diff --git a/Cargo.lock b/Cargo.lock
index e2d86576c3..15a28016c6 100644
--- a/Cargo.lock
+++ b/Cargo.lock
@@ -9094,6 +9094,7 @@ dependencies = [
"util",
"vercel",
"workspace-hack",
+ "x_ai",
"zed_llm_client",
]
@@ -19840,6 +19841,17 @@ version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec107c4503ea0b4a98ef47356329af139c0a4f7750e621cf2973cd3385ebcb3d"
+[[package]]
+name = "x_ai"
+version = "0.1.0"
+dependencies = [
+ "anyhow",
+ "schemars",
+ "serde",
+ "strum 0.27.1",
+ "workspace-hack",
+]
+
[[package]]
name = "xattr"
version = "0.2.3"
diff --git a/Cargo.toml b/Cargo.toml
index 0e4cd1504f..afb47c006e 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -179,6 +179,7 @@ members = [
"crates/welcome",
"crates/workspace",
"crates/worktree",
+ "crates/x_ai",
"crates/zed",
"crates/zed_actions",
"crates/zeta",
@@ -394,6 +395,7 @@ web_search_providers = { path = "crates/web_search_providers" }
welcome = { path = "crates/welcome" }
workspace = { path = "crates/workspace" }
worktree = { path = "crates/worktree" }
+x_ai = { path = "crates/x_ai" }
zed = { path = "crates/zed" }
zed_actions = { path = "crates/zed_actions" }
zeta = { path = "crates/zeta" }
diff --git a/assets/icons/ai_x_ai.svg b/assets/icons/ai_x_ai.svg
new file mode 100644
index 0000000000..289525c8ef
--- /dev/null
+++ b/assets/icons/ai_x_ai.svg
@@ -0,0 +1,3 @@
+
diff --git a/crates/icons/src/icons.rs b/crates/icons/src/icons.rs
index 3c24ee59f6..b2ec768435 100644
--- a/crates/icons/src/icons.rs
+++ b/crates/icons/src/icons.rs
@@ -21,6 +21,7 @@ pub enum IconName {
AiOpenAi,
AiOpenRouter,
AiVZero,
+ AiXAi,
AiZed,
ArrowCircle,
ArrowDown,
diff --git a/crates/language_models/Cargo.toml b/crates/language_models/Cargo.toml
index 0f248edd57..5d158e84f4 100644
--- a/crates/language_models/Cargo.toml
+++ b/crates/language_models/Cargo.toml
@@ -43,6 +43,7 @@ ollama = { workspace = true, features = ["schemars"] }
open_ai = { workspace = true, features = ["schemars"] }
open_router = { workspace = true, features = ["schemars"] }
vercel = { workspace = true, features = ["schemars"] }
+x_ai = { workspace = true, features = ["schemars"] }
partial-json-fixer.workspace = true
proto.workspace = true
release_channel.workspace = true
diff --git a/crates/language_models/src/language_models.rs b/crates/language_models/src/language_models.rs
index c7324732c9..192f5a5fae 100644
--- a/crates/language_models/src/language_models.rs
+++ b/crates/language_models/src/language_models.rs
@@ -20,6 +20,7 @@ use crate::provider::ollama::OllamaLanguageModelProvider;
use crate::provider::open_ai::OpenAiLanguageModelProvider;
use crate::provider::open_router::OpenRouterLanguageModelProvider;
use crate::provider::vercel::VercelLanguageModelProvider;
+use crate::provider::x_ai::XAiLanguageModelProvider;
pub use crate::settings::*;
pub fn init(user_store: Entity, client: Arc, cx: &mut App) {
@@ -81,5 +82,6 @@ fn register_language_model_providers(
VercelLanguageModelProvider::new(client.http_client(), cx),
cx,
);
+ registry.register_provider(XAiLanguageModelProvider::new(client.http_client(), cx), cx);
registry.register_provider(CopilotChatLanguageModelProvider::new(cx), cx);
}
diff --git a/crates/language_models/src/provider.rs b/crates/language_models/src/provider.rs
index 6bc93bd366..c717be7c90 100644
--- a/crates/language_models/src/provider.rs
+++ b/crates/language_models/src/provider.rs
@@ -10,3 +10,4 @@ pub mod ollama;
pub mod open_ai;
pub mod open_router;
pub mod vercel;
+pub mod x_ai;
diff --git a/crates/language_models/src/provider/open_router.rs b/crates/language_models/src/provider/open_router.rs
index c46135ff3e..5a6acc4329 100644
--- a/crates/language_models/src/provider/open_router.rs
+++ b/crates/language_models/src/provider/open_router.rs
@@ -376,7 +376,7 @@ impl LanguageModel for OpenRouterLanguageModel {
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
