integral.x;
}

View file

@ -0,0 +1,752 @@
use crate::{
point, px, size, Bounds, DevicePixels, Font, FontFeatures, FontId, FontMetrics, FontRun,
FontStyle, FontWeight, GlyphId, LineLayout, Pixels, PlatformTextSystem, Point,
RenderGlyphParams, Result, ShapedGlyph, ShapedRun, SharedString, Size, SUBPIXEL_VARIANTS,
};
use anyhow::anyhow;
use cocoa::appkit::{CGFloat, CGPoint};
use collections::HashMap;
use core_foundation::{
array::CFIndex,
attributed_string::{CFAttributedStringRef, CFMutableAttributedString},
base::{CFRange, TCFType},
string::CFString,
};
use core_graphics::{
base::{kCGImageAlphaPremultipliedLast, CGGlyph},
color_space::CGColorSpace,
context::CGContext,
};
use core_text::{font::CTFont, line::CTLine, string_attributes::kCTFontAttributeName};
use font_kit::{
font::Font as FontKitFont,
handle::Handle,
hinting::HintingOptions,
metrics::Metrics,
properties::{Style as FontkitStyle, Weight as FontkitWeight},
source::SystemSource,
sources::mem::MemSource,
};
use parking_lot::{RwLock, RwLockUpgradableReadGuard};
use pathfinder_geometry::{
rect::{RectF, RectI},
transform2d::Transform2F,
vector::{Vector2F, Vector2I},
};
use smallvec::SmallVec;
use std::{char, cmp, convert::TryFrom, ffi::c_void, sync::Arc};
use super::open_type;
#[allow(non_upper_case_globals)]
const kCGImageAlphaOnly: u32 = 7;
pub struct MacTextSystem(RwLock<MacTextSystemState>);
struct MacTextSystemState {
memory_source: MemSource,
system_source: SystemSource,
fonts: Vec<FontKitFont>,
font_selections: HashMap<Font, FontId>,
font_ids_by_postscript_name: HashMap<String, FontId>,
font_ids_by_family_name: HashMap<SharedString, SmallVec<[FontId; 4]>>,
postscript_names_by_font_id: HashMap<FontId, String>,
}
impl MacTextSystem {
pub fn new() -> Self {
Self(RwLock::new(MacTextSystemState {
memory_source: MemSource::empty(),
system_source: SystemSource::new(),
fonts: Vec::new(),
font_selections: HashMap::default(),
font_ids_by_postscript_name: HashMap::default(),
font_ids_by_family_name: HashMap::default(),
postscript_names_by_font_id: HashMap::default(),
}))
}
}
impl Default for MacTextSystem {
fn default() -> Self {
Self::new()
}
}
impl PlatformTextSystem for MacTextSystem {
fn add_fonts(&self, fonts: &[Arc<Vec<u8>>]) -> Result<()> {
self.0.write().add_fonts(fonts)
}
fn all_font_families(&self) -> Vec<String> {
self.0
.read()
.system_source
.all_families()
.expect("core text should never return an error")
}
fn font_id(&self, font: &Font) -> Result<FontId> {
let lock = self.0.upgradable_read();
if let Some(font_id) = lock.font_selections.get(font) {
Ok(*font_id)
} else {
let mut lock = RwLockUpgradableReadGuard::upgrade(lock);
let candidates = if let Some(font_ids) = lock.font_ids_by_family_name.get(&font.family)
{
font_ids.as_slice()
} else {
let font_ids = lock.load_family(&font.family, font.features)?;
lock.font_ids_by_family_name
.insert(font.family.clone(), font_ids);
lock.font_ids_by_family_name[&font.family].as_ref()
};
let candidate_properties = candidates
.iter()
.map(|font_id| lock.fonts[font_id.0].properties())
.collect::<SmallVec<[_; 4]>>();
let ix = font_kit::matching::find_best_match(
&candidate_properties,
&font_kit::properties::Properties {
style: font.style.into(),
weight: font.weight.into(),
stretch: Default::default(),
},
)?;
Ok(candidates[ix])
}
}
fn font_metrics(&self, font_id: FontId) -> FontMetrics {
self.0.read().fonts[font_id.0].metrics().into()
}
fn typographic_bounds(&self, font_id: FontId, glyph_id: GlyphId) -> Result<Bounds<f32>> {
Ok(self.0.read().fonts[font_id.0]
.typographic_bounds(glyph_id.into())?
