use crate::{ px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, Arena, ArenaBox, ArenaRef, AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle, DevicePixels, DispatchActionListener, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, Flatten, FontId, GlobalElementId, GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeystrokeEvent, LayoutId, Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels, Scene, SceneBuilder, Shadow, SharedString, Size, Style, SubscriberSet, Subscription, Surface, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View, VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS, }; use anyhow::{anyhow, Context as _, Result}; use collections::FxHashMap; use derive_more::{Deref, DerefMut}; use futures::{ channel::{mpsc, oneshot}, StreamExt, }; use media::core_video::CVImageBuffer; use parking_lot::RwLock; use slotmap::SlotMap; use smallvec::SmallVec; use std::{ any::{Any, TypeId}, borrow::{Borrow, BorrowMut, Cow}, cell::RefCell, fmt::Debug, future::Future, hash::{Hash, Hasher}, marker::PhantomData, mem, rc::Rc, sync::{ atomic::{AtomicUsize, Ordering::SeqCst}, Arc, }, }; use util::{post_inc, ResultExt}; const ACTIVE_DRAG_Z_INDEX: u8 = 1; /// A global stacking order, which is created by stacking successive z-index values. /// Each z-index will always be interpreted in the context of its parent z-index. #[derive(Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)] pub struct StackingOrder { #[deref] #[deref_mut] context_stack: SmallVec<[u8; 64]>, id: u32, } impl std::fmt::Debug for StackingOrder { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let mut stacks = self.context_stack.iter().peekable(); write!(f, "[({}): ", self.id)?; while let Some(z_index) = stacks.next() { write!(f, "{z_index}")?; if stacks.peek().is_some() { write!(f, "->")?; } } write!(f, "]")?; Ok(()) } } /// Represents the two different phases when dispatching events. #[derive(Default, Copy, Clone, Debug, Eq, PartialEq)] pub enum DispatchPhase { /// After the capture phase comes the bubble phase, in which mouse event listeners are /// invoked front to back and keyboard event listeners are invoked from the focused element /// to the root of the element tree. This is the phase you'll most commonly want to use when /// registering event listeners. #[default] Bubble, /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard /// listeners are invoked from the root of the tree downward toward the focused element. This phase /// is used for special purposes such as clearing the "pressed" state for click events. If /// you stop event propagation during this phase, you need to know what you're doing. Handlers /// outside of the immediate region may rely on detecting non-local events during this phase. Capture, } impl DispatchPhase { pub fn bubble(self) -> bool { self == DispatchPhase::Bubble } pub fn capture(self) -> bool { self == DispatchPhase::Capture } } type AnyObserver = Box bool + 'static>; type AnyMouseListener = ArenaBox; type AnyWindowFocusListener = Box bool + 'static>; struct FocusEvent { previous_focus_path: SmallVec<[FocusId; 8]>, current_focus_path: SmallVec<[FocusId; 8]>, } slotmap::new_key_type! { pub struct FocusId; } thread_local! { pub(crate) static ELEMENT_ARENA: RefCell = RefCell::new(Arena::new(4 * 1024 * 1024)); } impl FocusId { /// Obtains whether the element associated with this handle is currently focused. pub fn is_focused(&self, cx: &WindowContext) -> bool { cx.window.focus == Some(*self) } /// Obtains whether the element associated with this handle contains the focused /// element or is itself focused. pub fn contains_focused(&self, cx: &WindowContext) -> bool { cx.focused() .map_or(false, |focused| self.contains(focused.id, cx)) } /// Obtains whether the element associated with this handle is contained within the /// focused element or is itself focused. pub fn within_focused(&self, cx: &WindowContext) -> bool { let focused = cx.focused(); focused.map_or(false, |focused| focused.id.contains(*self, cx)) } /// Obtains whether this handle contains the given handle in the most recently rendered frame. pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool { cx.window .rendered_frame .dispatch_tree .focus_contains(*self, other) } } /// A handle which can be used to track and manipulate the focused element in a window. pub struct FocusHandle { pub(crate) id: FocusId, handles: Arc>>, } impl std::fmt::Debug for FocusHandle { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.write_fmt(format_args!("FocusHandle({:?})", self.id)) } } impl FocusHandle { pub(crate) fn new(handles: &Arc>>) -> Self { let id = handles.write().insert(AtomicUsize::new(1)); Self { id, handles: handles.clone(), } } pub(crate) fn for_id( id: FocusId, handles: &Arc>>, ) -> Option { let lock = handles.read(); let ref_count = lock.get(id)?; if ref_count.load(SeqCst) == 0 { None } else { ref_count.fetch_add(1, SeqCst); Some(Self { id, handles: handles.clone(), }) } } /// Moves the focus to the element associated with this handle. pub fn focus(&self, cx: &mut WindowContext) { cx.focus(self) } /// Obtains whether the element associated with this handle is currently focused. pub fn is_focused(&self, cx: &WindowContext) -> bool { self.id.is_focused(cx) } /// Obtains whether the element associated with this handle contains the focused /// element or is itself focused. pub fn contains_focused(&self, cx: &WindowContext) -> bool { self.id.contains_focused(cx) } /// Obtains whether the element associated with this handle is contained within the /// focused element or is itself focused. pub fn within_focused(&self, cx: &WindowContext) -> bool { self.id.within_focused(cx) } /// Obtains whether this handle contains the given handle in the most recently rendered frame. pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool { self.id.contains(other.id, cx) } } impl Clone for FocusHandle { fn clone(&self) -> Self { Self::for_id(self.id, &self.handles).unwrap() } } impl PartialEq for FocusHandle { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for FocusHandle {} impl Drop for FocusHandle { fn drop(&mut self) { self.handles .read() .get(self.id) .unwrap() .fetch_sub(1, SeqCst); } } /// FocusableView allows users of your view to easily /// focus it (using cx.focus_view(view)) pub trait FocusableView: 'static + Render { fn focus_handle(&self, cx: &AppContext) -> FocusHandle; } /// ManagedView is a view (like a Modal, Popover, Menu, etc.) /// where the lifecycle of the view is handled by another view. pub trait ManagedView: FocusableView + EventEmitter {} impl> ManagedView for M {} pub struct DismissEvent; // Holds the state for a specific window. pub struct Window { pub(crate) handle: AnyWindowHandle, pub(crate) removed: bool, pub(crate) platform_window: Box, display_id: DisplayId, sprite_atlas: Arc, rem_size: Pixels, viewport_size: Size, layout_engine: Option, pub(crate) root_view: Option, pub(crate) element_id_stack: GlobalElementId, pub(crate) rendered_frame: Frame, pub(crate) next_frame: Frame, frame_arena: Arena, pub(crate) focus_handles: Arc>>, focus_listeners: SubscriberSet<(), AnyWindowFocusListener>, blur_listeners: SubscriberSet<(), AnyObserver>, default_prevented: bool, mouse_position: Point, modifiers: Modifiers, requested_cursor_style: Option, scale_factor: f32, bounds: WindowBounds, bounds_observers: SubscriberSet<(), AnyObserver>, active: bool, pub(crate) dirty: bool, pub(crate) drawing: bool, activation_observers: SubscriberSet<(), AnyObserver>, pub(crate) focus: Option, focus_enabled: bool, #[cfg(any(test, feature = "test-support"))] pub(crate) focus_invalidated: bool, } pub(crate) struct ElementStateBox { inner: Box, #[cfg(debug_assertions)] type_name: &'static str, } pub(crate) struct Frame { focus: Option, pub(crate) element_states: FxHashMap, mouse_listeners: FxHashMap>, pub(crate) dispatch_tree: DispatchTree, pub(crate) scene_builder: SceneBuilder, pub(crate) depth_map: Vec<(StackingOrder, Bounds)>, pub(crate) z_index_stack: StackingOrder, pub(crate) next_stacking_order_id: u32, content_mask_stack: Vec>, element_offset_stack: Vec>, } impl Frame { fn new(dispatch_tree: DispatchTree) -> Self { Frame { focus: None, element_states: FxHashMap::default(), mouse_listeners: FxHashMap::default(), dispatch_tree, scene_builder: SceneBuilder::default(), z_index_stack: StackingOrder::default(), next_stacking_order_id: 0, depth_map: Default::default(), content_mask_stack: Vec::new(), element_offset_stack: Vec::new(), } } fn clear(&mut self) { self.element_states.clear(); self.mouse_listeners.values_mut().for_each(Vec::clear); self.dispatch_tree.clear(); self.depth_map.clear(); self.next_stacking_order_id = 0; } fn focus_path(&self) -> SmallVec<[FocusId; 8]> { self.focus .map(|focus_id| self.dispatch_tree.focus_path(focus_id)) .unwrap_or_default() } } impl Window { pub(crate) fn new( handle: AnyWindowHandle, options: WindowOptions, cx: &mut AppContext, ) -> Self { let platform_window = cx.platform.open_window( handle, options, Box::new({ let mut cx = cx.to_async(); move || handle.update(&mut