let model_id = self.model.id().trim().to_lowercase();
- if model_id.contains("gemini") {
+ if model_id.contains("gemini") || model_id.contains("grok-4") {
LanguageModelToolSchemaFormat::JsonSchemaSubset
} else {
LanguageModelToolSchemaFormat::JsonSchema
diff --git a/crates/language_models/src/provider/x_ai.rs b/crates/language_models/src/provider/x_ai.rs
new file mode 100644
index 0000000000..5f6034571b
--- /dev/null
+++ b/crates/language_models/src/provider/x_ai.rs
@@ -0,0 +1,571 @@
+use anyhow::{Context as _, Result, anyhow};
+use collections::BTreeMap;
+use credentials_provider::CredentialsProvider;
+use futures::{FutureExt, StreamExt, future::BoxFuture};
+use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
+use http_client::HttpClient;
+use language_model::{
+ AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
+ LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
+ LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
+ LanguageModelToolChoice, LanguageModelToolSchemaFormat, RateLimiter, Role,
+};
+use menu;
+use open_ai::ResponseStreamEvent;
+use schemars::JsonSchema;
+use serde::{Deserialize, Serialize};
+use settings::{Settings, SettingsStore};
+use std::sync::Arc;
+use strum::IntoEnumIterator;
+use x_ai::Model;
+
+use ui::{ElevationIndex, List, Tooltip, prelude::*};
+use ui_input::SingleLineInput;
+use util::ResultExt;
+
+use crate::{AllLanguageModelSettings, ui::InstructionListItem};
+
+const PROVIDER_ID: &str = "x_ai";
+const PROVIDER_NAME: &str = "xAI";
+
+#[derive(Default, Clone, Debug, PartialEq)]
+pub struct XAiSettings {
+ pub api_url: String,
+ pub available_models: Vec,
+}
+
+#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
+pub struct AvailableModel {
+ pub name: String,
+ pub display_name: Option,
+ pub max_tokens: u64,
+ pub max_output_tokens: Option,
+ pub max_completion_tokens: Option,
+}
+
+pub struct XAiLanguageModelProvider {
+ http_client: Arc,
+ state: gpui::Entity,
+}
+
+pub struct State {
+ api_key: Option,
+ api_key_from_env: bool,
+ _subscription: Subscription,
+}
+
+const XAI_API_KEY_VAR: &str = "XAI_API_KEY";
+
+impl State {
+ fn is_authenticated(&self) -> bool {
+ self.api_key.is_some()
+ }
+
+ fn reset_api_key(&self, cx: &mut Context) -> Task> {
+ let credentials_provider = ::global(cx);
+ let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
+ let api_url = if settings.api_url.is_empty() {
+ x_ai::XAI_API_URL.to_string()
+ } else {
+ settings.api_url.clone()
+ };
+ cx.spawn(async move |this, cx| {
+ credentials_provider
+ .delete_credentials(&api_url, &cx)
+ .await
+ .log_err();
+ this.update(cx, |this, cx| {
+ this.api_key = None;
+ this.api_key_from_env = false;
+ cx.notify();
+ })
+ })
+ }
+
+ fn set_api_key(&mut self, api_key: String, cx: &mut Context) -> Task> {
+ let credentials_provider = ::global(cx);
+ let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
+ let api_url = if settings.api_url.is_empty() {
+ x_ai::XAI_API_URL.to_string()
+ } else {
+ settings.api_url.clone()
+ };
+ cx.spawn(async move |this, cx| {
+ credentials_provider
+ .write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
+ .await
+ .log_err();
+ this.update(cx, |this, cx| {
+ this.api_key = Some(api_key);
+ cx.notify();
+ })
+ })
+ }
+
+ fn authenticate(&self, cx: &mut Context) -> Task> {
+ if self.is_authenticated() {
+ return Task::ready(Ok(()));
+ }
+
+ let credentials_provider = ::global(cx);
+ let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
+ let api_url = if settings.api_url.is_empty() {
+ x_ai::XAI_API_URL.to_string()
+ } else {
+ settings.api_url.clone()
+ };
+ cx.spawn(async move |this, cx| {
+ let (api_key, from_env) = if let Ok(api_key) = std::env::var(XAI_API_KEY_VAR) {
+ (api_key, true)
+ } else {
+ let (_, api_key) = credentials_provider
+ .read_credentials(&api_url, &cx)
+ .await?
