use std::io::{Cursor, Write}; use crate::role::Role; use crate::LanguageModelToolUse; use base64::write::EncoderWriter; use gpui::{point, size, AppContext, DevicePixels, Image, ObjectFit, RenderImage, Size, Task}; use image::{codecs::png::PngEncoder, imageops::resize, DynamicImage, ImageDecoder}; use serde::{Deserialize, Serialize}; use ui::{px, SharedString}; use util::ResultExt; #[derive(Clone, PartialEq, Eq, Serialize, Deserialize, Hash)] pub struct LanguageModelImage { /// A base64-encoded PNG image. pub source: SharedString, size: Size, } impl std::fmt::Debug for LanguageModelImage { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.debug_struct("LanguageModelImage") .field("source", &format!("<{} bytes>", self.source.len())) .field("size", &self.size) .finish() } } /// Anthropic wants uploaded images to be smaller than this in both dimensions. const ANTHROPIC_SIZE_LIMT: f32 = 1568.; impl LanguageModelImage { pub fn from_image(data: Image, cx: &mut AppContext) -> Task> { cx.background_executor().spawn(async move { match data.format() { gpui::ImageFormat::Png | gpui::ImageFormat::Jpeg | gpui::ImageFormat::Webp | gpui::ImageFormat::Gif => {} _ => return None, }; let image = image::codecs::png::PngDecoder::new(Cursor::new(data.bytes())).log_err()?; let (width, height) = image.dimensions(); let image_size = size(DevicePixels(width as i32), DevicePixels(height as i32)); let mut base64_image = Vec::new(); { let mut base64_encoder = EncoderWriter::new( Cursor::new(&mut base64_image), &base64::engine::general_purpose::STANDARD, ); if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32 || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32 { let new_bounds = ObjectFit::ScaleDown.get_bounds( gpui::Bounds { origin: point(px(0.0), px(0.0)), size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)), }, image_size, ); let image = DynamicImage::from_decoder(image).log_err()?.resize( new_bounds.size.width.0 as u32, new_bounds.size.height.0 as u32, image::imageops::FilterType::Triangle, ); let mut png = Vec::new(); image .write_with_encoder(PngEncoder::new(&mut png)) .log_err()?; base64_encoder.write_all(png.as_slice()).log_err()?; } else { base64_encoder.write_all(data.bytes()).log_err()?; } } // SAFETY: The base64 encoder should not produce non-UTF8. let source = unsafe { String::from_utf8_unchecked(base64_image) }; Some(LanguageModelImage { size: image_size, source: source.into(), }) }) } /// Resolves image into an LLM-ready format (base64). pub fn from_render_image(data: &RenderImage) -> Option { let image_size = data.size(0); let mut bytes = data.as_bytes(0).unwrap_or(&[]).to_vec(); // Convert from BGRA to RGBA. for pixel in bytes.chunks_exact_mut(4) { pixel.swap(2, 0); } let mut image = image::RgbaImage::from_vec( image_size.width.0 as u32, image_size.height.0 as u32, bytes, ) .expect("We already know this works"); // https://docs.anthropic.com/en/docs/build-with-claude/vision if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32 || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32 { let new_bounds = ObjectFit::ScaleDown.get_bounds( gpui::Bounds { origin: point(px(0.0), px(0.0)), size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)), }, image_size, ); image = resize( &image, new_bounds.size.width.0 as u32, new_bounds.size.height.0 as u32, image::imageops::FilterType::Triangle, ); } let mut png = Vec::new(); image .write_with_encoder(PngEncoder::new(&mut png)) .log_err()?; let mut base64_image = Vec::new(); { let mut base64_encoder = EncoderWriter::new( Cursor::new(&mut base64_image), &base64::engine::general_purpose::STANDARD, ); base64_encoder.write_all(png.as_slice()).log_err()?; } // SAFETY: The base64 encoder should not produce non-UTF8. let source = unsafe { String::from_utf8_unchecked(base64_image) }; Some(LanguageModelImage { size: image_size, source: source.into(), }) } pub fn estimate_tokens(&self) -> usize { let width = self.size.width.0.unsigned_abs() as usize; let height = self.size.height.0.unsigned_abs() as usize; // From: https://docs.anthropic.com/en/docs/build-with-claude/vision#calculate-image-costs // Note that are a lot of conditions on Anthropic's API, and OpenAI doesn't use this, // so this method is more of a rough guess. (width * height) / 750 } } #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)] pub struct LanguageModelToolResult { pub tool_use_id: String, pub is_error: bool, pub content: String, } #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)] pub enum MessageContent { Text(String), Image(LanguageModelImage), ToolUse(LanguageModelToolUse), ToolResult(LanguageModelToolResult), } impl From for MessageContent { fn from(value: String) -> Self { MessageContent::Text(value) } } impl From<&str> for MessageContent { fn from(value: &str) -> Self { MessageContent::Text(value.to_string()) } } #[derive(Clone, Serialize, Deserialize, Debug, PartialEq, Hash)] pub struct LanguageModelRequestMessage { pub role: Role, pub content: Vec, pub cache: bool, } impl LanguageModelRequestMessage { pub fn