cx, |_, cx| cx.draw()) }), ); let display_id = platform_window.display().id(); let sprite_atlas = platform_window.sprite_atlas(); let mouse_position = platform_window.mouse_position(); let modifiers = platform_window.modifiers(); let content_size = platform_window.content_size(); let scale_factor = platform_window.scale_factor(); let bounds = platform_window.bounds(); platform_window.on_resize(Box::new({ let mut cx = cx.to_async(); move |_, _| { handle .update(&mut cx, |_, cx| cx.window_bounds_changed()) .log_err(); } })); platform_window.on_moved(Box::new({ let mut cx = cx.to_async(); move || { handle .update(&mut cx, |_, cx| cx.window_bounds_changed()) .log_err(); } })); platform_window.on_active_status_change(Box::new({ let mut cx = cx.to_async(); move |active| { handle .update(&mut cx, |_, cx| { cx.window.active = active; cx.window .activation_observers .clone() .retain(&(), |callback| callback(cx)); }) .log_err(); } })); platform_window.on_input({ let mut cx = cx.to_async(); Box::new(move |event| { handle .update(&mut cx, |_, cx| cx.dispatch_event(event)) .log_err() .unwrap_or(false) }) }); Window { handle, removed: false, platform_window, display_id, sprite_atlas, rem_size: px(16.), viewport_size: content_size, layout_engine: Some(TaffyLayoutEngine::new()), root_view: None, element_id_stack: GlobalElementId::default(), rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())), next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())), frame_arena: Arena::new(1 * 1024 * 1024), focus_handles: Arc::new(RwLock::new(SlotMap::with_key())), focus_listeners: SubscriberSet::new(), blur_listeners: SubscriberSet::new(), default_prevented: true, mouse_position, modifiers, requested_cursor_style: None, scale_factor, bounds, bounds_observers: SubscriberSet::new(), active: false, dirty: false, drawing: false, activation_observers: SubscriberSet::new(), focus: None, focus_enabled: true, #[cfg(any(test, feature = "test-support"))] focus_invalidated: false, } } } /// Indicates which region of the window is visible. Content falling outside of this mask will not be /// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type /// to leave room to support more complex shapes in the future. #[derive(Clone, Debug, Default, PartialEq, Eq)] #[repr(C)] pub struct ContentMask { pub bounds: Bounds

, } impl ContentMask { /// Scale the content mask's pixel units by the given scaling factor. pub fn scale(&self, factor: f32) -> ContentMask { ContentMask { bounds: self.bounds.scale(factor), } } /// Intersect the content mask with the given content mask. pub fn intersect(&self, other: &Self) -> Self { let bounds = self.bounds.intersect(&other.bounds); ContentMask { bounds } } } /// Provides access to application state in the context of a single window. Derefs /// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes /// an `AppContext` and call any `AppContext` methods. pub struct WindowContext<'a> { pub(crate) app: &'a mut AppContext, pub(crate) window: &'a mut Window, } impl<'a> WindowContext<'a> { pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self { Self { app, window } } /// Obtain a handle to the window that belongs to this context. pub fn window_handle(&self) -> AnyWindowHandle { self.window.handle } /// Mark the window as dirty, scheduling it to be redrawn on the next frame. pub fn notify(&mut self) { if !self.window.drawing { self.window.dirty = true; } } /// Close this window. pub fn remove_window(&mut self) { self.window.removed = true; } /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus /// for elements rendered within this window. pub fn focus_handle(&mut self) -> FocusHandle { FocusHandle::new(&self.window.focus_handles) } /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`. pub fn focused(&self) -> Option { self.window .focus .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles)) } /// Move focus to the element associated with the given `FocusHandle`. pub fn focus(&mut self, handle: &FocusHandle) { if !self.window.focus_enabled || self.window.focus == Some(handle.id) { return; } self.window.focus = Some(handle.id); self.window .rendered_frame .dispatch_tree .clear_pending_keystrokes(); #[cfg(any(test, feature = "test-support"))] { self.window.focus_invalidated = true; } self.notify(); } /// Remove focus from all elements within this context's window. pub fn blur(&mut self) { if !self.window.focus_enabled { return; } self.window.focus = None; self.notify(); } pub fn disable_focus(&mut self) { self.blur(); self.window.focus_enabled = false; } pub fn dispatch_action(&mut self, action: Box) { let focus_handle = self.focused(); self.defer(move |cx| { let node_id = focus_handle .and_then(|handle| { cx.window .rendered_frame .dispatch_tree .focusable_node_id(handle.id) }) .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id()); cx.propagate_event = true; cx.dispatch_action_on_node(node_id, action); }) } pub(crate) fn dispatch_keystroke_observers( &mut self, event: &dyn Any, action: Option>, ) { let Some(key_down_event) = event.downcast_ref::() else { return; }; self.keystroke_observers .clone() .retain(&(), move |callback| { (callback)( &KeystrokeEvent { keystroke: key_down_event.keystroke.clone(), action: action.as_ref().map(|action| action.boxed_clone()), }, self, ); true }); } pub(crate) fn clear_pending_keystrokes(&mut self) { self.window .rendered_frame .dispatch_tree .clear_pending_keystrokes(); self.window .next_frame .dispatch_tree .clear_pending_keystrokes(); } /// Schedules the given function to be run at the end of the current effect cycle, allowing entities /// that are currently on the stack to be returned to the app. pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) { let handle = self.window.handle; self.app.defer(move |cx| { handle.update(cx, |_, cx| f(cx)).ok(); }); } pub fn subscribe( &mut self, entity: &E, mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static, ) -> Subscription where Emitter: EventEmitter, E: Entity, Evt: 'static, { let entity_id = entity.entity_id(); let entity = entity.downgrade(); let window_handle = self.window.handle; let (subscription, activate) = self.app.event_listeners.insert( entity_id, ( TypeId::of::(), Box::new(move |event, cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&entity) { let event = event.downcast_ref().expect("invalid event type"); on_event(handle, event, cx); true } else { false } }) .unwrap_or(false) }), ), ); self.app.defer(move |_| activate()); subscription } /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across /// await points in async code. pub fn to_async(&self) -> AsyncWindowContext { AsyncWindowContext::new(self.app.to_async(), self.window.handle) } /// Schedule the given closure to be run directly after the current frame is rendered. pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) { let handle = self.window.handle; let display_id = self.window.display_id; if !self.frame_consumers.contains_key(&display_id) { let (tx, mut rx) = mpsc::unbounded::<()>(); self.platform.set_display_link_output_callback( display_id, Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())), ); let consumer_task = self.app.spawn(|cx| async move { while rx.next().await.is_some() { cx.update(|cx| { for callback in cx .next_frame_callbacks .get_mut(&display_id) .unwrap() .drain(..) .collect::>() { callback(cx); } }) .ok(); // Flush effects, then stop the display link if no new next_frame_callbacks have been added. cx.update(|cx| { if cx.next_frame_callbacks.is_empty() { cx.platform.stop_display_link(display_id); } }) .ok(); } }); self.frame_consumers.insert(display_id, consumer_task); } if self.next_frame_callbacks.is_empty() { self.platform.start_display_link(display_id); } self.next_frame_callbacks .entry(display_id) .or_default() .push(Box::new(move |cx: &mut AppContext| { cx.update_window(handle, |_root_view, cx| callback(cx)).ok(); })); } /// Spawn the future returned by the given closure on the application thread pool. /// The closure is provided a handle to the current window and an `AsyncWindowContext` for /// use within your future. pub fn spawn(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task where R: 'static, Fut: Future + 'static, { self.app .