+ .ok_or(AuthenticateError::CredentialsNotFound)?;
+ (
+ String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
+ false,
+ )
+ };
+ this.update(cx, |this, cx| {
+ this.api_key = Some(api_key);
+ this.api_key_from_env = from_env;
+ cx.notify();
+ })?;
+
+ Ok(())
+ })
+ }
+}
+
+impl XAiLanguageModelProvider {
+ pub fn new(http_client: Arc, cx: &mut App) -> Self {
+ let state = cx.new(|cx| State {
+ api_key: None,
+ api_key_from_env: false,
+ _subscription: cx.observe_global::(|_this: &mut State, cx| {
+ cx.notify();
+ }),
+ });
+
+ Self { http_client, state }
+ }
+
+ fn create_language_model(&self, model: x_ai::Model) -> Arc {
+ Arc::new(XAiLanguageModel {
+ id: LanguageModelId::from(model.id().to_string()),
+ model,
+ state: self.state.clone(),
+ http_client: self.http_client.clone(),
+ request_limiter: RateLimiter::new(4),
+ })
+ }
+}
+
+impl LanguageModelProviderState for XAiLanguageModelProvider {
+ type ObservableEntity = State;
+
+ fn observable_entity(&self) -> Option> {
+ Some(self.state.clone())
+ }
+}
+
+impl LanguageModelProvider for XAiLanguageModelProvider {
+ fn id(&self) -> LanguageModelProviderId {
+ LanguageModelProviderId(PROVIDER_ID.into())
+ }
+
+ fn name(&self) -> LanguageModelProviderName {
+ LanguageModelProviderName(PROVIDER_NAME.into())
+ }
+
+ fn icon(&self) -> IconName {
+ IconName::AiXAi
+ }
+
+ fn default_model(&self, _cx: &App) -> Option> {
+ Some(self.create_language_model(x_ai::Model::default()))
+ }
+
+ fn default_fast_model(&self, _cx: &App) -> Option> {
+ Some(self.create_language_model(x_ai::Model::default_fast()))
+ }
+
+ fn provided_models(&self, cx: &App) -> Vec> {
+ let mut models = BTreeMap::default();
+
+ for model in x_ai::Model::iter() {
+ if !matches!(model, x_ai::Model::Custom { .. }) {
+ models.insert(model.id().to_string(), model);
+ }
+ }
+
+ for model in &AllLanguageModelSettings::get_global(cx)
+ .x_ai
+ .available_models
+ {
+ models.insert(
+ model.name.clone(),
+ x_ai::Model::Custom {
+ name: model.name.clone(),
+ display_name: model.display_name.clone(),
+ max_tokens: model.max_tokens,
+ max_output_tokens: model.max_output_tokens,
+ max_completion_tokens: model.max_completion_tokens,
+ },
+ );
+ }
+
+ models
+ .into_values()
+ .map(|model| self.create_language_model(model))
+ .collect()
+ }
+
+ fn is_authenticated(&self, cx: &App) -> bool {
+ self.state.read(cx).is_authenticated()
+ }
+
+ fn authenticate(&self, cx: &mut App) -> Task> {
+ self.state.update(cx, |state, cx| state.authenticate(cx))
+ }
+
+ fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
+ cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
+ .into()
+ }
+
+ fn reset_credentials(&self, cx: &mut App) -> Task> {
+ self.state.update(cx, |state, cx| state.reset_api_key(cx))
+ }
+}
+
+pub struct XAiLanguageModel {
+ id: LanguageModelId,
+ model: x_ai::Model,
+ state: gpui::Entity,
+ http_client: Arc,
+ request_limiter: RateLimiter,
+}
+
+impl XAiLanguageModel {
+ fn stream_completion(
+ &self,
+ request: open_ai::Request,
+ cx: &AsyncApp,
+ ) -> BoxFuture<'static, Result>>>
+ {
+ let http_client = self.http_client.clone();
+ let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
+ let settings = &AllLanguageModelSettings::get_global(cx).x_ai;
+ let api_url = if settings.api_url.is_empty() {
+ x_ai::XAI_API_URL.to_string()
+ } else {
+ settings.api_url.clone()
+ };
+ (state.api_key.clone(), api_url)
+ }) else {
+ return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
+ };
+
+ let future = self.request_limiter.stream(async move {
+ let api_key = api_key.context("Missing xAI API Key")?;
+ let request =
+ open_ai::stream_completion(http_client.as_ref(), &api_url, &api_key, request);