.into())
}
fn advance(&self, font_id: FontId, glyph_id: GlyphId) -> Result<Size<f32>> {
self.0.read().advance(font_id, glyph_id)
}
fn glyph_for_char(&self, font_id: FontId, ch: char) -> Option<GlyphId> {
self.0.read().glyph_for_char(font_id, ch)
}
fn glyph_raster_bounds(&self, params: &RenderGlyphParams) -> Result<Bounds<DevicePixels>> {
self.0.read().raster_bounds(params)
}
fn rasterize_glyph(
&self,
glyph_id: &RenderGlyphParams,
) -> Result<(Size<DevicePixels>, Vec<u8>)> {
self.0.read().rasterize_glyph(glyph_id)
}
fn layout_line(&self, text: &str, font_size: Pixels, font_runs: &[FontRun]) -> LineLayout {
self.0.write().layout_line(text, font_size, font_runs)
}
fn wrap_line(
&self,
text: &str,
font_id: FontId,
font_size: Pixels,
width: Pixels,
) -> Vec<usize> {
self.0.read().wrap_line(text, font_id, font_size, width)
}
}
impl MacTextSystemState {
fn add_fonts(&mut self, fonts: &[Arc<Vec<u8>>]) -> Result<()> {
self.memory_source.add_fonts(
fonts
.iter()
.map(|bytes| Handle::from_memory(bytes.clone(), 0)),
)?;
Ok(())
}
fn load_family(
&mut self,
name: &SharedString,
features: FontFeatures,
) -> Result<SmallVec<[FontId; 4]>> {
let mut font_ids = SmallVec::new();
let family = self
.memory_source
.select_family_by_name(name.as_ref())
.or_else(|_| self.system_source.select_family_by_name(name.as_ref()))?;
for font in family.fonts() {
let mut font = font.load()?;
open_type::apply_features(&mut font, features);
let font_id = FontId(self.fonts.len());
font_ids.push(font_id);
let postscript_name = font.postscript_name().unwrap();
self.font_ids_by_postscript_name
.insert(postscript_name.clone(), font_id);
self.postscript_names_by_font_id
.insert(font_id, postscript_name);
self.fonts.push(font);
}
Ok(font_ids)
}
fn advance(&self, font_id: FontId, glyph_id: GlyphId) -> Result<Size<f32>> {
Ok(self.fonts[font_id.0].advance(glyph_id.into())?.into())
}
fn glyph_for_char(&self, font_id: FontId, ch: char) -> Option<GlyphId> {
self.fonts[font_id.0].glyph_for_char(ch).map(Into::into)
}
fn id_for_native_font(&mut self, requested_font: CTFont) -> FontId {
let postscript_name = requested_font.postscript_name();
if let Some(font_id) = self.font_ids_by_postscript_name.get(&postscript_name) {
*font_id
} else {
let font_id = FontId(self.fonts.len());
self.font_ids_by_postscript_name
.insert(postscript_name.clone(), font_id);
self.postscript_names_by_font_id
.insert(font_id, postscript_name);
self.fonts
.push(font_kit::font::Font::from_core_graphics_font(
requested_font.copy_to_CGFont(),
));
font_id
}
}
fn is_emoji(&self, font_id: FontId) -> bool {
self.postscript_names_by_font_id
.get(&font_id)
.map_or(false, |postscript_name| {
postscript_name == "AppleColorEmoji"
})
}
fn raster_bounds(&self, params: &RenderGlyphParams) -> Result<Bounds<DevicePixels>> {
let font = &self.fonts[params.font_id.0];
let scale = Transform2F::from_scale(params.scale_factor);
Ok(font
.raster_bounds(
params.glyph_id.into(),
params.font_size.into(),
scale,
HintingOptions::None,
font_kit::canvas::RasterizationOptions::GrayscaleAa,
)?