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle))) } /// Update the global of the given type. The given closure is given simultaneous mutable /// access both to the global and the context. pub fn update_global(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R where G: 'static, { let mut global = self.app.lease_global::(); let result = f(&mut global, self); self.app.end_global_lease(global); result } #[must_use] /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which /// layout is being requested, along with the layout ids of any children. This method is called during /// calls to the `Element::layout` trait method and enables any element to participate in layout. pub fn request_layout( &mut self, style: &Style, children: impl IntoIterator, ) -> LayoutId { self.app.layout_id_buffer.clear(); self.app.layout_id_buffer.extend(children.into_iter()); let rem_size = self.rem_size(); self.window.layout_engine.as_mut().unwrap().request_layout( style, rem_size, &self.app.layout_id_buffer, ) } /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children, /// this variant takes a function that is invoked during layout so you can use arbitrary logic to /// determine the element's size. One place this is used internally is when measuring text. /// /// The given closure is invoked at layout time with the known dimensions and available space and /// returns a `Size`. pub fn request_measured_layout< F: FnMut(Size>, Size, &mut WindowContext) -> Size + 'static, >( &mut self, style: Style, measure: F, ) -> LayoutId { let rem_size = self.rem_size(); self.window .layout_engine .as_mut() .unwrap() .request_measured_layout(style, rem_size, measure) } pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size) { let mut layout_engine = self.window.layout_engine.take().unwrap(); layout_engine.compute_layout(layout_id, available_space, self); self.window.layout_engine = Some(layout_engine); } /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically /// in order to pass your element its `Bounds` automatically. pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds { let mut bounds = self .window .layout_engine .as_mut() .unwrap() .layout_bounds(layout_id) .map(Into::into); bounds.origin += self.element_offset(); bounds } fn window_bounds_changed(&mut self) { self.window.scale_factor = self.window.platform_window.scale_factor(); self.window.viewport_size = self.window.platform_window.content_size(); self.window.bounds = self.window.platform_window.bounds(); self.window.display_id = self.window.platform_window.display().id(); self.notify(); self.window .bounds_observers .clone() .retain(&(), |callback| callback(self)); } pub fn window_bounds(&self) -> WindowBounds { self.window.bounds } pub fn viewport_size(&self) -> Size { self.window.viewport_size } pub fn is_window_active(&self) -> bool { self.window.active } pub fn zoom_window(&self) { self.window.platform_window.zoom(); } pub fn set_window_title(&mut self, title: &str) { self.window.platform_window.set_title(title); } pub fn set_window_edited(&mut self, edited: bool) { self.window.platform_window.set_edited(edited); } pub fn display(&self) -> Option> { self.platform .displays() .into_iter() .find(|display| display.id() == self.window.display_id) } pub fn show_character_palette(&self) { self.window.platform_window.show_character_palette(); } /// The scale factor of the display associated with the window. For example, it could /// return 2.0 for a "retina" display, indicating that each logical pixel should actually /// be rendered as two pixels on screen. pub fn scale_factor(&self) -> f32 { self.window.scale_factor } /// The size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn rem_size(&self) -> Pixels { self.window.rem_size } /// Sets the size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn set_rem_size(&mut self, rem_size: impl Into) { self.window.rem_size = rem_size.into(); } /// The line height associated with the current text style. pub fn line_height(&self) -> Pixels { let rem_size = self.rem_size(); let text_style = self.text_style(); text_style .line_height .to_pixels(text_style.font_size.into(), rem_size) } /// Call to prevent the default action of an event. Currently only used to prevent /// parent elements from becoming focused on mouse down. pub fn prevent_default(&mut self) { self.window.default_prevented = true; } /// Obtain whether default has been prevented for the event currently being dispatched. pub fn default_prevented(&self) -> bool { self.window.default_prevented } /// Register a mouse event listener on the window for the next frame. The type of event /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. pub fn on_mouse_event( &mut self, mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static, ) { let order = self.window.next_frame.z_index_stack.clone(); let handler = self .window .frame_arena .alloc(|| { move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| { handler(event.downcast_ref().unwrap(), phase, cx) } }) .map(|handler| handler as _); self.window .next_frame .mouse_listeners .entry(TypeId::of::()) .or_default() .push((order, handler)) } /// Register a key event listener on the window for the next frame. The type of event /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This is a fairly low-level method, so prefer using event handlers on elements unless you have /// a specific need to register a global listener. pub fn on_key_event( &mut self, listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static, ) { let listener = self .window .frame_arena .alloc(|| { move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| { if let Some(event) = event.downcast_ref::() { listener(event, phase, cx) } } }) .map(|handler| handler as _); self.window .next_frame .dispatch_tree .on_key_event(ArenaRef::from(listener)); } /// Register an action listener on the window for the next frame. The type of action /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This is a fairly low-level method, so prefer using action handlers on elements unless you have /// a specific need to register a global listener. pub fn on_action( &mut self, action_type: TypeId, listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static, ) { let listener = self .window .frame_arena .alloc(|| listener) .map(|handler| handler as _); self.window .next_frame .dispatch_tree .on_action(action_type, ArenaRef::from(listener)); } pub fn is_action_available(&self, action: &dyn Action) -> bool { let target = self .focused() .and_then(|focused_handle| { self.window .rendered_frame .dispatch_tree .focusable_node_id(focused_handle.id) }) .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id()); self.window .rendered_frame .dispatch_tree .is_action_available(action, target) } /// The position of the mouse relative to the window. pub fn mouse_position(&self) -> Point { self.window.mouse_position } /// The current state of the keyboard's modifiers pub fn modifiers(&self) -> Modifiers { self.window.modifiers } pub fn set_cursor_style(&mut self, style: CursorStyle) { self.window.requested_cursor_style = Some(style) } /// Called during painting to track which z-index is on top at each pixel position pub fn add_opaque_layer(&mut self, bounds: Bounds) { let stacking_order = self.window.next_frame.z_index_stack.clone(); let depth_map = &mut self.window.next_frame.depth_map; match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(&level)) { Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)), } } /// Returns true if there is no opaque layer containing the given point /// on top of the given level. Layers whose level is an extension of the /// level are not considered to be on top of the level. pub fn was_top_layer(&self, point: &Point, level: &StackingOrder) -> bool { for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() { if level >= opaque_level { break; } if bounds.contains(point) && !opaque_level.starts_with(level) { return false; } } true } pub fn was_top_layer_under_active_drag( &self, point: &Point, level: &StackingOrder, ) -> bool { for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() { if level >= opaque_level { break; } if opaque_level.starts_with(&[ACTIVE_DRAG_Z_INDEX]) { continue; } if bounds.contains(point) && !opaque_level.starts_with(level) { return false; } } true } /// Called during painting to get the current stacking order. pub fn stacking_order(&self) -> &StackingOrder { &self.window.next_frame.z_index_stack } /// Paint one or more drop shadows into the scene for the next frame at the current z-index. pub fn paint_shadows( &mut self, bounds: Bounds, corner_radii: Corners, shadows: &[BoxShadow], ) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let window = &mut *self.window; for shadow in shadows { let mut shadow_bounds = bounds; shadow_bounds.origin += shadow.offset; shadow_bounds.dilate(shadow.spread_radius); window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, Shadow { order: 0, bounds: shadow_bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), corner_radii: corner_radii.scale(scale_factor), color: shadow.color, blur_radius: shadow.blur_radius.scale(scale_factor), }, ); } } /// Paint one or more quads into the scene for the next frame at the current stacking context. /// Quads are colored rectangular regions with an optional background, border, and corner radius. /// see [`fill`], [`outline`], and [`quad`] to construct this type. pub fn paint_quad(&mut self, quad: PaintQuad) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, Quad { order: 0, bounds: quad.bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), background: quad.background, border_color: quad.border_color, corner_radii: quad.corner_radii.scale(scale_factor), border_widths: quad.border_widths.scale(scale_factor), }, ); } /// Paint the given `Path` into the scene for the next frame at the current z-index. pub fn paint_path(&mut self, mut