+ let response = request.await?;
+ Ok(response)
+ });
+
+ async move { Ok(future.await?.boxed()) }.boxed()
+ }
+}
+
+impl LanguageModel for XAiLanguageModel {
+ fn id(&self) -> LanguageModelId {
+ self.id.clone()
+ }
+
+ fn name(&self) -> LanguageModelName {
+ LanguageModelName::from(self.model.display_name().to_string())
+ }
+
+ fn provider_id(&self) -> LanguageModelProviderId {
+ LanguageModelProviderId(PROVIDER_ID.into())
+ }
+
+ fn provider_name(&self) -> LanguageModelProviderName {
+ LanguageModelProviderName(PROVIDER_NAME.into())
+ }
+
+ fn supports_tools(&self) -> bool {
+ self.model.supports_tool()
+ }
+
+ fn supports_images(&self) -> bool {
+ self.model.supports_images()
+ }
+
+ fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
+ match choice {
+ LanguageModelToolChoice::Auto
+ | LanguageModelToolChoice::Any
+ | LanguageModelToolChoice::None => true,
+ }
+ }
+ fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
+ let model_id = self.model.id().trim().to_lowercase();
+ if model_id.eq(x_ai::Model::Grok4.id()) {
+ LanguageModelToolSchemaFormat::JsonSchemaSubset
+ } else {
+ LanguageModelToolSchemaFormat::JsonSchema
+ }
+ }
+
+ fn telemetry_id(&self) -> String {
+ format!("x_ai/{}", self.model.id())
+ }
+
+ fn max_token_count(&self) -> u64 {
+ self.model.max_token_count()
+ }
+
+ fn max_output_tokens(&self) -> Option {
+ self.model.max_output_tokens()
+ }
+
+ fn count_tokens(
+ &self,
+ request: LanguageModelRequest,
+ cx: &App,
+ ) -> BoxFuture<'static, Result> {
+ count_xai_tokens(request, self.model.clone(), cx)
+ }
+
+ fn stream_completion(
+ &self,
+ request: LanguageModelRequest,
+ cx: &AsyncApp,
+ ) -> BoxFuture<
+ 'static,
+ Result<
+ futures::stream::BoxStream<
+ 'static,
+ Result,
+ >,
+ LanguageModelCompletionError,
+ >,
+ > {
+ let request = crate::provider::open_ai::into_open_ai(
+ request,
+ self.model.id(),
+ self.model.supports_parallel_tool_calls(),
+ self.max_output_tokens(),
+ );
+ let completions = self.stream_completion(request, cx);
+ async move {
+ let mapper = crate::provider::open_ai::OpenAiEventMapper::new();
+ Ok(mapper.map_stream(completions.await?).boxed())
+ }
+ .boxed()
+ }
+}
+
+pub fn count_xai_tokens(
+ request: LanguageModelRequest,
+ model: Model,
+ cx: &App,
+) -> BoxFuture<'static, Result> {
+ cx.background_spawn(async move {
+ let messages = request
+ .messages
+ .into_iter()
+ .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
+ role: match message.role {
+ Role::User => "user".into(),
+ Role::Assistant => "assistant".into(),
+ Role::System => "system".into(),
+ },
+ content: Some(message.string_contents()),
+ name: None,
+ function_call: None,
+ })
+ .collect::>();
+
+ let model_name = if model.max_token_count() >= 100_000 {
+ "gpt-4o"
+ } else {
+ "gpt-4"
+ };
+ tiktoken_rs::num_tokens_from_messages(model_name, &messages).map(|tokens| tokens as u64)
+ })
+ .boxed()
+}
+
+struct ConfigurationView {
+ api_key_editor: Entity,
+ state: gpui::Entity,
+ load_credentials_task: Option>,
+}
+
+impl ConfigurationView {
+ fn new(state: gpui::Entity, window: &mut Window, cx: &mut Context) -> Self {
+ let api_key_editor = cx.new(|cx| {
+ SingleLineInput::new(
+ window,
+ cx,
+ "xai-0000000000000000000000000000000000000000000000000",
+ )
+ .label("API key")
+ });
+
+ cx.observe(&state, |_, _, cx| {
+ cx.notify();
+ })
+ .detach();
+
+ let load_credentials_task = Some(cx.spawn_in(window, {
+ let state = state.clone();
+ async move |this, cx| {
+ if let Some(task) = state
+ .update(cx, |state, cx| state.authenticate(cx))
+ .log_err()
+ {
+ // We don't log an error, because "not signed in" is also an error.
