Remove 2 suffix from gpui

Co-authored-by: Mikayla <mikayla@zed.dev>
This commit is contained in:
Max Brunsfeld 2024-01-03 12:59:39 -08:00
parent 3c81dda8e2
commit f5ba22659b
225 changed files with 8511 additions and 41063 deletions

View file

@ -0,0 +1,655 @@
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
float4 hsla_to_rgba(Hsla hsla);
float4 to_device_position(float2 unit_vertex, Bounds_ScaledPixels bounds,
constant Size_DevicePixels *viewport_size);
float2 to_tile_position(float2 unit_vertex, AtlasTile tile,
constant Size_DevicePixels *atlas_size);
float4 distance_from_clip_rect(float2 unit_vertex, Bounds_ScaledPixels bounds,
Bounds_ScaledPixels clip_bounds);
float quad_sdf(float2 point, Bounds_ScaledPixels bounds,
Corners_ScaledPixels corner_radii);
float gaussian(float x, float sigma);
float2 erf(float2 x);
float blur_along_x(float x, float y, float sigma, float corner,
float2 half_size);
struct QuadVertexOutput {
float4 position [[position]];
float4 background_color [[flat]];
float4 border_color [[flat]];
uint quad_id [[flat]];
float clip_distance [[clip_distance]][4];
};
struct QuadFragmentInput {
float4 position [[position]];
float4 background_color [[flat]];
float4 border_color [[flat]];
uint quad_id [[flat]];
};
vertex QuadVertexOutput quad_vertex(uint unit_vertex_id [[vertex_id]],
uint quad_id [[instance_id]],
constant float2 *unit_vertices
[[buffer(QuadInputIndex_Vertices)]],
constant Quad *quads
[[buffer(QuadInputIndex_Quads)]],
constant Size_DevicePixels *viewport_size
[[buffer(QuadInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Quad quad = quads[quad_id];
float4 device_position =
to_device_position(unit_vertex, quad.bounds, viewport_size);
float4 clip_distance = distance_from_clip_rect(unit_vertex, quad.bounds,
quad.content_mask.bounds);
float4 background_color = hsla_to_rgba(quad.background);
float4 border_color = hsla_to_rgba(quad.border_color);
return QuadVertexOutput{
device_position,
background_color,
border_color,
quad_id,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 quad_fragment(QuadFragmentInput input [[stage_in]],
constant Quad *quads
[[buffer(QuadInputIndex_Quads)]]) {
Quad quad = quads[input.quad_id];
float2 half_size =
float2(quad.bounds.size.width, quad.bounds.size.height) / 2.;
float2 center =
float2(quad.bounds.origin.x, quad.bounds.origin.y) + half_size;
float2 center_to_point = input.position.xy - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_left;
} else {
corner_radius = quad.corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_right;
} else {
corner_radius = quad.corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point =
fabs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
float vertical_border = center_to_point.x <= 0. ? quad.border_widths.left
: quad.border_widths.right;
float horizontal_border = center_to_point.y <= 0. ? quad.border_widths.top
: quad.border_widths.bottom;
float2 inset_size =
half_size - corner_radius - float2(vertical_border, horizontal_border);
float2 point_to_inset_corner = fabs(center_to_point) - inset_size;
float border_width;
if (point_to_inset_corner.x < 0. && point_to_inset_corner.y < 0.) {
border_width = 0.;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
float4 color;
if (border_width == 0.) {
color = input.background_color;
} else {
float inset_distance = distance + border_width;
// Decrease border's opacity as we move inside the background.
input.border_color.a *= 1. - saturate(0.5 - inset_distance);
// Alpha-blend the border and the background.