path: Path, color: impl Into) { let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); path.content_mask = content_mask; path.color = color.into(); let window = &mut *self.window; window .next_frame .scene_builder .insert(&window.next_frame.z_index_stack, path.scale(scale_factor)); } /// Paint an underline into the scene for the next frame at the current z-index. pub fn paint_underline( &mut self, origin: Point, width: Pixels, style: &UnderlineStyle, ) { let scale_factor = self.scale_factor(); let height = if style.wavy { style.thickness * 3. } else { style.thickness }; let bounds = Bounds { origin, size: size(width, height), }; let content_mask = self.content_mask(); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, Underline { order: 0, bounds: bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), thickness: style.thickness.scale(scale_factor), color: style.color.unwrap_or_default(), wavy: style.wavy, }, ); } /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index. /// The y component of the origin is the baseline of the glyph. pub fn paint_glyph( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, color: Hsla, ) -> Result<()> { let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let subpixel_variant = Point { x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, }; let params = RenderGlyphParams { font_id, glyph_id, font_size, subpixel_variant, scale_factor, is_emoji: false, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok((size, Cow::Owned(bytes))) })?; let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, MonochromeSprite { order: 0, bounds, content_mask, color, tile, }, ); } Ok(()) } /// Paint an emoji glyph into the scene for the next frame at the current z-index. /// The y component of the origin is the baseline of the glyph. pub fn paint_emoji( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, ) -> Result<()> { let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let params = RenderGlyphParams { font_id, glyph_id, font_size, // We don't render emojis with subpixel variants. subpixel_variant: Default::default(), scale_factor, is_emoji: true, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok((size, Cow::Owned(bytes))) })?; let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, PolychromeSprite { order: 0, bounds, corner_radii: Default::default(), content_mask, tile, grayscale: false, }, ); } Ok(()) } /// Paint a monochrome SVG into the scene for the next frame at the current stacking context. pub fn paint_svg( &mut self, bounds: Bounds, path: SharedString, color: Hsla, ) -> Result<()> { let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); // Render the SVG at twice the size to get a higher quality result. let params = RenderSvgParams { path, size: bounds .size .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)), }; let tile = self.window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let bytes = self.svg_renderer.render(¶ms)?; Ok((params.size, Cow::Owned(bytes))) })?; let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, MonochromeSprite { order: 0, bounds, content_mask, color, tile, }, ); Ok(()) } /// Paint an image into the scene for the next frame at the current z-index. pub fn paint_image( &mut self, bounds: Bounds, corner_radii: Corners, data: Arc, grayscale: bool, ) -> Result<()> { let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let params = RenderImageParams { image_id: data.id }; let tile = self .window .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { Ok((data.size(), Cow::Borrowed(data.as_bytes()))) })?; let content_mask = self.content_mask().scale(scale_factor); let corner_radii = corner_radii.scale(scale_factor); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, PolychromeSprite { order: 0, bounds, content_mask, corner_radii, tile, grayscale, }, ); Ok(()) } /// Paint a surface into the scene for the next frame at the current z-index. pub fn paint_surface(&mut self, bounds: Bounds, image_buffer: CVImageBuffer) { let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let content_mask = self.content_mask().scale(scale_factor); let window = &mut *self.window; window.next_frame.scene_builder.insert( &window.next_frame.z_index_stack, Surface { order: 0, bounds, content_mask, image_buffer, }, ); } /// Draw pixels to the display for this window based on the contents of its scene. pub(crate) fn draw(&mut self) -> Scene { self.window.dirty = false; self.window.drawing = true; #[cfg(any(test, feature = "test-support"))] { self.window.focus_invalidated = false; } self.text_system().start_frame(); self.window.platform_window.clear_input_handler(); self.window.layout_engine.as_mut().unwrap().clear(); self.window.next_frame.clear(); self.window.frame_arena.clear(); let root_view = self.window.root_view.take().unwrap(); self.with_z_index(0, |cx| { cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| { for (action_type, action_listeners) in &cx.app.global_action_listeners { for action_listener in action_listeners.iter().cloned() { let listener = cx .window .frame_arena .alloc(|| { move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| { action_listener(action, phase, cx) } }) .map(|listener| listener as _); cx.window .next_frame .dispatch_tree .on_action(*action_type, ArenaRef::from(listener)) } } let available_space = cx.window.viewport_size.map(Into::into); root_view.draw(Point::default(), available_space, cx); }) }); if let Some(active_drag) = self.app.active_drag.take() { self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| { let offset = cx.mouse_position() - active_drag.cursor_offset; let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent); active_drag.view.draw(offset, available_space, cx); }); self.active_drag = Some(active_drag); } else if let Some(active_tooltip) = self.app.active_tooltip.take() { self.with_z_index(1, |cx| { let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent); active_tooltip .view .draw(active_tooltip.cursor_offset, available_space, cx); }); } self.window .next_frame .dispatch_tree .preserve_pending_keystrokes( &mut self.window.rendered_frame.dispatch_tree, self.window.focus, ); self.window.next_frame.focus = self.window.focus; self.window.root_view = Some(root_view); let previous_focus_path = self.window.rendered_frame.focus_path(); mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame); let current_focus_path = self.window.rendered_frame.focus_path(); if previous_focus_path != current_focus_path { if !previous_focus_path.is_empty() && current_focus_path.is_empty() { self.window .blur_listeners .clone() .retain(&(), |listener| listener(self)); } let event = FocusEvent { previous_focus_path, current_focus_path, }; self.window .focus_listeners .clone() .retain(&(), |listener| listener(&event, self)); } let scene = self.window.rendered_frame.scene_builder.build(); // Set the cursor only if we're the active window. let cursor_style = self .window .requested_cursor_style .take() .unwrap_or(CursorStyle::Arrow); if self.is_window_active() { self.platform.set_cursor_style(cursor_style); } self.window.drawing = false; ELEMENT_ARENA.with_borrow_mut(|element_arena| element_arena.clear()); scene } /// Dispatch a mouse or keyboard event on the window. pub fn dispatch_event(&mut self, event: InputEvent) -> bool { // Handlers may set this to false by calling `stop_propagation`. self.app.propagate_event = true; // Handlers may set this to true by calling `prevent_default`. self.window.default_prevented = false; let event = match event { // Track the mouse position with our own state, since accessing the platform // API for the mouse position can only occur on the main thread. InputEvent::MouseMove(mouse_move) => { self.window.mouse_position = mouse_move.position; self.window.modifiers = mouse_move.modifiers; InputEvent::MouseMove(mouse_move) } InputEvent::MouseDown(mouse_down) => { self.window.mouse_position = mouse_down.position; self.window.modifiers = mouse_down.modifiers; InputEvent::MouseDown(mouse_down) } InputEvent::MouseUp(mouse_up) => { self.window.mouse_position = mouse_up.position; self.window.modifiers = mouse_up.modifiers; InputEvent::MouseUp(mouse_up) } InputEvent::MouseExited(mouse_exited) => { // todo!