use std::io::{Cursor, Write}; use std::sync::Arc; use crate::role::Role; use crate::{LanguageModelToolUse, LanguageModelToolUseId}; use base64::write::EncoderWriter; use gpui::{ App, AppContext as _, DevicePixels, Image, ObjectFit, RenderImage, SharedString, Size, Task, point, px, size, }; use image::{DynamicImage, ImageDecoder, codecs::png::PngEncoder, imageops::resize}; use serde::{Deserialize, Serialize}; use util::ResultExt; #[derive(Clone, PartialEq, Eq, Serialize, Deserialize, Hash)] pub struct LanguageModelImage { /// A base64-encoded PNG image. pub source: SharedString, size: Size, } impl std::fmt::Debug for LanguageModelImage { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.debug_struct("LanguageModelImage") .field("source", &format!("<{} bytes>", self.source.len())) .field("size", &self.size) .finish() } } /// Anthropic wants uploaded images to be smaller than this in both dimensions. const ANTHROPIC_SIZE_LIMT: f32 = 1568.; impl LanguageModelImage { pub fn from_image(data: Image, cx: &mut App) -> Task> { cx.background_spawn(async move { match data.format() { gpui::ImageFormat::Png | gpui::ImageFormat::Jpeg | gpui::ImageFormat::Webp | gpui::ImageFormat::Gif => {} _ => return None, }; let image = image::codecs::png::PngDecoder::new(Cursor::new(data.bytes())).log_err()?; let (width, height) = image.dimensions(); let image_size = size(DevicePixels(width as i32), DevicePixels(height as i32)); let mut base64_image = Vec::new(); { let mut base64_encoder = EncoderWriter::new( Cursor::new(&mut base64_image), &base64::engine::general_purpose::STANDARD, ); if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32 || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32 { let new_bounds = ObjectFit::ScaleDown.get_bounds( gpui::Bounds { origin: point(px(0.0), px(0.0)), size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)), }, image_size, ); let image = DynamicImage::from_decoder(image).log_err()?.resize( new_bounds.size.width.0 as u32, new_bounds.size.height.0 as u32, image::imageops::FilterType::Triangle, ); let mut png = Vec::new(); image .write_with_encoder(PngEncoder::new(&mut png)) .log_err()?; base64_encoder.write_all(png.as_slice()).log_err()?; } else { base64_encoder.write_all(data.bytes()).log_err()?; } } // SAFETY: The base64 encoder should not produce non-UTF8. let source = unsafe { String::from_utf8_unchecked(base64_image) }; Some(LanguageModelImage { size: image_size, source: source.into(), }) }) } /// Resolves image into an LLM-ready format (base64). pub fn from_render_image(data: &RenderImage) -> Option { let image_size = data.size(0); let mut bytes = data.as_bytes(0).unwrap_or(&[]).to_vec(); // Convert from BGRA to RGBA. for pixel in bytes.chunks_exact_mut(4) { pixel.swap(2, 0); } let mut image = image::RgbaImage::from_vec( image_size.width.0 as u32, image_size.height.0 as u32, bytes, ) .expect("We already know this works"); // https://docs.anthropic.com/en/docs/build-with-claude/vision if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32 || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32 { let new_bounds = ObjectFit::ScaleDown.get_bounds( gpui::Bounds { origin: point(px(0.0), px(0.0)), size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)), }, image_size, ); image = resize( &image, new_bounds.size.width.0 as u32, new_bounds.size.height.0 as u32, image::imageops::FilterType::Triangle, ); } let mut png = Vec::new(); image .write_with_encoder(PngEncoder::new(&mut png)) .log_err()?; let mut base64_image = Vec::new(); { let mut base64_encoder = EncoderWriter::new( Cursor::new(&mut base64_image), &base64::engine::general_purpose::STANDARD, ); base64_encoder.write_all(png.as_slice()).log_err()?; } // SAFETY: The base64 encoder should not produce non-UTF8. let source = unsafe { String::from_utf8_unchecked(base64_image) }; Some(LanguageModelImage { size: image_size, source: source.into(), }) } pub fn estimate_tokens(&self) -> usize { let width = self.size.width.0.unsigned_abs() as usize; let height = self.size.height.0.unsigned_abs() as usize; // From: https://docs.anthropic.com/en/docs/build-with-claude/vision#calculate-image-costs // Note that are a lot of conditions on Anthropic's API, and OpenAI doesn't use this, // so this method is more of a rough guess. (width * height) / 750 } } #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)] pub struct LanguageModelToolResult { pub tool_use_id: LanguageModelToolUseId, pub tool_name: Arc, pub is_error: bool, pub content: Arc, } #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)] pub enum MessageContent { Text(String), Image(LanguageModelImage), ToolUse(LanguageModelToolUse), ToolResult(LanguageModelToolResult), } impl From for MessageContent { fn from(value: String) -> Self { MessageContent::Text(value) } } impl From<&str> for MessageContent { fn from(value: &str) -> Self { MessageContent::Text(value.to_string()) } } #[derive(Clone, Serialize, Deserialize, Debug, PartialEq, Hash)] pub struct LanguageModelRequestMessage { pub role: Role, pub content: Vec, pub cache: bool, } impl LanguageModelRequestMessage { pub fn string_contents(&self) -> String { let mut buffer = String::new(); for string in self.content.iter().filter_map(|content| match content { MessageContent::Text(text) => Some(text.as_str()), MessageContent::ToolResult(tool_result) => Some(tool_result.content.as_ref()), MessageContent::ToolUse(_) | MessageContent::Image(_) => None, }) { buffer.push_str(string); } buffer } pub fn contents_empty(&self) -> bool { self.content.is_empty() || self .content .first() .map(|content| match content { MessageContent::Text(text) => text.chars().all(|c| c.is_whitespace()), MessageContent::ToolResult(tool_result) => { tool_result.content.chars().all(|c| c.is_whitespace()) } MessageContent::ToolUse(_) | MessageContent::Image(_) => true, }) .unwrap_or(false) } } #[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)] pub struct LanguageModelRequestTool { pub name: String, pub description: String, pub input_schema: serde_json::Value, } #[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)] pub struct LanguageModelRequest { pub messages: Vec, pub tools: Vec, pub stop: Vec, pub temperature: Option, } #[derive(Serialize, Deserialize, Debug, Eq, PartialEq)] pub struct LanguageModelResponseMessage { pub role: Option, pub content: Option, }