float output_alpha = input.border_color.a +
input.background_color.a * (1. - input.border_color.a);
float3 premultiplied_border_rgb =
input.border_color.rgb * input.border_color.a;
float3 premultiplied_background_rgb =
input.background_color.rgb * input.background_color.a;
float3 premultiplied_output_rgb =
premultiplied_border_rgb +
premultiplied_background_rgb * (1. - input.border_color.a);
color = float4(premultiplied_output_rgb, output_alpha);
}
return color * float4(1., 1., 1., saturate(0.5 - distance));
}
struct ShadowVertexOutput {
float4 position [[position]];
float4 color [[flat]];
uint shadow_id [[flat]];
float clip_distance [[clip_distance]][4];
};
struct ShadowFragmentInput {
float4 position [[position]];
float4 color [[flat]];
uint shadow_id [[flat]];
};
vertex ShadowVertexOutput shadow_vertex(
uint unit_vertex_id [[vertex_id]], uint shadow_id [[instance_id]],
constant float2 *unit_vertices [[buffer(ShadowInputIndex_Vertices)]],
constant Shadow *shadows [[buffer(ShadowInputIndex_Shadows)]],
constant Size_DevicePixels *viewport_size
[[buffer(ShadowInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Shadow shadow = shadows[shadow_id];
float margin = 3. * shadow.blur_radius;
// Set the bounds of the shadow and adjust its size based on the shadow's
// spread radius to achieve the spreading effect
Bounds_ScaledPixels bounds = shadow.bounds;
bounds.origin.x -= margin;
bounds.origin.y -= margin;
bounds.size.width += 2. * margin;
bounds.size.height += 2. * margin;
float4 device_position =
to_device_position(unit_vertex, bounds, viewport_size);
float4 clip_distance =
distance_from_clip_rect(unit_vertex, bounds, shadow.content_mask.bounds);
float4 color = hsla_to_rgba(shadow.color);
return ShadowVertexOutput{
device_position,
color,
shadow_id,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 shadow_fragment(ShadowFragmentInput input [[stage_in]],
constant Shadow *shadows
[[buffer(ShadowInputIndex_Shadows)]]) {
Shadow shadow = shadows[input.shadow_id];
float2 origin = float2(shadow.bounds.origin.x, shadow.bounds.origin.y);
float2 size = float2(shadow.bounds.size.width, shadow.bounds.size.height);
float2 half_size = size / 2.;
float2 center = origin + half_size;
float2 point = input.position.xy - center;
float corner_radius;
if (point.x < 0.) {
if (point.y < 0.) {
corner_radius = shadow.corner_radii.top_left;
} else {
corner_radius = shadow.corner_radii.bottom_left;
}
} else {
if (point.y < 0.) {
corner_radius = shadow.corner_radii.top_right;
} else {
corner_radius = shadow.corner_radii.bottom_right;
}
}
// The signal is only non-zero in a limited range, so don't waste samples
float low = point.y - half_size.y;
float high = point.y + half_size.y;
float start = clamp(-3. * shadow.blur_radius, low, high);
float end = clamp(3. * shadow.blur_radius, low, high);
// Accumulate samples (we can get away with surprisingly few samples)
float step = (end - start) / 4.;
float y = start + step * 0.5;
float alpha = 0.;
for (int i = 0; i < 4; i++) {
alpha += blur_along_x(point.x, point.y - y, shadow.blur_radius,
corner_radius, half_size) *
gaussian(y, shadow.blur_radius) * step;
y += step;
}
return input.color * float4(1., 1., 1., alpha);
}
struct UnderlineVertexOutput {
float4 position [[position]];
float4 color [[flat]];
uint underline_id [[flat]];
float clip_distance [[clip_distance]][4];
};
struct UnderlineFragmentInput {
float4 position [[position]];
float4 color [[flat]];
uint underline_id [[flat]];
};
vertex UnderlineVertexOutput underline_vertex(
uint unit_vertex_id [[vertex_id]], uint underline_id [[instance_id]],
constant float2 *unit_vertices [[buffer(UnderlineInputIndex_Vertices)]],
constant Underline *underlines [[buffer(UnderlineInputIndex_Underlines)]],
constant Size_DevicePixels *viewport_size
[[buffer(ShadowInputIndex_ViewportSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
Underline underline = underlines[underline_id];
float4 device_position =
to_device_position(unit_vertex, underline.bounds, viewport_size);
float4 clip_distance = distance_from_clip_rect(unit_vertex, underline.bounds,
underline.content_mask.bounds);
float4 color = hsla_to_rgba(underline.color);
return UnderlineVertexOutput{
device_position,
color,
underline_id,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 underline_fragment(UnderlineFragmentInput input [[stage_in]],
constant Underline *underlines
[[buffer(UnderlineInputIndex_Underlines)]]) {
Underline underline = underlines[input.underline_id];
if (underline.wavy) {
float half_thickness = underline.thickness * 0.5;
float2 origin =
float2(underline.bounds.origin.x, underline.bounds.origin.y);
float2 st = ((input.position.xy - origin) / underline.bounds.size.height) -
float2(0., 0.5);
float frequency = (M_PI_F * (3. * underline.thickness)) / 8.;
float amplitude = 1. / (2. * underline.thickness);
float sine = sin(st.x * frequency) * amplitude;
float dSine = cos(st.x * frequency) * amplitude * frequency;
float distance = (st.y - sine) / sqrt(1. + dSine * dSine);
float distance_in_pixels = distance * underline.bounds.size.height;
float distance_from_top_border = distance_in_pixels - half_thickness;