+ let _ = task.await;
+ }
+ this.update(cx, |this, cx| {
+ this.load_credentials_task = None;
+ cx.notify();
+ })
+ .log_err();
+ }
+ }));
+
+ Self {
+ api_key_editor,
+ state,
+ load_credentials_task,
+ }
+ }
+
+ fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context) {
+ let api_key = self
+ .api_key_editor
+ .read(cx)
+ .editor()
+ .read(cx)
+ .text(cx)
+ .trim()
+ .to_string();
+
+ // Don't proceed if no API key is provided and we're not authenticated
+ if api_key.is_empty() && !self.state.read(cx).is_authenticated() {
+ return;
+ }
+
+ let state = self.state.clone();
+ cx.spawn_in(window, async move |_, cx| {
+ state
+ .update(cx, |state, cx| state.set_api_key(api_key, cx))?
+ .await
+ })
+ .detach_and_log_err(cx);
+
+ cx.notify();
+ }
+
+ fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context) {
+ self.api_key_editor.update(cx, |input, cx| {
+ input.editor.update(cx, |editor, cx| {
+ editor.set_text("", window, cx);
+ });
+ });
+
+ let state = self.state.clone();
+ cx.spawn_in(window, async move |_, cx| {
+ state.update(cx, |state, cx| state.reset_api_key(cx))?.await
+ })
+ .detach_and_log_err(cx);
+
+ cx.notify();
+ }
+
+ fn should_render_editor(&self, cx: &mut Context) -> bool {
+ !self.state.read(cx).is_authenticated()
+ }
+}
+
+impl Render for ConfigurationView {
+ fn render(&mut self, _: &mut Window, cx: &mut Context) -> impl IntoElement {
+ let env_var_set = self.state.read(cx).api_key_from_env;
+
+ let api_key_section = if self.should_render_editor(cx) {
+ v_flex()
+ .on_action(cx.listener(Self::save_api_key))
+ .child(Label::new("To use Zed's agent with xAI, you need to add an API key. Follow these steps:"))
+ .child(
+ List::new()
+ .child(InstructionListItem::new(
+ "Create one by visiting",
+ Some("xAI console"),
+ Some("https://console.x.ai/team/default/api-keys"),
+ ))
+ .child(InstructionListItem::text_only(
+ "Paste your API key below and hit enter to start using the agent",
+ )),
+ )
+ .child(self.api_key_editor.clone())
+ .child(
+ Label::new(format!(
+ "You can also assign the {XAI_API_KEY_VAR} environment variable and restart Zed."
+ ))
+ .size(LabelSize::Small)
+ .color(Color::Muted),
+ )
+ .child(
+ Label::new("Note that xAI is a custom OpenAI-compatible provider.")
+ .size(LabelSize::Small)
+ .color(Color::Muted),
+ )
+ .into_any()
+ } else {
+ h_flex()
+ .mt_1()
+ .p_1()
+ .justify_between()
+ .rounded_md()
+ .border_1()
+ .border_color(cx.theme().colors().border)
+ .bg(cx.theme().colors().background)
+ .child(
+ h_flex()
+ .gap_1()
+ .child(Icon::new(IconName::Check).color(Color::Success))
+ .child(Label::new(if env_var_set {
+ format!("API key set in {XAI_API_KEY_VAR} environment variable.")
+ } else {
+ "API key configured.".to_string()
+ })),
+ )
+ .child(
+ Button::new("reset-api-key", "Reset API Key")
+ .label_size(LabelSize::Small)
+ .icon(IconName::Undo)
+ .icon_size(IconSize::Small)
+ .icon_position(IconPosition::Start)
+ .layer(ElevationIndex::ModalSurface)
+ .when(env_var_set, |this| {
+ this.tooltip(Tooltip::text(format!("To reset your API key, unset the {XAI_API_KEY_VAR} environment variable.")))