("Should we record that the mouse is outside of the window somehow? Or are these global pixels?") self.window.modifiers = mouse_exited.modifiers; InputEvent::MouseExited(mouse_exited) } InputEvent::ModifiersChanged(modifiers_changed) => { self.window.modifiers = modifiers_changed.modifiers; InputEvent::ModifiersChanged(modifiers_changed) } InputEvent::ScrollWheel(scroll_wheel) => { self.window.mouse_position = scroll_wheel.position; self.window.modifiers = scroll_wheel.modifiers; InputEvent::ScrollWheel(scroll_wheel) } // Translate dragging and dropping of external files from the operating system // to internal drag and drop events. InputEvent::FileDrop(file_drop) => match file_drop { FileDropEvent::Entered { position, files } => { self.window.mouse_position = position; if self.active_drag.is_none() { self.active_drag = Some(AnyDrag { value: Box::new(files.clone()), view: self.new_view(|_| files).into(), cursor_offset: position, }); } InputEvent::MouseMove(MouseMoveEvent { position, pressed_button: Some(MouseButton::Left), modifiers: Modifiers::default(), }) } FileDropEvent::Pending { position } => { self.window.mouse_position = position; InputEvent::MouseMove(MouseMoveEvent { position, pressed_button: Some(MouseButton::Left), modifiers: Modifiers::default(), }) } FileDropEvent::Submit { position } => { self.activate(true); self.window.mouse_position = position; InputEvent::MouseUp(MouseUpEvent { button: MouseButton::Left, position, modifiers: Modifiers::default(), click_count: 1, }) } FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent { button: MouseButton::Left, position: Point::default(), modifiers: Modifiers::default(), click_count: 1, }), }, InputEvent::KeyDown(_) | InputEvent::KeyUp(_) => event, }; if let Some(any_mouse_event) = event.mouse_event() { self.dispatch_mouse_event(any_mouse_event); } else if let Some(any_key_event) = event.keyboard_event() { self.dispatch_key_event(any_key_event); } !self.app.propagate_event } fn dispatch_mouse_event(&mut self, event: &dyn Any) { if let Some(mut handlers) = self .window .rendered_frame .mouse_listeners .remove(&event.type_id()) { // Because handlers may add other handlers, we sort every time. handlers.sort_by(|(a, _), (b, _)| a.cmp(b)); // Capture phase, events bubble from back to front. Handlers for this phase are used for // special purposes, such as detecting events outside of a given Bounds. for (_, handler) in &mut handlers { handler(event, DispatchPhase::Capture, self); if !self.app.propagate_event { break; } } // Bubble phase, where most normal handlers do their work. if self.app.propagate_event { for (_, handler) in handlers.iter_mut().rev() { handler(event, DispatchPhase::Bubble, self); if !self.app.propagate_event { break; } } } self.window .rendered_frame .mouse_listeners .insert(event.type_id(), handlers); } if self.app.propagate_event && self.has_active_drag() { if event.is::() { // If this was a mouse move event, redraw the window so that the // active drag can follow the mouse cursor. self.notify(); } else if event.is::() { // If this was a mouse up event, cancel the active drag and redraw // the window. self.active_drag = None; self.notify(); } } } fn dispatch_key_event(&mut self, event: &dyn Any) { let node_id = self .window .focus .and_then(|focus_id| { self.window .rendered_frame .dispatch_tree .focusable_node_id(focus_id) }) .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id()); let dispatch_path = self .window .rendered_frame .dispatch_tree .dispatch_path(node_id); let mut actions: Vec> = Vec::new(); // Capture phase let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new(); self.propagate_event = true; for node_id in &dispatch_path { let node = self.window.rendered_frame.dispatch_tree.node(*node_id); if let Some(context) = node.context.clone() { context_stack.push(context); } for key_listener in node.key_listeners.clone() { key_listener(event, DispatchPhase::Capture, self); if !self.propagate_event { return; } } } // Bubble phase for node_id in dispatch_path.iter().rev() { // Handle low level key events let node = self.window.rendered_frame.dispatch_tree.node(*node_id); for key_listener in node.key_listeners.clone() { key_listener(event, DispatchPhase::Bubble, self); if !self.propagate_event { return; } } // Match keystrokes let node = self.window.rendered_frame.dispatch_tree.node(*node_id); if node.context.is_some() { if let Some(key_down_event) = event.downcast_ref::() { let mut new_actions = self .window .rendered_frame .dispatch_tree .dispatch_key(&key_down_event.keystroke, &context_stack); actions.append(&mut new_actions); } context_stack.pop(); } } if !actions.is_empty() { self.clear_pending_keystrokes(); } for action in actions { self.dispatch_action_on_node(node_id, action.boxed_clone()); if !self.propagate_event { self.dispatch_keystroke_observers(event, Some(action)); return; } } self.dispatch_keystroke_observers(event, None); } pub fn has_pending_keystrokes(&self) -> bool { self.window .rendered_frame .dispatch_tree .has_pending_keystrokes() } fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box) { let dispatch_path = self .window .rendered_frame .dispatch_tree .dispatch_path(node_id); // Capture phase for node_id in &dispatch_path { let node = self.window.rendered_frame.dispatch_tree.node(*node_id); for DispatchActionListener { action_type, listener, } in node.action_listeners.clone() { let any_action = action.as_any(); if action_type == any_action.type_id() { listener(any_action, DispatchPhase::Capture, self); if !self.propagate_event { return; } } } } // Bubble phase for node_id in dispatch_path.iter().rev() { let node = self.window.rendered_frame.dispatch_tree.node(*node_id); for DispatchActionListener { action_type, listener, } in node.action_listeners.clone() { let any_action = action.as_any(); if action_type == any_action.type_id() { self.propagate_event = false; // Actions stop propagation by default during the bubble phase listener(any_action, DispatchPhase::Bubble, self); if !self.propagate_event { return; } } } } } /// Register the given handler to be invoked whenever the global of the given type /// is updated. pub fn observe_global( &mut self, f: impl Fn(&mut WindowContext<'_>) + 'static, ) -> Subscription { let window_handle = self.window.handle; let (subscription, activate) = self.global_observers.insert( TypeId::of::(), Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()), ); self.app.defer(move |_| activate()); subscription } pub fn activate_window(&self) { self.window.platform_window.activate(); } pub fn minimize_window(&self) { self.window.platform_window.minimize(); } pub fn toggle_full_screen(&self) { self.window.platform_window.toggle_full_screen(); } pub fn prompt( &self, level: PromptLevel, msg: &str, answers: &[&str], ) -> oneshot::Receiver { self.window.platform_window.prompt(level, msg, answers) } pub fn available_actions(&self) -> Vec> { let node_id = self .window .focus .and_then(|focus_id| { self.window .rendered_frame .dispatch_tree .focusable_node_id(focus_id) }) .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id()); self.window .rendered_frame .dispatch_tree .available_actions(node_id) } pub fn bindings_for_action(&self, action: &dyn Action) -> Vec { self.window .rendered_frame .dispatch_tree .bindings_for_action( action, &self.window.rendered_frame.dispatch_tree.context_stack, ) } pub fn bindings_for_action_in( &self, action: &dyn Action, focus_handle: &FocusHandle, ) -> Vec { let dispatch_tree = &self.window.rendered_frame.dispatch_tree; let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else { return vec![]; }; let context_stack = dispatch_tree .dispatch_path(node_id) .into_iter() .filter_map(|node_id| dispatch_tree.node(node_id).context.clone()) .collect(); dispatch_tree.bindings_for_action(action, &context_stack) } pub fn listener_for( &self, view: &View, f: impl Fn(&mut V, &E, &mut ViewContext) + 'static, ) -> impl Fn(&E, &mut WindowContext) + 'static { let view = view.downgrade(); move |e: &E, cx: &mut WindowContext| { view.update(cx, |view, cx| f(view, e, cx)).ok(); } } pub fn handler_for( &self, view: &View, f: impl Fn(&mut V, &mut ViewContext) + 'static, ) -> impl Fn(&mut WindowContext) { let view = view.downgrade(); move |cx: &mut WindowContext| { view.update(cx, |view, cx| f(view, cx)).ok(); } } //========== ELEMENT RELATED FUNCTIONS =========== pub fn with_key_dispatch( &mut self, context: Option, focus_handle: Option, f: impl FnOnce(Option, &mut Self) -> R, ) -> R { let window = &mut self.window; window.next_frame.dispatch_tree.push_node(context.clone()); if let Some(focus_handle) = focus_handle.as_ref() { window .next_frame .dispatch_tree .make_focusable(focus_handle.id); } let result = f(focus_handle, self); self.window.next_frame.dispatch_tree.pop_node(); result } /// Set an input handler, such as [ElementInputHandler], which interfaces with the /// platform to receive textual input with proper integration with concerns such /// as IME interactions. pub fn handle_input( &mut self, focus_handle: &FocusHandle, input_handler: impl PlatformInputHandler, ) { if focus_handle.is_focused(self) { self.window .platform_window .set_input_handler(Box::new(input_handler)); } } pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) { let mut this = self.to_async(); self.window .platform_window .on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true))) } } impl Context for WindowContext<'_> { type Result = T; fn new_model(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model where T: 'static, { let slot = self.app.entities.reserve(); let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade())); self.entities.insert(slot, model) } fn update_model( &mut self, model: &Model, update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R, ) -> R { let mut entity = self.entities.lease(model); let result = update( &mut *entity, &mut ModelContext::new(&mut *self.app, model.downgrade()), ); self.entities.end_lease(entity); result } fn update_window(&mut self, window: AnyWindowHandle, update: F) -> Result where F: FnOnce(AnyView, &mut WindowContext<'_>) -> T, { if window == self.window.handle { let root_view = self.window.root_view.clone().unwrap(); Ok(update(root_view, self)) } else { window.update(self.app, update) } } fn read_model( &self, handle: &Model, read: impl FnOnce(&T, &AppContext) -> R, ) -> Self::Result where T: 'static, { let entity = self.entities.read(handle); read(&*entity, &*self.app) } fn read_window( &self, window: &WindowHandle, read: impl FnOnce(View, &AppContext) -> R, ) -> Result where T: 'static, { if window.any_handle == self.window.handle { let root_view = self .window .root_view .clone() .unwrap() .