float distance_from_bottom_border = distance_in_pixels + half_thickness;
float alpha = saturate(
0.5 - max(-distance_from_bottom_border, distance_from_top_border));
return input.color * float4(1., 1., 1., alpha);
} else {
return input.color;
}
}
struct MonochromeSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
float4 color [[flat]];
float clip_distance [[clip_distance]][4];
};
struct MonochromeSpriteFragmentInput {
float4 position [[position]];
float2 tile_position;
float4 color [[flat]];
};
vertex MonochromeSpriteVertexOutput monochrome_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant MonochromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
MonochromeSprite sprite = sprites[sprite_id];
float4 device_position =
to_device_position(unit_vertex, sprite.bounds, viewport_size);
float4 clip_distance = distance_from_clip_rect(unit_vertex, sprite.bounds,
sprite.content_mask.bounds);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
float4 color = hsla_to_rgba(sprite.color);
return MonochromeSpriteVertexOutput{
device_position,
tile_position,
color,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 monochrome_sprite_fragment(
MonochromeSpriteFragmentInput input [[stage_in]],
constant MonochromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float4 color = input.color;
color.a *= sample.a;
return color;
}
struct PolychromeSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
uint sprite_id [[flat]];
float clip_distance [[clip_distance]][4];
};
struct PolychromeSpriteFragmentInput {
float4 position [[position]];
float2 tile_position;
uint sprite_id [[flat]];
};
vertex PolychromeSpriteVertexOutput polychrome_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant PolychromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
PolychromeSprite sprite = sprites[sprite_id];
float4 device_position =
to_device_position(unit_vertex, sprite.bounds, viewport_size);
float4 clip_distance = distance_from_clip_rect(unit_vertex, sprite.bounds,
sprite.content_mask.bounds);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
return PolychromeSpriteVertexOutput{
device_position,
tile_position,
sprite_id,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 polychrome_sprite_fragment(
PolychromeSpriteFragmentInput input [[stage_in]],
constant PolychromeSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
PolychromeSprite sprite = sprites[input.sprite_id];
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float distance =
quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
float4 color = sample;
if (sprite.grayscale) {
float grayscale = 0.2126 * color.r + 0.7152 * color.g + 0.0722 * color.b;
color.r = grayscale;
color.g = grayscale;
color.b = grayscale;
}
color.a *= saturate(0.5 - distance);
return color;
}
struct PathRasterizationVertexOutput {
float4 position [[position]];
float2 st_position;
float clip_rect_distance [[clip_distance]][4];
};
struct PathRasterizationFragmentInput {
float4 position [[position]];
float2 st_position;
};
vertex PathRasterizationVertexOutput path_rasterization_vertex(
uint vertex_id [[vertex_id]],
constant PathVertex_ScaledPixels *vertices
[[buffer(PathRasterizationInputIndex_Vertices)]],
constant Size_DevicePixels *atlas_size
[[buffer(PathRasterizationInputIndex_AtlasTextureSize)]]) {
PathVertex_ScaledPixels v = vertices[vertex_id];
float2 vertex_position = float2(v.xy_position.x, v.xy_position.y);
float2 viewport_size = float2(atlas_size->width, atlas_size->height);
return PathRasterizationVertexOutput{
float4(vertex_position / viewport_size * float2(2., -2.) +
float2(-1., 1.),
0., 1.),
float2(v.st_position.x, v.st_position.y),
{v.xy_position.x - v.content_mask.bounds.origin.x,
v.content_mask.bounds.origin.x + v.content_mask.bounds.size.width -
v.xy_position.x,
v.xy_position.y - v.content_mask.bounds.origin.y,
v.content_mask.bounds.origin.y + v.content_mask.bounds.size.height -
v.xy_position.y}};
}
fragment float4 path_rasterization_fragment(PathRasterizationFragmentInput input
[[stage_in]]) {
float2 dx = dfdx(input.st_position);
float2 dy = dfdy(input.st_position);
float2 gradient = float2((2. * input.st_position.x) * dx.x - dx.y,
(2. * input.st_position.x) * dy.x - dy.y);
float f = (input.st_position.x * input.st_position.x) - input.st_position.y;
float distance = f / length(gradient);
float alpha = saturate(0.5 - distance);
return float4(alpha, 0., 0., 1.);
}
struct PathSpriteVertexOutput {
float4 position [[position]];
float2 tile_position;
float4 color [[flat]];
};
vertex PathSpriteVertexOutput path_sprite_vertex(
uint unit_vertex_id [[vertex_id]], uint sprite_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SpriteInputIndex_Vertices)]],
constant PathSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
constant Size_DevicePixels *viewport_size
[[buffer(SpriteInputIndex_ViewportSize)]],
constant Size_DevicePixels *atlas_size
[[buffer(SpriteInputIndex_AtlasTextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
PathSprite sprite = sprites[sprite_id];
// Don't apply content mask because it was already accounted for when
// rasterizing the path.
