use ai_onboarding::YoungAccountBanner; use anthropic::AnthropicModelMode; use anyhow::{Context as _, Result, anyhow}; use chrono::{DateTime, Utc}; use client::{Client, ModelRequestUsage, UserStore, zed_urls}; use cloud_llm_client::{ CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody, CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME, ZED_VERSION_HEADER_NAME, }; use futures::{ AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream, }; use google_ai::GoogleModelMode; use gpui::{ AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task, }; use http_client::http::{HeaderMap, HeaderValue}; use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode}; use language_model::{ AuthenticateError, LanguageModel, LanguageModelCacheConfiguration, LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice, LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError, PaymentRequiredError, RateLimiter, RefreshLlmTokenListener, }; use release_channel::AppVersion; use schemars::JsonSchema; use serde::{Deserialize, Serialize, de::DeserializeOwned}; use settings::SettingsStore; use smol::io::{AsyncReadExt, BufReader}; use std::pin::Pin; use std::str::FromStr as _; use std::sync::Arc; use std::time::Duration; use thiserror::Error; use ui::{TintColor, prelude::*}; use util::{ResultExt as _, maybe}; use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic}; use crate::provider::google::{GoogleEventMapper, into_google}; use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai}; pub const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID; pub const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME; #[derive(Default, Clone, Debug, PartialEq)] pub struct ZedDotDevSettings { pub available_models: Vec, } #[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)] #[serde(rename_all = "lowercase")] pub enum AvailableProvider { Anthropic, OpenAi, Google, } #[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)] pub struct AvailableModel { /// The provider of the language model. pub provider: AvailableProvider, /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620 pub name: String, /// The name displayed in the UI, such as in the assistant panel model dropdown menu. pub display_name: Option, /// The size of the context window, indicating the maximum number of tokens the model can process. pub max_tokens: usize, /// The maximum number of output tokens allowed by the model. pub max_output_tokens: Option, /// The maximum number of completion tokens allowed by the model (o1-* only) pub max_completion_tokens: Option, /// Override this model with a different Anthropic model for tool calls. pub tool_override: Option, /// Indicates whether this custom model supports caching. pub cache_configuration: Option, /// The default temperature to use for this model. pub default_temperature: Option, /// Any extra beta headers to provide when using the model. #[serde(default)] pub extra_beta_headers: Vec, /// The model's mode (e.g. thinking) pub mode: Option, } #[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)] #[serde(tag = "type", rename_all = "lowercase")] pub enum ModelMode { #[default] Default, Thinking { /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`. budget_tokens: Option, }, } impl From for AnthropicModelMode { fn from(value: ModelMode) -> Self { match value { ModelMode::Default => AnthropicModelMode::Default, ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens }, } } } pub struct CloudLanguageModelProvider { client: Arc, state: gpui::Entity, _maintain_client_status: Task<()>, } pub struct State { client: Arc, llm_api_token: LlmApiToken, user_store: Entity, status: client::Status, models: Vec>, default_model: Option>, default_fast_model: Option>, recommended_models: Vec>, _fetch_models_task: Task<()>, _settings_subscription: Subscription, _llm_token_subscription: Subscription, } impl State { fn new( client: Arc, user_store: Entity, status: client::Status, cx: &mut Context, ) -> Self { let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx); let mut current_user = user_store.read(cx).watch_current_user(); Self { client: client.clone(), llm_api_token: LlmApiToken::default(), user_store, status, models: Vec::new(), default_model: None, default_fast_model: None, recommended_models: Vec::new(), _fetch_models_task: cx.spawn(async move |this, cx| { maybe!(async { let (client, llm_api_token) = this .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?; while current_user.borrow().is_none() { current_user.next().await; } let response = Self::fetch_models(client.clone(), llm_api_token.clone()).await?; this.update(cx, |this, cx| this.update_models(response, cx))?; anyhow::Ok(()) }) .await .context("failed to fetch Zed models") .log_err(); }), _settings_subscription: cx.observe_global::(|_, cx| { cx.notify(); }), _llm_token_subscription: cx.subscribe( &refresh_llm_token_listener, move |this, _listener, _event, cx| { let client = this.client.clone(); let llm_api_token = this.llm_api_token.clone(); cx.spawn(async move |this, cx| { llm_api_token.refresh(&client).await?; let response = Self::fetch_models(client, llm_api_token).await?; this.update(cx, |this, cx| { this.update_models(response, cx); }) }) .detach_and_log_err(cx); }, ), } } fn is_signed_out(&self, cx: &App) -> bool { self.user_store.read(cx).current_user().is_none() } fn authenticate(&self, cx: &mut Context) -> Task> { let client = self.client.clone(); cx.spawn(async move |state, cx| { client.sign_in_with_optional_connect(true, cx).await?; state.update(cx, |_, cx| cx.notify()) }) } fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context) { let mut models = Vec::new(); for model in response.models { models.push(Arc::new(model.clone())); // Right now we represent thinking variants of models as separate models on the client, // so we need to insert variants for any model that supports thinking. if model.supports_thinking { models.push(Arc::new(cloud_llm_client::LanguageModel { id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()), display_name: format!