+ })
+ .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
+ )
+ .into_any()
+ };
+
+ if self.load_credentials_task.is_some() {
+ div().child(Label::new("Loading credentials…")).into_any()
+ } else {
+ v_flex().size_full().child(api_key_section).into_any()
+ }
+ }
+}
diff --git a/crates/language_models/src/settings.rs b/crates/language_models/src/settings.rs
index f96a2c0a66..dafbb62910 100644
--- a/crates/language_models/src/settings.rs
+++ b/crates/language_models/src/settings.rs
@@ -17,6 +17,7 @@ use crate::provider::{
open_ai::OpenAiSettings,
open_router::OpenRouterSettings,
vercel::VercelSettings,
+ x_ai::XAiSettings,
};
/// Initializes the language model settings.
@@ -28,33 +29,33 @@ pub fn init(cx: &mut App) {
pub struct AllLanguageModelSettings {
pub anthropic: AnthropicSettings,
pub bedrock: AmazonBedrockSettings,
- pub ollama: OllamaSettings,
- pub openai: OpenAiSettings,
- pub open_router: OpenRouterSettings,
- pub zed_dot_dev: ZedDotDevSettings,
- pub google: GoogleSettings,
- pub vercel: VercelSettings,
-
- pub lmstudio: LmStudioSettings,
pub deepseek: DeepSeekSettings,
+ pub google: GoogleSettings,
+ pub lmstudio: LmStudioSettings,
pub mistral: MistralSettings,
+ pub ollama: OllamaSettings,
+ pub open_router: OpenRouterSettings,
+ pub openai: OpenAiSettings,
+ pub vercel: VercelSettings,
+ pub x_ai: XAiSettings,
+ pub zed_dot_dev: ZedDotDevSettings,
}
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct AllLanguageModelSettingsContent {
pub anthropic: Option,
pub bedrock: Option,
- pub ollama: Option,
+ pub deepseek: Option,
+ pub google: Option,
pub lmstudio: Option,
- pub openai: Option,
+ pub mistral: Option,
+ pub ollama: Option,
pub open_router: Option,
+ pub openai: Option,
+ pub vercel: Option,
+ pub x_ai: Option,
#[serde(rename = "zed.dev")]
pub zed_dot_dev: Option,
- pub google: Option,
- pub deepseek: Option,
- pub vercel: Option,
-
- pub mistral: Option,
}
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
@@ -114,6 +115,12 @@ pub struct GoogleSettingsContent {
pub available_models: Option>,
}
+#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
+pub struct XAiSettingsContent {
+ pub api_url: Option,
+ pub available_models: Option>,
+}
+
#[derive(Default, Clone, Debug, Serialize, Deserialize, PartialEq, JsonSchema)]
pub struct ZedDotDevSettingsContent {
available_models: Option>,
@@ -230,6 +237,18 @@ impl settings::Settings for AllLanguageModelSettings {
vercel.as_ref().and_then(|s| s.available_models.clone()),
);
+ // XAI
+ let x_ai = value.x_ai.clone();
+ merge(
+ &mut settings.x_ai.api_url,
+ x_ai.as_ref().and_then(|s| s.api_url.clone()),
+ );
+ merge(
+ &mut settings.x_ai.available_models,
+ x_ai.as_ref().and_then(|s| s.available_models.clone()),
+ );
+
+ // ZedDotDev
merge(
&mut settings.zed_dot_dev.available_models,
value
diff --git a/crates/x_ai/Cargo.toml b/crates/x_ai/Cargo.toml
new file mode 100644
index 0000000000..7ca0ca0939
--- /dev/null
+++ b/crates/x_ai/Cargo.toml
@@ -0,0 +1,23 @@
+[package]
+name = "x_ai"
+version = "0.1.0"
+edition.workspace = true
+publish.workspace = true
+license = "GPL-3.0-or-later"
+
+[lints]
+workspace = true
+
+[lib]
+path = "src/x_ai.rs"
+
+[features]
+default = []
+schemars = ["dep:schemars"]
+
+[dependencies]
+anyhow.workspace = true
+schemars = { workspace = true, optional = true }
+serde.workspace = true
+strum.workspace = true
+workspace-hack.workspace = true
diff --git a/crates/x_ai/LICENSE-GPL b/crates/x_ai/LICENSE-GPL
new file mode 120000
index 0000000000..89e542f750
--- /dev/null
+++ b/crates/x_ai/LICENSE-GPL
@@ -0,0 +1 @@
+../../LICENSE-GPL
\ No newline at end of file
diff --git a/crates/x_ai/src/x_ai.rs b/crates/x_ai/src/x_ai.rs