float4 device_position =
to_device_position(unit_vertex, sprite.bounds, viewport_size);
float2 tile_position = to_tile_position(unit_vertex, sprite.tile, atlas_size);
float4 color = hsla_to_rgba(sprite.color);
return PathSpriteVertexOutput{device_position, tile_position, color};
}
fragment float4 path_sprite_fragment(
PathSpriteVertexOutput input [[stage_in]],
constant PathSprite *sprites [[buffer(SpriteInputIndex_Sprites)]],
texture2d<float> atlas_texture [[texture(SpriteInputIndex_AtlasTexture)]]) {
constexpr sampler atlas_texture_sampler(mag_filter::linear,
min_filter::linear);
float4 sample =
atlas_texture.sample(atlas_texture_sampler, input.tile_position);
float mask = 1. - abs(1. - fmod(sample.r, 2.));
float4 color = input.color;
color.a *= mask;
return color;
}
struct SurfaceVertexOutput {
float4 position [[position]];
float2 texture_position;
float clip_distance [[clip_distance]][4];
};
struct SurfaceFragmentInput {
float4 position [[position]];
float2 texture_position;
};
vertex SurfaceVertexOutput surface_vertex(
uint unit_vertex_id [[vertex_id]], uint surface_id [[instance_id]],
constant float2 *unit_vertices [[buffer(SurfaceInputIndex_Vertices)]],
constant SurfaceBounds *surfaces [[buffer(SurfaceInputIndex_Surfaces)]],
constant Size_DevicePixels *viewport_size
[[buffer(SurfaceInputIndex_ViewportSize)]],
constant Size_DevicePixels *texture_size
[[buffer(SurfaceInputIndex_TextureSize)]]) {
float2 unit_vertex = unit_vertices[unit_vertex_id];
SurfaceBounds surface = surfaces[surface_id];
float4 device_position =
to_device_position(unit_vertex, surface.bounds, viewport_size);
float4 clip_distance = distance_from_clip_rect(unit_vertex, surface.bounds,
surface.content_mask.bounds);
// We are going to copy the whole texture, so the texture position corresponds
// to the current vertex of the unit triangle.