.into())
}
fn rasterize_glyph(&self, params: &RenderGlyphParams) -> Result<(Size<DevicePixels>, Vec<u8>)> {
let glyph_bounds = self.raster_bounds(params)?;
if glyph_bounds.size.width.0 == 0 || glyph_bounds.size.height.0 == 0 {
Err(anyhow!("glyph bounds are empty"))
} else {
// Add an extra pixel when the subpixel variant isn't zero to make room for anti-aliasing.
let mut bitmap_size = glyph_bounds.size;
if params.subpixel_variant.x > 0 {
bitmap_size.width += DevicePixels(1);
}
if params.subpixel_variant.y > 0 {
bitmap_size.height += DevicePixels(1);
}
let mut bytes;
let cx;
if params.is_emoji {
bytes = vec![0; bitmap_size.width.0 as usize * 4 * bitmap_size.height.0 as usize];
cx = CGContext::create_bitmap_context(
Some(bytes.as_mut_ptr() as *mut _),
bitmap_size.width.0 as usize,
bitmap_size.height.0 as usize,
8,
bitmap_size.width.0 as usize * 4,
&CGColorSpace::create_device_rgb(),
kCGImageAlphaPremultipliedLast,
);
} else {
bytes = vec![0; bitmap_size.width.0 as usize * bitmap_size.height.0 as usize];
cx = CGContext::create_bitmap_context(
Some(bytes.as_mut_ptr() as *mut _),
bitmap_size.width.0 as usize,
bitmap_size.height.0 as usize,
8,
bitmap_size.width.0 as usize,
&CGColorSpace::create_device_gray(),
kCGImageAlphaOnly,
);
}
// Move the origin to bottom left and account for scaling, this
// makes drawing text consistent with the font-kit's raster_bounds.
cx.translate(
-glyph_bounds.origin.x.0 as CGFloat,
(glyph_bounds.origin.y.0 + glyph_bounds.size.height.0) as CGFloat,
);
cx.scale(
params.scale_factor as CGFloat,
params.scale_factor as CGFloat,
);
let subpixel_shift = params
.subpixel_variant
.map(|v| v as f32 / SUBPIXEL_VARIANTS as f32);
cx.set_allows_font_subpixel_positioning(true);
cx.set_should_subpixel_position_fonts(true);
cx.set_allows_font_subpixel_quantization(false);
cx.set_should_subpixel_quantize_fonts(false);
self.fonts[params.font_id.0]
.native_font()
.clone_with_font_size(f32::from(params.font_size) as CGFloat)
.draw_glyphs(
&[u32::from(params.glyph_id) as CGGlyph],
&[CGPoint::new(
(subpixel_shift.x / params.scale_factor) as CGFloat,
(subpixel_shift.y / params.scale_factor) as CGFloat,
)],
cx,
);
if params.is_emoji {
// Convert from RGBA with premultiplied alpha to BGRA with straight alpha.
for pixel in bytes.chunks_exact_mut(4) {
pixel.swap(0, 2);
let a = pixel[3] as f32 / 255.;
pixel[0] = (pixel[0] as f32 / a) as u8;
pixel[1] = (pixel[1] as f32 / a) as u8;
pixel[2] = (pixel[2] as f32 / a) as u8;
}
}
Ok((bitmap_size.into(), bytes))
}
}
fn layout_line(&mut self, text: &str, font_size: Pixels, font_runs: &[FontRun]) -> LineLayout {
// Construct the attributed string, converting UTF8 ranges to UTF16 ranges.
let mut string = CFMutableAttributedString::new();
{
string.replace_str(&CFString::new(text), CFRange::init(0, 0));
let utf16_line_len = string.char_len() as usize;
let mut ix_converter = StringIndexConverter::new(text);
for run in font_runs {
let utf8_end = ix_converter.utf8_ix + run.len;
let utf16_start = ix_converter.utf16_ix;
if utf16_start >= utf16_line_len {
break;
}
ix_converter.advance_to_utf8_ix(utf8_end);
let utf16_end = cmp::min(ix_converter.utf16_ix, utf16_line_len);
let cf_range =
CFRange::init(utf16_start as isize, (utf16_end - utf16_start) as isize);
let font: &FontKitFont = &self.fonts[run.font_id.0];
unsafe {
string.set_attribute(
cf_range,
kCTFontAttributeName,
&font.native_font().clone_with_font_size(font_size.into()),
);
}
if utf16_end == utf16_line_len {
break;
}
}
}
// Retrieve the glyphs from the shaped line, converting UTF16 offsets to UTF8 offsets.