new file mode 100644
index 0000000000..ac116b2f8f
--- /dev/null
+++ b/crates/x_ai/src/x_ai.rs
@@ -0,0 +1,126 @@
+use anyhow::Result;
+use serde::{Deserialize, Serialize};
+use strum::EnumIter;
+
+pub const XAI_API_URL: &str = "https://api.x.ai/v1";
+
+#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
+#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq, EnumIter)]
+pub enum Model {
+ #[serde(rename = "grok-2-vision-latest")]
+ Grok2Vision,
+ #[default]
+ #[serde(rename = "grok-3-latest")]
+ Grok3,
+ #[serde(rename = "grok-3-mini-latest")]
+ Grok3Mini,
+ #[serde(rename = "grok-3-fast-latest")]
+ Grok3Fast,
+ #[serde(rename = "grok-3-mini-fast-latest")]
+ Grok3MiniFast,
+ #[serde(rename = "grok-4-latest")]
+ Grok4,
+ #[serde(rename = "custom")]
+ Custom {
+ name: String,
+ /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
+ display_name: Option,
+ max_tokens: u64,
+ max_output_tokens: Option,
+ max_completion_tokens: Option,
+ },
+}
+
+impl Model {
+ pub fn default_fast() -> Self {
+ Self::Grok3Fast
+ }
+
+ pub fn from_id(id: &str) -> Result {
+ match id {
+ "grok-2-vision" => Ok(Self::Grok2Vision),
+ "grok-3" => Ok(Self::Grok3),
+ "grok-3-mini" => Ok(Self::Grok3Mini),
+ "grok-3-fast" => Ok(Self::Grok3Fast),
+ "grok-3-mini-fast" => Ok(Self::Grok3MiniFast),
+ _ => anyhow::bail!("invalid model id '{id}'"),
+ }
+ }
+
+ pub fn id(&self) -> &str {
+ match self {
+ Self::Grok2Vision => "grok-2-vision",
+ Self::Grok3 => "grok-3",
+ Self::Grok3Mini => "grok-3-mini",
+ Self::Grok3Fast => "grok-3-fast",
+ Self::Grok3MiniFast => "grok-3-mini-fast",
+ Self::Grok4 => "grok-4",
+ Self::Custom { name, .. } => name,
+ }
+ }
+
+ pub fn display_name(&self) -> &str {
+ match self {
+ Self::Grok2Vision => "Grok 2 Vision",
+ Self::Grok3 => "Grok 3",
+ Self::Grok3Mini => "Grok 3 Mini",
+ Self::Grok3Fast => "Grok 3 Fast",
+ Self::Grok3MiniFast => "Grok 3 Mini Fast",
+ Self::Grok4 => "Grok 4",
+ Self::Custom {
+ name, display_name, ..
+ } => display_name.as_ref().unwrap_or(name),
+ }
+ }
+
+ pub fn max_token_count(&self) -> u64 {
+ match self {
+ Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => 131_072,
+ Self::Grok4 => 256_000,
+ Self::Grok2Vision => 8_192,
+ Self::Custom { max_tokens, .. } => *max_tokens,
+ }
+ }
+
+ pub fn max_output_tokens(&self) -> Option {
+ match self {
+ Self::Grok3 | Self::Grok3Mini | Self::Grok3Fast | Self::Grok3MiniFast => Some(8_192),
+ Self::Grok4 => Some(64_000),
+ Self::Grok2Vision => Some(4_096),
+ Self::Custom {
+ max_output_tokens, ..
+ } => *max_output_tokens,
+ }
+ }
+
+ pub fn supports_parallel_tool_calls(&self) -> bool {
+ match self {
+ Self::Grok2Vision
+ | Self::Grok3
+ | Self::Grok3Mini
+ | Self::Grok3Fast
+ | Self::Grok3MiniFast
+ | Self::Grok4 => true,
+ Model::Custom { .. } => false,
+ }
+ }
+
+ pub fn supports_tool(&self) -> bool {
+ match self {
+ Self::Grok2Vision
+ | Self::Grok3
+ | Self::Grok3Mini
+ | Self::Grok3Fast
+ | Self::Grok3MiniFast
+ | Self::Grok4 => true,
+ Model::Custom { .. } => false,
+ }
+ }
+
+ pub fn supports_images(&self) -> bool {
+ match self {
+ Self::Grok2Vision => true,
+ _ => false,
+ }
+ }
+}
diff --git a/docs/src/ai/configuration.md b/docs/src/ai/configuration.md
index ade1ae672f..56eb4ab76c 100644
--- a/docs/src/ai/configuration.md
+++ b/docs/src/ai/configuration.md
@@ -23,6 +23,8 @@ Here's an overview of the supported providers and tool call support:
| [OpenAI](#openai) | ✅ |
| [OpenAI API Compatible](#openai-api-compatible) | 🚫 |
| [OpenRouter](#openrouter) | ✅ |
+| [Vercel](#vercel-v0) | ✅ |
+| [xAI](#xai) | ✅ |
## Use Your Own Keys {#use-your-own-keys}
@@ -444,27 +446,30 @@ Custom models will be listed in the model dropdown in the Agent Panel.