float2 texture_position = unit_vertex;
return SurfaceVertexOutput{
device_position,
texture_position,
{clip_distance.x, clip_distance.y, clip_distance.z, clip_distance.w}};
}
fragment float4 surface_fragment(SurfaceFragmentInput input [[stage_in]],
texture2d<float> y_texture
[[texture(SurfaceInputIndex_YTexture)]],
texture2d<float> cb_cr_texture
[[texture(SurfaceInputIndex_CbCrTexture)]]) {
constexpr sampler texture_sampler(mag_filter::linear, min_filter::linear);
const float4x4 ycbcrToRGBTransform =
float4x4(float4(+1.0000f, +1.0000f, +1.0000f, +0.0000f),
float4(+0.0000f, -0.3441f, +1.7720f, +0.0000f),
float4(+1.4020f, -0.7141f, +0.0000f, +0.0000f),
float4(-0.7010f, +0.5291f, -0.8860f, +1.0000f));
float4 ycbcr = float4(
y_texture.sample(texture_sampler, input.texture_position).r,
cb_cr_texture.sample(texture_sampler, input.texture_position).rg, 1.0);
return ycbcrToRGBTransform * ycbcr;
}
float4 hsla_to_rgba(Hsla hsla) {
float h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
float s = hsla.s;
float l = hsla.l;
float a = hsla.a;
float c = (1.0 - fabs(2.0 * l - 1.0)) * s;
float x = c * (1.0 - fabs(fmod(h, 2.0) - 1.0));
float m = l - c / 2.0;
float r = 0.0;
float g = 0.0;
float b = 0.0;
if (h >= 0.0 && h < 1.0) {
r = c;
g = x;
b = 0.0;
} else if (h >= 1.0 && h < 2.0) {
r = x;
g = c;
b = 0.0;
} else if (h >= 2.0 && h < 3.0) {
r = 0.0;
g = c;
b = x;
} else if (h >= 3.0 && h < 4.0) {
r = 0.0;
g = x;
b = c;
} else if (h >= 4.0 && h < 5.0) {
r = x;
g = 0.0;
b = c;
} else {
r = c;
g = 0.0;
b = x;
}
float4 rgba;
rgba.x = (r + m);
rgba.y = (g + m);
rgba.z = (b + m);
rgba.w = a;
return rgba;
}
float4 to_device_position(float2 unit_vertex, Bounds_ScaledPixels bounds,
constant Size_DevicePixels *input_viewport_size) {
float2 position =
unit_vertex * float2(bounds.size.width, bounds.size.height) +
float2(bounds.origin.x, bounds.origin.y);
float2 viewport_size = float2((float)input_viewport_size->width,
(float)input_viewport_size->height);
float2 device_position =
position / viewport_size * float2(2., -2.) + float2(-1., 1.);
return float4(device_position, 0., 1.);
}
float2 to_tile_position(float2 unit_vertex, AtlasTile tile,
constant Size_DevicePixels *atlas_size) {
float2 tile_origin = float2(tile.bounds.origin.x, tile.bounds.origin.y);
float2 tile_size = float2(tile.bounds.size.width, tile.bounds.size.height);
return (tile_origin + unit_vertex * tile_size) /
float2((float)atlas_size->width, (float)atlas_size->height);
}
float quad_sdf(float2 point, Bounds_ScaledPixels bounds,
Corners_ScaledPixels corner_radii) {
float2 half_size = float2(bounds.size.width, bounds.size.height) / 2.;
float2 center = float2(bounds.origin.x, bounds.origin.y) + half_size;
float2 center_to_point = point - center;
float corner_radius;
if (center_to_point.x < 0.) {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_left;
} else {
corner_radius = corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = corner_radii.top_right;
} else {
corner_radius = corner_radii.bottom_right;
}
}
float2 rounded_edge_to_point =
abs(center_to_point) - half_size + corner_radius;
float distance =
length(max(0., rounded_edge_to_point)) +
min(0., max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
return distance;
}
// A standard gaussian function, used for weighting samples
float gaussian(float x, float sigma) {
return exp(-(x * x) / (2. * sigma * sigma)) / (sqrt(2. * M_PI_F) * sigma);
}
// This approximates the error function, needed for the gaussian integral
float2 erf(float2 x) {
float2 s = sign(x);
float2 a = abs(x);
x = 1. + (0.278393 + (0.230389 + 0.078108 * (a * a)) * a) * a;
x *= x;
return s - s / (x * x);
}
float blur_along_x(float x, float y, float sigma, float corner,
float2 half_size) {
float delta = min(half_size.y - corner - abs(y), 0.);
float curved =
half_size.x - corner + sqrt(max(0., corner * corner - delta * delta));
float2 integral =
0.5 + 0.5 * erf((x + float2(-curved, curved)) * (sqrt(0.5) / sigma));
return integral.y - integral.x;
}
float4 distance_from_clip_rect(float2 unit_vertex, Bounds_ScaledPixels bounds,
Bounds_ScaledPixels clip_bounds) {
float2 position =
unit_vertex * float2(bounds.size.width, bounds.size.height) +
float2(bounds.origin.x, bounds.origin.y);
return float4(position.x - clip_bounds.origin.x,
clip_bounds.origin.x + clip_bounds.size.width - position.x,
position.y - clip_bounds.origin.y,
clip_bounds.origin.y + clip_bounds.size.height - position.y);
}