let line = CTLine::new_with_attributed_string(string.as_concrete_TypeRef());
let mut runs = Vec::new();
for run in line.glyph_runs().into_iter() {
let attributes = run.attributes().unwrap();
let font = unsafe {
attributes
.get(kCTFontAttributeName)
.downcast::<CTFont>()
.unwrap()
};
let font_id = self.id_for_native_font(font);
let mut ix_converter = StringIndexConverter::new(text);
let mut glyphs = SmallVec::new();
for ((glyph_id, position), glyph_utf16_ix) in run
.glyphs()
.iter()
.zip(run.positions().iter())
.zip(run.string_indices().iter())
{
let glyph_utf16_ix = usize::try_from(*glyph_utf16_ix).unwrap();
ix_converter.advance_to_utf16_ix(glyph_utf16_ix);
glyphs.push(ShapedGlyph {
id: (*glyph_id).into(),
position: point(position.x as f32, position.y as f32).map(px),
index: ix_converter.utf8_ix,
is_emoji: self.is_emoji(font_id),
});
}
runs.push(ShapedRun { font_id, glyphs })
}
let typographic_bounds = line.get_typographic_bounds();
LineLayout {
width: typographic_bounds.width.into(),
ascent: typographic_bounds.ascent.into(),
descent: typographic_bounds.descent.into(),
runs,
font_size,
}
}
fn wrap_line(
&self,
text: &str,
font_id: FontId,
font_size: Pixels,
width: Pixels,
) -> Vec<usize> {
let mut string = CFMutableAttributedString::new();
string.replace_str(&CFString::new(text), CFRange::init(0, 0));
let cf_range = CFRange::init(0, text.encode_utf16().count() as isize);
let font = &self.fonts[font_id.0];
unsafe {
string.set_attribute(
cf_range,
kCTFontAttributeName,
&font.native_font().clone_with_font_size(font_size.into()),
);
let typesetter = CTTypesetterCreateWithAttributedString(string.as_concrete_TypeRef());
let mut ix_converter = StringIndexConverter::new(text);
let mut break_indices = Vec::new();
while ix_converter.utf8_ix < text.len() {
let utf16_len = CTTypesetterSuggestLineBreak(
typesetter,
ix_converter.utf16_ix as isize,
width.into(),
) as usize;
ix_converter.advance_to_utf16_ix(ix_converter.utf16_ix + utf16_len);
if ix_converter.utf8_ix >= text.len() {
break;
}
break_indices.push(ix_converter.utf8_ix as usize);
}
break_indices
}
}
}
#[derive(Clone)]
struct StringIndexConverter<'a> {
text: &'a str,
utf8_ix: usize,
utf16_ix: usize,
}
impl<'a> StringIndexConverter<'a> {
fn new(text: &'a str) -> Self {
Self {
text,
utf8_ix: 0,
utf16_ix: 0,
}
}
fn advance_to_utf8_ix(&mut self, utf8_target: usize) {
for (ix, c) in self.text[self.utf8_ix..].char_indices() {
if self.utf8_ix + ix >= utf8_target {
self.utf8_ix += ix;
return;
}
self.utf16_ix += c.len_utf16();
}
self.utf8_ix = self.text.len();
}
fn advance_to_utf16_ix(&mut self, utf16_target: usize) {
for (ix, c) in self.text[self.utf8_ix..].char_indices() {
if self.utf16_ix >= utf16_target {
self.utf8_ix += ix;
return;
}
self.utf16_ix += c.len_utf16();
}
self.utf8_ix = self.text.len();
}
}
#[repr(C)]
pub struct __CFTypesetter(c_void);
pub type CTTypesetterRef = *const __CFTypesetter;
#[link(name = "CoreText", kind = "framework")]
extern "C" {
fn CTTypesetterCreateWithAttributedString(string: CFAttributedStringRef) -> CTTypesetterRef;
fn CTTypesetterSuggestLineBreak(
typesetter: CTTypesetterRef,
start_index: CFIndex,
width: f64,
) -> CFIndex;
}
impl From<Metrics> for FontMetrics {
fn from(metrics: Metrics) -> Self {
FontMetrics {
units_per_em: metrics.units_per_em,
ascent: metrics.ascent,
descent: metrics.descent,
line_gap: metrics.line_gap,
underline_position: metrics.underline_position,
underline_thickness: metrics.underline_thickness,
cap_height: metrics.cap_height,
x_height: metrics.x_height,
bounding_box: metrics.bounding_box.into(),
}
}
}
impl From<RectF> for Bounds<f32> {