Zed supports using OpenAI compatible APIs by specifying a custom `endpoint` and `available_models` for the OpenAI provider.
-You can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`.
-Here are a few model examples you can plug in by using this feature:
+Zed supports using OpenAI compatible APIs by specifying a custom `api_url` and `available_models` for the OpenAI provider. This is useful for connecting to other hosted services (like Together AI, Anyscale, etc.) or local models.
-#### X.ai Grok
+To configure a compatible API, you can add a custom API URL for OpenAI either via the UI or by editing your `settings.json`. For example, to connect to [Together AI](https://www.together.ai/):
-Example configuration for using X.ai Grok with Zed:
+1. Get an API key from your [Together AI account](https://api.together.ai/settings/api-keys).
+2. Add the following to your `settings.json`:
```json
+{
"language_models": {
"openai": {
- "api_url": "https://api.x.ai/v1",
+ "api_url": "https://api.together.xyz/v1",
+ "api_key": "YOUR_TOGETHER_AI_API_KEY",
"available_models": [
{
- "name": "grok-beta",
- "display_name": "X.ai Grok (Beta)",
- "max_tokens": 131072
+ "name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
+ "display_name": "Together Mixtral 8x7B",
+ "max_tokens": 32768,
+ "supports_tools": true
}
- ],
- "version": "1"
- },
+ ]
+ }
}
+}
```
### OpenRouter {#openrouter}
@@ -525,7 +530,9 @@ You can find available models and their specifications on the [OpenRouter models
Custom models will be listed in the model dropdown in the Agent Panel.
-### Vercel v0
+### Vercel v0 {#vercel-v0}
+
+> ✅ Supports tool use
[Vercel v0](https://vercel.com/docs/v0/api) is an expert model for generating full-stack apps, with framework-aware completions optimized for modern stacks like Next.js and Vercel.
It supports text and image inputs and provides fast streaming responses.
@@ -537,6 +544,49 @@ Once you have it, paste it directly into the Vercel provider section in the pane
You should then find it as `v0-1.5-md` in the model dropdown in the Agent Panel.
+### xAI {#xai}
+
+> ✅ Supports tool use
+
+Zed has first-class support for [xAI](https://x.ai/) models. You can use your own API key to access Grok models.
+
+1. [Create an API key in the xAI Console](https://console.x.ai/team/default/api-keys)
+2. Open the settings view (`agent: open configuration`) and go to the **xAI** section
+3. Enter your xAI API key
+
+The xAI API key will be saved in your keychain. Zed will also use the `XAI_API_KEY` environment variable if it's defined.
+
+> **Note:** While the xAI API is OpenAI-compatible, Zed has first-class support for it as a dedicated provider. For the best experience, we recommend using the dedicated `x_ai` provider configuration instead of the [OpenAI API Compatible](#openai-api-compatible) method.
+
+#### Custom Models {#xai-custom-models}
+
+The Zed agent comes pre-configured with common Grok models. If you wish to use alternate models or customize their parameters, you can do so by adding the following to your Zed `settings.json`:
+
+```json
+{
+ "language_models": {
+ "x_ai": {
+ "api_url": "https://api.x.ai/v1",
+ "available_models": [
+ {
+ "name": "grok-1.5",
+ "display_name": "Grok 1.5",
+ "max_tokens": 131072,
+ "max_output_tokens": 8192
+ },
+ {
+ "name": "grok-1.5v",
+ "display_name": "Grok 1.5V (Vision)",
+ "max_tokens": 131072,
+ "max_output_tokens": 8192,
+ "supports_images": true
+ }
+ ]
+ }
+ }
+}
+```
+
## Advanced Configuration {#advanced-configuration}
### Custom Provider Endpoints {#custom-provider-endpoint}