string_contents(&self) -> String { let mut string_buffer = String::new(); for string in self.content.iter().filter_map(|content| match content { MessageContent::Text(text) => Some(text), MessageContent::ToolResult(tool_result) => Some(&tool_result.content), MessageContent::ToolUse(_) | MessageContent::Image(_) => None, }) { string_buffer.push_str(string.as_str()) } string_buffer } pub fn contents_empty(&self) -> bool { self.content.is_empty() || self .content .first() .map(|content| match content { MessageContent::Text(text) => text.trim().is_empty(), MessageContent::ToolResult(tool_result) => { tool_result.content.trim().is_empty() } MessageContent::ToolUse(_) | MessageContent::Image(_) => true, }) .unwrap_or(false) } } #[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)] pub struct LanguageModelRequestTool { pub name: String, pub description: String, pub input_schema: serde_json::Value, } #[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)] pub struct LanguageModelRequest { pub messages: Vec, pub tools: Vec, pub stop: Vec, pub temperature: Option, } impl LanguageModelRequest { pub fn into_open_ai(self, model: String, max_output_tokens: Option) -> open_ai::Request { let stream = !model.starts_with("o1-"); open_ai::Request { model, messages: self .messages .into_iter() .map(|msg| match msg.role { Role::User => open_ai::RequestMessage::User { content: msg.string_contents(), }, Role::Assistant => open_ai::RequestMessage::Assistant { content: Some(msg.string_contents()), tool_calls: Vec::new(), }, Role::System => open_ai::RequestMessage::System { content: msg.string_contents(), }, }) .collect(), stream, stop: self.stop, temperature: self.temperature.unwrap_or(1.0), max_tokens: max_output_tokens, tools: Vec::new(), tool_choice: None, } } pub fn into_google(self, model: String) -> google_ai::GenerateContentRequest { google_ai::GenerateContentRequest { model, contents: self .messages .into_iter() .map(|msg| google_ai::Content { parts: vec![google_ai::Part::TextPart(google_ai::TextPart { text: msg.string_contents(), })], role: match msg.role { Role::User => google_ai::Role::User, Role::Assistant => google_ai::Role::Model, Role::System => google_ai::Role::User, // Google AI doesn't have a system role }, }) .collect(), generation_config: Some(google_ai::GenerationConfig { candidate_count: Some(1), stop_sequences: Some(self.stop), max_output_tokens: None, temperature: self.temperature.map(|t| t as f64).or(Some(1.0)), top_p: None, top_k: None, }), safety_settings: None, } } pub fn into_anthropic( self, model: String, default_temperature: f32, max_output_tokens: u32, ) -> anthropic::Request { let mut new_messages: Vec = Vec::new(); let mut system_message = String::new(); for message in self.messages { if message.contents_empty() { continue; } match message.role { Role::User | Role::Assistant => { let cache_control = if message.cache { Some(anthropic::CacheControl { cache_type: anthropic::CacheControlType::Ephemeral, }) } else { None }; let anthropic_message_content: Vec = message .content .into_iter() .filter_map(|content| match content { MessageContent::Text(text) => { if !text.is_empty() { Some(anthropic::RequestContent::Text { text, cache_control, }) } else { None } } MessageContent::Image(image) => { Some(anthropic::RequestContent::Image { source: anthropic::ImageSource { source_type: "base64".to_string(), media_type: "image/png".to_string(), data: image.source.to_string(), }, cache_control, }) } MessageContent::ToolUse(tool_use) => { Some(anthropic::RequestContent::ToolUse { id: tool_use.id.to_string(), name: tool_use.name, input: tool_use.input, cache_control, }) } MessageContent::ToolResult(tool_result) => { Some(anthropic::RequestContent::ToolResult { tool_use_id: tool_result.tool_use_id, is_error: tool_result.is_error, content: tool_result.content, cache_control, }) } }) .collect(); let anthropic_role = match message.role { Role::User => anthropic::Role::User, Role::Assistant => anthropic::Role::Assistant, Role::System => unreachable!("System role should never occur here"), }; if let Some(last_message) = new_messages.last_mut() { if last_message.role == anthropic_role { last_message.content.extend(anthropic_message_content); continue; } } new_messages.push(anthropic::Message { role: anthropic_role, content: anthropic_message_content, }); } Role::System => { if !system_message.is_empty() { system_message.push_str("\n\n"); } system_message.push_str(&message.string_contents()); } } } anthropic::Request { model, messages: new_messages, max_tokens: max_output_tokens, system: Some(system_message), tools: self .tools .into_iter() .map(|tool| anthropic::Tool { name: tool.name, description: tool.description, input_schema: tool.input_schema, }) .collect(), tool_choice: None, metadata: None, stop_sequences: Vec::new(), temperature: self.temperature.or(Some(default_temperature)), top_k: None, top_p: None, } } } #[derive(Serialize, Deserialize, Debug, Eq, PartialEq)] pub struct LanguageModelResponseMessage { pub role: Option, pub content: Option, }