fn from(rect: RectF) -> Self {
Bounds {
origin: point(rect.origin_x(), rect.origin_y()),
size: size(rect.width(), rect.height()),
}
}
}
impl From<RectI> for Bounds<DevicePixels> {
fn from(rect: RectI) -> Self {
Bounds {
origin: point(DevicePixels(rect.origin_x()), DevicePixels(rect.origin_y())),
size: size(DevicePixels(rect.width()), DevicePixels(rect.height())),
}
}
}
impl From<Vector2I> for Size<DevicePixels> {
fn from(value: Vector2I) -> Self {
size(value.x().into(), value.y().into())
}
}
impl From<RectI> for Bounds<i32> {
fn from(rect: RectI) -> Self {
Bounds {
origin: point(rect.origin_x(), rect.origin_y()),
size: size(rect.width(), rect.height()),
}
}
}
impl From<Point<u32>> for Vector2I {
fn from(size: Point<u32>) -> Self {
Vector2I::new(size.x as i32, size.y as i32)
}
}
impl From<Vector2F> for Size<f32> {
fn from(vec: Vector2F) -> Self {
size(vec.x(), vec.y())
}
}
impl From<FontWeight> for FontkitWeight {
fn from(value: FontWeight) -> Self {
FontkitWeight(value.0)
}
}
impl From<FontStyle> for FontkitStyle {
fn from(style: FontStyle) -> Self {
match style {
FontStyle::Normal => FontkitStyle::Normal,
FontStyle::Italic => FontkitStyle::Italic,
FontStyle::Oblique => FontkitStyle::Oblique,
}
}
}
// #[cfg(test)]
// mod tests {
// use super::*;
// use crate::AppContext;
// use font_kit::properties::{Style, Weight};
// use platform::FontSystem as _;
// #[crate::test(self, retries = 5)]
// fn test_layout_str(_: &mut AppContext) {
// // This is failing intermittently on CI and we don't have time to figure it out
// let fonts = FontSystem::new();
// let menlo = fonts.load_family("Menlo", &Default::default()).unwrap();
// let menlo_regular = RunStyle {
// font_id: fonts.select_font(&menlo, &Properties::new()).unwrap(),
// color: Default::default(),
// underline: Default::default(),
// };
// let menlo_italic = RunStyle {
// font_id: fonts
// .select_font(&menlo, Properties::new().style(Style::Italic))
// .unwrap(),
// color: Default::default(),
// underline: Default::default(),
// };
// let menlo_bold = RunStyle {
// font_id: fonts
// .select_font(&menlo, Properties::new().weight(Weight::BOLD))
// .unwrap(),
// color: Default::default(),
// underline: Default::default(),
// };
// assert_ne!(menlo_regular, menlo_italic);
// assert_ne!(menlo_regular, menlo_bold);
// assert_ne!(menlo_italic, menlo_bold);
// let line = fonts.layout_line(
// "hello world",
// 16.0,
// &[(2, menlo_bold), (4, menlo_italic), (5, menlo_regular)],
// );
// assert_eq!(line.runs.len(), 3);
// assert_eq!(line.runs[0].font_id, menlo_bold.font_id);
// assert_eq!(line.runs[0].glyphs.len(), 2);
// assert_eq!(line.runs[1].font_id, menlo_italic.font_id);
// assert_eq!(line.runs[1].glyphs.len(), 4);
// assert_eq!(line.runs[2].font_id, menlo_regular.font_id);
// assert_eq!(line.runs[2].glyphs.len(), 5);
// }
// #[test]
// fn test_glyph_offsets() -> crate::Result<()> {
// let fonts = FontSystem::new();
// let zapfino = fonts.load_family("Zapfino", &Default::default())?;
// let zapfino_regular = RunStyle {
// font_id: fonts.select_font(&zapfino, &Properties::new())?,
// color: Default::default(),
// underline: Default::default(),
// };
// let menlo = fonts.load_family("Menlo", &Default::default())?;
// let menlo_regular = RunStyle {
// font_id: fonts.select_font(&menlo, &Properties::new())?,
// color: Default::default(),
// underline: Default::default(),
// };
// let text = "This is, m𐍈re 𐍈r less, Zapfino!𐍈";
// let line = fonts.layout_line(
// text,
// 16.0,
// &[
// (9, zapfino_regular),
// (13, menlo_regular),
// (text.len() - 22, zapfino_regular),
// ],