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(read(root_view, self)) } else { self.app.read_window(window, read) } } } impl VisualContext for WindowContext<'_> { fn new_view( &mut self, build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V, ) -> Self::Result> where V: 'static + Render, { let slot = self.app.entities.reserve(); let view = View { model: slot.clone(), }; let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view); let entity = build_view_state(&mut cx); cx.entities.insert(slot, entity); cx.new_view_observers .clone() .retain(&TypeId::of::(), |observer| { let any_view = AnyView::from(view.clone()); (observer)(any_view, self); true }); view } /// Update the given view. Prefer calling `View::update` instead, which calls this method. fn update_view( &mut self, view: &View, update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R, ) -> Self::Result { let mut lease = self.app.entities.lease(&view.model); let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view); let result = update(&mut *lease, &mut cx); cx.app.entities.end_lease(lease); result } fn replace_root_view( &mut self, build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V, ) -> Self::Result> where V: 'static + Render, { let view = self.new_view(build_view); self.window.root_view = Some(view.clone().into()); self.notify(); view } fn focus_view(&mut self, view: &View) -> Self::Result<()> { self.update_view(view, |view, cx| { view.focus_handle(cx).clone().focus(cx); }) } fn dismiss_view(&mut self, view: &View) -> Self::Result<()> where V: ManagedView, { self.update_view(view, |_, cx| cx.emit(DismissEvent)) } } impl<'a> std::ops::Deref for WindowContext<'a> { type Target = AppContext; fn deref(&self) -> &Self::Target { &self.app } } impl<'a> std::ops::DerefMut for WindowContext<'a> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.app } } impl<'a> Borrow for WindowContext<'a> { fn borrow(&self) -> &AppContext { &self.app } } impl<'a> BorrowMut for WindowContext<'a> { fn borrow_mut(&mut self) -> &mut AppContext { &mut self.app } } pub trait BorrowWindow: BorrowMut + BorrowMut { fn app_mut(&mut self) -> &mut AppContext { self.borrow_mut() } fn app(&self) -> &AppContext { self.borrow() } fn window(&self) -> &Window { self.borrow() } fn window_mut(&mut self) -> &mut Window { self.borrow_mut() } /// Pushes the given element id onto the global stack and invokes the given closure /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is /// used to associate state with identified elements across separate frames. fn with_element_id( &mut self, id: Option>, f: impl FnOnce(&mut Self) -> R, ) -> R { if let Some(id) = id.map(Into::into) { let window = self.window_mut(); window.element_id_stack.push(id.into()); let result = f(self); let window: &mut Window = self.borrow_mut(); window.element_id_stack.pop(); result } else { f(self) } } /// Invoke the given function with the given content mask after intersecting it /// with the current mask. fn with_content_mask( &mut self, mask: Option>, f: impl FnOnce(&mut Self) -> R, ) -> R { if let Some(mask) = mask { let mask = mask.intersect(&self.content_mask()); self.window_mut().next_frame.content_mask_stack.push(mask); let result = f(self); self.window_mut().next_frame.content_mask_stack.pop(); result } else { f(self) } } /// Invoke the given function with the content mask reset to that /// of the window. fn break_content_mask(&mut self, f: impl FnOnce(&mut Self) -> R) -> R { let mask = ContentMask { bounds: Bounds { origin: Point::default(), size: self.window().viewport_size, }, }; let new_stacking_order_id = post_inc(&mut self.window_mut().next_frame.next_stacking_order_id); let old_stacking_order = mem::take(&mut self.window_mut().next_frame.z_index_stack); self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id; self.window_mut().next_frame.content_mask_stack.push(mask); let result = f(self); self.window_mut().next_frame.content_mask_stack.pop(); self.window_mut().next_frame.z_index_stack = old_stacking_order; result } /// Called during painting to invoke the given closure in a new stacking context. The given /// z-index is interpreted relative to the previous call to `stack`. fn with_z_index(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R { let new_stacking_order_id = post_inc(&mut self.window_mut().next_frame.next_stacking_order_id); let old_stacking_order_id = mem::replace( &mut self.window_mut().next_frame.z_index_stack.id, new_stacking_order_id, ); self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id; self.window_mut().next_frame.z_index_stack.push(z_index); let result = f(self); self.window_mut().next_frame.z_index_stack.id = old_stacking_order_id; self.window_mut().next_frame.z_index_stack.pop(); result } /// Update the global element offset relative to the current offset. This is used to implement /// scrolling. fn with_element_offset( &mut self, offset: Point, f: impl FnOnce(&mut Self) -> R, ) -> R { if offset.is_zero() { return f(self); }; let abs_offset = self.element_offset() + offset; self.with_absolute_element_offset(abs_offset, f) } /// Update the global element offset based on the given offset. This is used to implement /// drag handles and other manual painting of elements. fn with_absolute_element_offset( &mut self, offset: Point, f: impl FnOnce(&mut Self) -> R, ) -> R { self.window_mut() .next_frame .element_offset_stack .push(offset); let result = f(self); self.window_mut().next_frame.element_offset_stack.pop(); result } /// Obtain the current element offset. fn element_offset(&self) -> Point { self.window() .next_frame .element_offset_stack .last() .copied() .unwrap_or_default() } /// Update or initialize state for an element with the given id that lives across multiple /// frames. If an element with this id existed in the rendered frame, its state will be passed /// to the given closure. The state returned by the closure will be stored so it can be referenced /// when drawing the next frame. fn with_element_state( &mut self, id: ElementId, f: impl FnOnce(Option, &mut Self) -> (R, S), ) -> R where S: 'static, { self.with_element_id(Some(id), |cx| { let global_id = cx.window().element_id_stack.clone(); if let Some(any) = cx .window_mut() .next_frame .element_states .remove(&global_id) .or_else(|| { cx.window_mut() .rendered_frame .element_states .remove(&global_id) }) { let ElementStateBox { inner, #[cfg(debug_assertions)] type_name } = any; // Using the extra inner option to avoid needing to reallocate a new box. let mut state_box = inner .downcast::>() .map_err(|_| { #[cfg(debug_assertions)] { anyhow!( "invalid element state type for id, requested_type {:?}, actual type: {:?}", std::any::type_name::(), type_name ) } #[cfg(not(debug_assertions))] { anyhow!( "invalid element state type for id, requested_type {:?}", std::any::type_name::(), ) } }) .unwrap(); // Actual: Option <- View // Requested: () <- AnyElemet let state = state_box .take() .expect("element state is already on the stack"); let (result, state) = f(Some(state), cx); state_box.replace(state); cx.window_mut() .next_frame .element_states .insert(global_id, ElementStateBox { inner: state_box, #[cfg(debug_assertions)] type_name }); result } else { let (result, state) = f(None, cx); cx.window_mut() .next_frame .element_states .insert(global_id, ElementStateBox { inner: Box::new(Some(state)), #[cfg(debug_assertions)] type_name: std::any::type_name::() } ); result } }) } /// Obtain the current content mask. fn content_mask(&self) -> ContentMask { self.window() .next_frame .content_mask_stack .last() .cloned() .unwrap_or_else(|| ContentMask { bounds: Bounds { origin: Point::default(), size: self.window().viewport_size, }, }) } /// The size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. fn rem_size(&self) -> Pixels { self.window().rem_size } } impl Borrow for WindowContext<'_> { fn borrow(&self) -> &Window { &self.window } } impl BorrowMut for WindowContext<'_> { fn borrow_mut(&mut self) -> &mut Window { &mut self.window } } impl BorrowWindow for T where T: BorrowMut + BorrowMut {} pub struct ViewContext<'a, V> { window_cx: WindowContext<'a>, view: &'a View, } impl Borrow for ViewContext<'_, V> { fn borrow(&self) -> &AppContext { &*self.window_cx.app } } impl BorrowMut for ViewContext<'_, V> { fn