// );
// assert_eq!(
// line.runs
// .iter()
// .flat_map(|r| r.glyphs.iter())
// .map(|g| g.index)
// .collect::<Vec<_>>(),
// vec![0, 2, 4, 5, 7, 8, 9, 10, 14, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 29, 36, 37],
// );
// Ok(())
// }
// #[test]
// #[ignore]
// fn test_rasterize_glyph() {
// use std::{fs::File, io::BufWriter, path::Path};
// let fonts = FontSystem::new();
// let font_ids = fonts.load_family("Fira Code", &Default::default()).unwrap();
// let font_id = fonts.select_font(&font_ids, &Default::default()).unwrap();
// let glyph_id = fonts.glyph_for_char(font_id, 'G').unwrap();
// const VARIANTS: usize = 1;
// for i in 0..VARIANTS {
// let variant = i as f32 / VARIANTS as f32;
// let (bounds, bytes) = fonts
// .rasterize_glyph(
// font_id,
// 16.0,
// glyph_id,
// vec2f(variant, variant),
// 2.,
// RasterizationOptions::Alpha,
// )
// .unwrap();
// let name = format!("/Users/as-cii/Desktop/twog-{}.png", i);
// let path = Path::new(&name);
// let file = File::create(path).unwrap();
// let w = &mut BufWriter::new(file);
// let mut encoder = png::Encoder::new(w, bounds.width() as u32, bounds.height() as u32);
// encoder.set_color(png::ColorType::Grayscale);
// encoder.set_depth(png::BitDepth::Eight);
// let mut writer = encoder.write_header().unwrap();
// writer.write_image_data(&bytes).unwrap();
// }
// }
// #[test]
// fn test_wrap_line() {
// let fonts = FontSystem::new();
// let font_ids = fonts.load_family("Helvetica", &Default::default()).unwrap();
// let font_id = fonts.select_font(&font_ids, &Default::default()).unwrap();
// let line = "one two three four five\n";
// let wrap_boundaries = fonts.wrap_line(line, font_id, 16., 64.0);
// assert_eq!(wrap_boundaries, &["one two ".len(), "one two three ".len()]);
// let line = "aaa ααα ✋✋✋ 🎉🎉🎉\n";
// let wrap_boundaries = fonts.wrap_line(line, font_id, 16., 64.0);
// assert_eq!(
// wrap_boundaries,
// &["aaa ααα ".len(), "aaa ααα ✋✋✋ ".len(),]
// );
// }
// #[test]
// fn test_layout_line_bom_char() {
// let fonts = FontSystem::new();
// let font_ids = fonts.load_family("Helvetica", &Default::default()).unwrap();
// let style = RunStyle {
// font_id: fonts.select_font(&font_ids, &Default::default()).unwrap(),
// color: Default::default(),
// underline: Default::default(),
// };
// let line = "\u{feff}";
// let layout = fonts.layout_line(line, 16., &[(line.len(), style)]);
// assert_eq!(layout.len, line.len());
// assert!(layout.runs.is_empty());
// let line = "a\u{feff}b";
// let layout = fonts.layout_line(line, 16., &[(line.len(), style)]);
// assert_eq!(layout.len, line.len());
// assert_eq!(layout.runs.len(), 1);
// assert_eq!(layout.runs[0].glyphs.len(), 2);
// assert_eq!(layout.runs[0].glyphs[0].id, 68); // a
// // There's no glyph for \u{feff}
// assert_eq!(layout.runs[0].glyphs[1].id, 69); // b
// }
// }

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,35 @@
use crate::WindowAppearance;
use cocoa::{
appkit::{NSAppearanceNameVibrantDark, NSAppearanceNameVibrantLight},
base::id,
foundation::NSString,
};
use objc::{msg_send, sel, sel_impl};
use std::ffi::CStr;
impl WindowAppearance {
pub unsafe fn from_native(appearance: id) -> Self {
let name: id = msg_send![appearance, name];
if name == NSAppearanceNameVibrantLight {
Self::VibrantLight
} else if name == NSAppearanceNameVibrantDark {
Self::VibrantDark
} else if name == NSAppearanceNameAqua {
Self::Light
} else if name == NSAppearanceNameDarkAqua {
Self::Dark
} else {
println!(
"unknown appearance: {:?}",
CStr::from_ptr(name.UTF8String())
);
Self::Light
}
}
}
#[link(name = "AppKit", kind = "framework")]