borrow_mut(&mut self) -> &mut AppContext { &mut *self.window_cx.app } } impl Borrow for ViewContext<'_, V> { fn borrow(&self) -> &Window { &*self.window_cx.window } } impl BorrowMut for ViewContext<'_, V> { fn borrow_mut(&mut self) -> &mut Window { &mut *self.window_cx.window } } impl<'a, V: 'static> ViewContext<'a, V> { pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View) -> Self { Self { window_cx: WindowContext::new(app, window), view, } } pub fn entity_id(&self) -> EntityId { self.view.entity_id() } pub fn view(&self) -> &View { self.view } pub fn model(&self) -> &Model { &self.view.model } /// Access the underlying window context. pub fn window_context(&mut self) -> &mut WindowContext<'a> { &mut self.window_cx } pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext) + 'static) where V: 'static, { let view = self.view().clone(); self.window_cx.on_next_frame(move |cx| view.update(cx, f)); } /// Schedules the given function to be run at the end of the current effect cycle, allowing entities /// that are currently on the stack to be returned to the app. pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext) + 'static) { let view = self.view().downgrade(); self.window_cx.defer(move |cx| { view.update(cx, f).ok(); }); } pub fn observe( &mut self, entity: &E, mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V2: 'static, V: 'static, E: Entity, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let entity = entity.downgrade(); let window_handle = self.window.handle; let (subscription, activate) = self.app.observers.insert( entity_id, Box::new(move |cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&entity) { view.update(cx, |this, cx| on_notify(this, handle, cx)) .is_ok() } else { false } }) .unwrap_or(false) }), ); self.app.defer(move |_| activate()); subscription } pub fn subscribe( &mut self, entity: &E, mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V2: EventEmitter, E: Entity, Evt: 'static, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let handle = entity.downgrade(); let window_handle = self.window.handle; let (subscription, activate) = self.app.event_listeners.insert( entity_id, ( TypeId::of::(), Box::new(move |event, cx| { window_handle .update(cx, |_, cx| { if let Some(handle) = E::upgrade_from(&handle) { let event = event.downcast_ref().expect("invalid event type"); view.update(cx, |this, cx| on_event(this, handle, event, cx)) .is_ok() } else { false } }) .unwrap_or(false) }), ), ); self.app.defer(move |_| activate()); subscription } /// Register a callback to be invoked when the view is released. /// /// The callback receives a handle to the view's window. This handle may be /// invalid, if the window was closed before the view was released. pub fn on_release( &mut self, on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static, ) -> Subscription { let window_handle = self.window.handle; let (subscription, activate) = self.app.release_listeners.insert( self.view.model.entity_id, Box::new(move |this, cx| { let this = this.downcast_mut().expect("invalid entity type"); on_release(this, window_handle, cx) }), ); activate(); subscription } pub fn observe_release( &mut self, entity: &E, mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static, ) -> Subscription where V: 'static, V2: 'static, E: Entity, { let view = self.view().downgrade(); let entity_id = entity.entity_id(); let window_handle = self.window.handle; let (subscription, activate) = self.app.release_listeners.insert( entity_id, Box::new(move |entity, cx| { let entity = entity.downcast_mut().expect("invalid entity type"); let _ = window_handle.update(cx, |_, cx| { view.update(cx, |this, cx| on_release(this, entity, cx)) }); }), ); activate(); subscription } pub fn notify(&mut self) { if !self.window.drawing { self.window_cx.notify(); self.window_cx.app.push_effect(Effect::Notify { emitter: self.view.model.entity_id, }); } } pub fn observe_window_bounds( &mut self, mut callback: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let (subscription, activate) = self.window.bounds_observers.insert( (), Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()), ); activate(); subscription } pub fn observe_window_activation( &mut self, mut callback: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let (subscription, activate) = self.window.activation_observers.insert( (), Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()), ); activate(); subscription } /// Register a listener to be called when the given focus handle receives focus. /// Unlike [on_focus_changed], returns a subscription and persists until the subscription /// is dropped. pub fn on_focus( &mut self, handle: &FocusHandle, mut listener: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let focus_id = handle.id; let (subscription, activate) = self.window.focus_listeners.insert( (), Box::new(move |event, cx| { view.update(cx, |view, cx| { if event.previous_focus_path.last() != Some(&focus_id) && event.current_focus_path.last() == Some(&focus_id) { listener(view, cx) } }) .is_ok() }), ); self.app.defer(move |_| activate()); subscription } /// Register a listener to be called when the given focus handle or one of its descendants receives focus. /// Unlike [on_focus_changed], returns a subscription and persists until the subscription /// is dropped. pub fn on_focus_in( &mut self, handle: &FocusHandle, mut listener: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let focus_id = handle.id; let (subscription, activate) = self.window.focus_listeners.insert( (), Box::new(move |event, cx| { view.update(cx, |view, cx| { if !event.previous_focus_path.contains(&focus_id) && event.current_focus_path.contains(&focus_id) { listener(view, cx) } }) .is_ok() }), ); self.app.defer(move |_| activate()); subscription } /// Register a listener to be called when the given focus handle loses focus. /// Unlike [on_focus_changed], returns a subscription and persists until the subscription /// is dropped. pub fn on_blur( &mut self, handle: &FocusHandle, mut listener: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let focus_id = handle.id; let (subscription, activate) = self.window.focus_listeners.insert( (), Box::new(move |event, cx| { view.update(cx, |view, cx| { if event.previous_focus_path.last() == Some(&focus_id) && event.current_focus_path.last() != Some(&focus_id) { listener(view, cx) } }) .is_ok() }), ); self.app.defer(move |_| activate()); subscription } /// Register a listener to be called when the window loses focus. /// Unlike [on_focus_changed], returns a subscription and persists until the subscription /// is dropped. pub fn on_blur_window( &mut self, mut listener: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let (subscription, activate) = self.window.blur_listeners.insert( (), Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()), ); activate(); subscription } /// Register a listener to be called when the given focus handle or one of its descendants loses focus. /// Unlike [on_focus_changed], returns a subscription and persists until the subscription /// is dropped. pub fn on_focus_out( &mut self, handle: &FocusHandle, mut listener: impl FnMut(&mut V, &mut ViewContext) + 'static, ) -> Subscription { let view = self.view.downgrade(); let focus_id = handle.id; let (subscription, activate) = self.window.focus_listeners.insert( (), Box::new(move |event, cx| { view.update(cx, |view, cx| { if event.previous_focus_path.contains(&focus_id) && !event.current_focus_path.contains(&focus_id) { listener(view, cx) } }) .is_ok() }), ); self.app.defer(move |_| activate()); subscription } pub fn spawn( &mut self, f: impl FnOnce(WeakView, AsyncWindowContext) -> Fut, ) -> Task where R: 'static, Fut: Future + 'static, { let view = self.view().downgrade(); self.window_cx.spawn(|cx| f(view, cx)) } pub fn update_global(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R where G: 'static, { let mut global = self.app.lease_global::(); let result = f(&mut global, self); self.app.end_global_lease(global); result } pub fn observe_global( &mut self, mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static, ) -> Subscription { let window_handle = self.window.handle; let view = self.view().downgrade(); let (subscription, activate) = self.global_observers.insert( TypeId::of::(), Box::new(move |cx| { window_handle .