extern "C" {
pub static NSAppearanceNameAqua: id;
pub static NSAppearanceNameDarkAqua: id;
}

View file

@ -0,0 +1,188 @@
use super::Platform;
use crate::{DisplayId, Executor};
pub struct TestPlatform;
impl TestPlatform {
pub fn new() -> Self {
TestPlatform
}
}
// todo!("implement out what our tests needed in GPUI 1")
impl Platform for TestPlatform {
fn executor(&self) -> Executor {
unimplemented!()
}
fn text_system(&self) -> std::sync::Arc<dyn crate::PlatformTextSystem> {
unimplemented!()
}
fn run(&self, _on_finish_launching: Box<dyn FnOnce()>) {
unimplemented!()
}
fn quit(&self) {
unimplemented!()
}
fn restart(&self) {
unimplemented!()
}
fn activate(&self, _ignoring_other_apps: bool) {
unimplemented!()
}
fn hide(&self) {
unimplemented!()
}
fn hide_other_apps(&self) {
unimplemented!()
}
fn unhide_other_apps(&self) {
unimplemented!()
}
fn displays(&self) -> Vec<std::rc::Rc<dyn crate::PlatformDisplay>> {
unimplemented!()
}
fn display(&self, _id: DisplayId) -> Option<std::rc::Rc<dyn crate::PlatformDisplay>> {
unimplemented!()
}
fn main_window(&self) -> Option<crate::AnyWindowHandle> {
unimplemented!()
}
fn open_window(
&self,
_handle: crate::AnyWindowHandle,
_options: crate::WindowOptions,
) -> Box<dyn crate::PlatformWindow> {
unimplemented!()
}
fn set_display_link_output_callback(
&self,
_display_id: DisplayId,
_callback: Box<dyn FnMut(&crate::VideoTimestamp, &crate::VideoTimestamp)>,
) {
unimplemented!()
}
fn start_display_link(&self, _display_id: DisplayId) {
unimplemented!()
}
fn stop_display_link(&self, _display_id: DisplayId) {
unimplemented!()
}
fn open_url(&self, _url: &str) {
unimplemented!()
}
fn on_open_urls(&self, _callback: Box<dyn FnMut(Vec<String>)>) {
unimplemented!()
}
fn prompt_for_paths(
&self,
_options: crate::PathPromptOptions,
) -> futures::channel::oneshot::Receiver<Option<Vec<std::path::PathBuf>>> {
unimplemented!()
}
fn prompt_for_new_path(
&self,
_directory: &std::path::Path,
) -> futures::channel::oneshot::Receiver<Option<std::path::PathBuf>> {
unimplemented!()
}
fn reveal_path(&self, _path: &std::path::Path) {
unimplemented!()
}
fn on_become_active(&self, _callback: Box<dyn FnMut()>) {
unimplemented!()
}
fn on_resign_active(&self, _callback: Box<dyn FnMut()>) {
unimplemented!()
}
fn on_quit(&self, _callback: Box<dyn FnMut()>) {
unimplemented!()
}
fn on_reopen(&self, _callback: Box<dyn FnMut()>) {
unimplemented!()
}
fn on_event(&self, _callback: Box<dyn FnMut(crate::InputEvent) -> bool>) {
unimplemented!()
}
fn os_name(&self) -> &'static str {
unimplemented!()
}
fn os_version(&self) -> anyhow::Result<crate::SemanticVersion> {
unimplemented!()
}
fn app_version(&self) -> anyhow::Result<crate::SemanticVersion> {
unimplemented!()
}
fn app_path(&self) -> anyhow::Result<std::path::PathBuf> {
unimplemented!()
}
fn local_timezone(&self) -> time::UtcOffset {
unimplemented!()
}
fn path_for_auxiliary_executable(&self, _name: &str) -> anyhow::Result<std::path::PathBuf> {
unimplemented!()
}
fn set_cursor_style(&self, _style: crate::CursorStyle) {
unimplemented!()
}
fn should_auto_hide_scrollbars(&self) -> bool {
unimplemented!()
}
fn write_to_clipboard(&self, _item: crate::ClipboardItem) {
unimplemented!()
}
fn read_from_clipboard(&self) -> Option<crate::ClipboardItem> {
unimplemented!()
}
fn write_credentials(
&self,
_url: &str,
_username: &str,
_password: &[u8],
) -> anyhow::Result<()> {
unimplemented!()
}
fn read_credentials(&self, _url: &str) -> anyhow::Result<Option<(String, Vec<u8>)>> {
unimplemented!()
}
fn delete_credentials(&self, _url: &str) -> anyhow::Result<()> {
unimplemented!()
}
}