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok()) .unwrap_or(false) }), ); self.app.defer(move |_| activate()); subscription } pub fn on_mouse_event( &mut self, handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext) + 'static, ) { let handle = self.view().clone(); self.window_cx.on_mouse_event(move |event, phase, cx| { handle.update(cx, |view, cx| { handler(view, event, phase, cx); }) }); } pub fn on_key_event( &mut self, handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext) + 'static, ) { let handle = self.view().clone(); self.window_cx.on_key_event(move |event, phase, cx| { handle.update(cx, |view, cx| { handler(view, event, phase, cx); }) }); } pub fn on_action( &mut self, action_type: TypeId, listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext) + 'static, ) { let handle = self.view().clone(); self.window_cx .on_action(action_type, move |action, phase, cx| { handle.update(cx, |view, cx| { listener(view, action, phase, cx); }) }); } pub fn emit(&mut self, event: Evt) where Evt: 'static, V: EventEmitter, { let emitter = self.view.model.entity_id; self.app.push_effect(Effect::Emit { emitter, event_type: TypeId::of::(), event: Box::new(event), }); } pub fn focus_self(&mut self) where V: FocusableView, { self.defer(|view, cx| view.focus_handle(cx).focus(cx)) } pub fn listener( &self, f: impl Fn(&mut V, &E, &mut ViewContext) + 'static, ) -> impl Fn(&E, &mut WindowContext) + 'static { let view = self.view().downgrade(); move |e: &E, cx: &mut WindowContext| { view.update(cx, |view, cx| f(view, e, cx)).ok(); } } } impl Context for ViewContext<'_, V> { type Result = U; fn new_model( &mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T, ) -> Model { self.window_cx.new_model(build_model) } fn update_model( &mut self, model: &Model, update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R, ) -> R { self.window_cx.update_model(model, update) } fn update_window(&mut self, window: AnyWindowHandle, update: F) -> Result where F: FnOnce(AnyView, &mut WindowContext<'_>) -> T, { self.window_cx.update_window(window, update) } fn read_model( &self, handle: &Model, read: impl FnOnce(&T, &AppContext) -> R, ) -> Self::Result where T: 'static, { self.window_cx.read_model(handle, read) } fn read_window( &self, window: &WindowHandle, read: impl FnOnce(View, &AppContext) -> R, ) -> Result where T: 'static, { self.window_cx.read_window(window, read) } } impl VisualContext for ViewContext<'_, V> { fn new_view( &mut self, build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W, ) -> Self::Result> { self.window_cx.new_view(build_view_state) } fn update_view( &mut self, view: &View, update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R, ) -> Self::Result { self.window_cx.update_view(view, update) } fn replace_root_view( &mut self, build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W, ) -> Self::Result> where W: 'static + Render, { self.window_cx.replace_root_view(build_view) } fn focus_view(&mut self, view: &View) -> Self::Result<()> { self.window_cx.focus_view(view) } fn dismiss_view(&mut self, view: &View) -> Self::Result<()> { self.window_cx.dismiss_view(view) } } impl<'a, V> std::ops::Deref for ViewContext<'a, V> { type Target = WindowContext<'a>; fn deref(&self) -> &Self::Target { &self.window_cx } } impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.window_cx } } // #[derive(Clone, Copy, Eq, PartialEq, Hash)] slotmap::new_key_type! { pub struct WindowId; } impl WindowId { pub fn as_u64(&self) -> u64 { self.0.as_ffi() } } #[derive(Deref, DerefMut)] pub struct WindowHandle { #[deref] #[deref_mut] pub(crate) any_handle: AnyWindowHandle, state_type: PhantomData, } impl WindowHandle { pub fn new(id: WindowId) -> Self { WindowHandle { any_handle: AnyWindowHandle { id, state_type: TypeId::of::(), }, state_type: PhantomData, } } pub fn root(&self, cx: &mut C) -> Result> where C: Context, { Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| { root_view .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed")) })) } pub fn update( &self, cx: &mut C, update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R, ) -> Result where C: Context, { cx.update_window(self.any_handle, |root_view, cx| { let view = root_view .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(cx.update_view(&view, update)) })? } pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> { let x = cx .windows .get(self.id) .and_then(|window| { window .as_ref() .and_then(|window| window.root_view.clone()) .map(|root_view| root_view.downcast::()) }) .ok_or_else(|| anyhow!("window not found"))? .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(x.read(cx)) } pub fn read_with(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result where C: Context, { cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx)) } pub fn root_view(&self, cx: &C) -> Result> where C: Context, { cx.read_window(self, |root_view, _cx| root_view.clone()) } pub fn is_active(&self, cx: &AppContext) -> Option { cx.windows .get(self.id) .and_then(|window| window.as_ref().map(|window| window.active)) } } impl Copy for WindowHandle {} impl Clone for WindowHandle { fn clone(&self) -> Self { WindowHandle { any_handle: self.any_handle, state_type: PhantomData, } } } impl PartialEq for WindowHandle { fn eq(&self, other: &Self) -> bool { self.any_handle == other.any_handle } } impl Eq for WindowHandle {} impl Hash for WindowHandle { fn hash(&self, state: &mut H) { self.any_handle.hash(state); } } impl Into for WindowHandle { fn into(self) -> AnyWindowHandle { self.any_handle } } #[derive(Copy, Clone, PartialEq, Eq, Hash)] pub struct AnyWindowHandle { pub(crate) id: WindowId, state_type: TypeId, } impl AnyWindowHandle { pub fn window_id(&self) -> WindowId { self.id } pub fn downcast(&self) -> Option> { if TypeId::of::() == self.state_type { Some(WindowHandle { any_handle: *self, state_type: PhantomData, }) } else { None } } pub fn update( self, cx: &mut C, update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R, ) -> Result where C: Context, { cx.update_window(self, update) } pub fn read(self, cx: &C, read: impl FnOnce(View, &AppContext) -> R) -> Result where C: Context, T: 'static, { let view = self .downcast::() .context("the type of the window's root view has changed")?; cx.read_window(&view, read) } } // #[cfg(any(test, feature = "test-support"))] // impl From> for StackingOrder { // fn from(small_vec: SmallVec<[u32; 16]>) -> Self { // StackingOrder(small_vec) // } // } #[derive(Clone, Debug, Eq, PartialEq, Hash)] pub enum ElementId { View(EntityId), Integer(usize), Name(SharedString), FocusHandle(FocusId), NamedInteger(SharedString, usize), } impl ElementId { pub(crate) fn from_entity_id(entity_id: EntityId) -> Self { ElementId::View(entity_id) } } impl TryInto for ElementId { type Error = anyhow::Error; fn try_into(self) -> anyhow::Result { if let ElementId::Name(name) = self { Ok(name) } else { Err(anyhow!("element id is not string")) } } } impl From for ElementId { fn from(id: usize) -> Self { ElementId::Integer(id) } } impl From for ElementId { fn from(id: i32) -> Self { Self::Integer(id as usize) } } impl From for ElementId { fn from(name: SharedString) -> Self { ElementId::Name(name) } } impl From<&'static str> for ElementId { fn from(name: &'static str) -> Self { ElementId::Name(name.into()) } } impl<'a> From<&'a FocusHandle> for ElementId { fn from(handle: &'a FocusHandle) -> Self { ElementId::FocusHandle(handle.id) } } impl From<(&'static str, EntityId)> for ElementId { fn from((name, id): (&'static str, EntityId)) -> Self { ElementId::NamedInteger(name.into(), id.as_u64() as usize) } } impl From<(&'static str, usize)> for ElementId { fn from((name, id): (&'static str, usize)) -> Self { ElementId::NamedInteger(name.into(), id) } } impl From<(&'static str, u64)> for ElementId { fn from((name, id): (&'static str, u64)) -> Self { ElementId::NamedInteger(name.into(), id as usize) } } /// A rectangle, to be rendered on the screen by GPUI at the given position and size. #[derive(Clone)] pub struct PaintQuad { bounds: Bounds, corner_radii: Corners, background: Hsla, border_widths: Edges, border_color: Hsla, } impl PaintQuad { /// Set the corner radii of the quad. pub fn corner_radii(self, corner_radii: impl Into>) -> Self { PaintQuad { corner_radii: corner_radii.into(), ..self } } /// Set the border widths of the quad. pub fn border_widths(self, border_widths: impl Into>) -> Self { PaintQuad { border_widths: border_widths.into(), ..self } } /// Set the border color of the quad. pub fn border_color(self, border_color: impl Into) -> Self { PaintQuad { border_color: border_color.into(), ..self } } /// Set the background color of the quad. pub fn background(self, background: impl Into) -> Self { PaintQuad { background: background.into(), ..self } } } /// Create a quad with the given parameters. pub fn quad( bounds: Bounds, corner_radii: impl Into>, background: impl Into, border_widths: impl Into>, border_color: impl Into, ) -> PaintQuad { PaintQuad { bounds, corner_radii: corner_radii.into(), background: background.into(), border_widths: border_widths.into(), border_color: border_color.into(), } } /// Create a filled quad with the given bounds and background color. pub fn fill(bounds: impl Into>, background: impl Into) -> PaintQuad { PaintQuad { bounds: bounds.into(), corner_radii: (0.).into(), background: background.into(), border_widths: (0.).into(), border_color: transparent_black(), } } /// Create a rectangle outline with the given bounds, border color, and a 1px border width pub fn outline(bounds: impl Into>, border_color: impl Into) -> PaintQuad { PaintQuad { bounds: bounds.into(), corner_radii: (0.).into(), background: transparent_black(), border_widths: (1.).into(), border_color: border_color.into(), } }