("{} Thinking", model.display_name), ..model })); } } self.default_model = models .iter() .find(|model| model.id == response.default_model) .cloned(); self.default_fast_model = models .iter() .find(|model| model.id == response.default_fast_model) .cloned(); self.recommended_models = response .recommended_models .iter() .filter_map(|id| models.iter().find(|model| &model.id == id)) .cloned() .collect(); self.models = models; cx.notify(); } async fn fetch_models( client: Arc, llm_api_token: LlmApiToken, ) -> Result { let http_client = &client.http_client(); let token = llm_api_token.acquire(&client).await?; let request = http_client::Request::builder() .method(Method::GET) .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref()) .header("Authorization", format!("Bearer {token}")) .body(AsyncBody::empty())?; let mut response = http_client .send(request) .await .context("failed to send list models request")?; if response.status().is_success() { let mut body = String::new(); response.body_mut().read_to_string(&mut body).await?; Ok(serde_json::from_str(&body)?) } else { let mut body = String::new(); response.body_mut().read_to_string(&mut body).await?; anyhow::bail!( "error listing models.\nStatus: {:?}\nBody: {body}", response.status(), ); } } } impl CloudLanguageModelProvider { pub fn new(user_store: Entity, client: Arc, cx: &mut App) -> Self { let mut status_rx = client.status(); let status = *status_rx.borrow(); let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx)); let state_ref = state.downgrade(); let maintain_client_status = cx.spawn(async move |cx| { while let Some(status) = status_rx.next().await { if let Some(this) = state_ref.upgrade() { _ = this.update(cx, |this, cx| { if this.status != status { this.status = status; cx.notify(); } }); } else { break; } } }); Self { client, state, _maintain_client_status: maintain_client_status, } } fn create_language_model( &self, model: Arc, llm_api_token: LlmApiToken, ) -> Arc { Arc::new(CloudLanguageModel { id: LanguageModelId(SharedString::from(model.id.0.clone())), model, llm_api_token, client: self.client.clone(), request_limiter: RateLimiter::new(4), }) } } impl LanguageModelProviderState for CloudLanguageModelProvider { type ObservableEntity = State; fn observable_entity(&self) -> Option> { Some(self.state.clone()) } } impl LanguageModelProvider for CloudLanguageModelProvider { fn id(&self) -> LanguageModelProviderId { PROVIDER_ID } fn name(&self) -> LanguageModelProviderName { PROVIDER_NAME } fn icon(&self) -> IconName { IconName::AiZed } fn default_model(&self, cx: &App) -> Option> { let default_model = self.state.read(cx).default_model.clone()?; let llm_api_token = self.state.read(cx).llm_api_token.clone(); Some(self.create_language_model(default_model, llm_api_token)) } fn default_fast_model(&self, cx: &App) -> Option> { let default_fast_model = self.state.read(cx).default_fast_model.clone()?; let llm_api_token = self.state.read(cx).llm_api_token.clone(); Some(self.create_language_model(default_fast_model, llm_api_token)) } fn recommended_models(&self, cx: &App) -> Vec> { let llm_api_token = self.state.read(cx).llm_api_token.clone(); self.state .read(cx) .recommended_models .iter() .cloned() .map(|model| self.create_language_model(model, llm_api_token.clone())) .collect() } fn provided_models(&self, cx: &App) -> Vec> { let llm_api_token = self.state.read(cx).llm_api_token.clone(); self.state .read(cx) .models .iter() .cloned() .map(|model| self.create_language_model(model, llm_api_token.clone())) .collect() } fn is_authenticated(&self, cx: &App) -> bool { let state = self.state.read(cx); !state.is_signed_out(cx) } fn authenticate(&self, _cx: &mut App) -> Task> { Task::ready(Ok(())) } fn configuration_view( &self, _target_agent: language_model::ConfigurationViewTargetAgent, _: &mut Window, cx: &mut App, ) -> AnyView { cx.new(|_| ConfigurationView::new(self.state.clone())) .into() } fn reset_credentials(&self, _cx: &mut App) -> Task> { Task::ready(Ok(())) } } pub struct CloudLanguageModel { id: LanguageModelId, model: Arc, llm_api_token: LlmApiToken, client: Arc, request_limiter: RateLimiter, } struct PerformLlmCompletionResponse { response: Response, usage: Option, tool_use_limit_reached: bool, includes_status_messages: bool, } impl CloudLanguageModel { async fn perform_llm_completion( client: Arc, llm_api_token: LlmApiToken, app_version: Option, body: CompletionBody, ) -> Result { let http_client = &client.http_client(); let mut token = llm_api_token.acquire(&client).await?; let mut refreshed_token = false; loop { let request_builder = http_client::Request::builder() .method(Method::POST) .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref()); let request_builder = if let Some(app_version) = app_version { request_builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string()) } else { request_builder }; let request = request_builder .header("Content-Type", "application/json") .header("Authorization", format!("Bearer {token}")) .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true") .body(serde_json::to_string(&body)?.into())?; let mut response = http_client.send(request).await?; let status = response.status(); if status.is_success() { let includes_status_messages = response .headers() .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME) .is_some(); let tool_use_limit_reached = response .headers() .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME) .is_some(); let usage = if includes_status_messages { None } else { ModelRequestUsage::from_headers(response.headers()).ok() }; return Ok(PerformLlmCompletionResponse { response, usage, includes_status_messages, tool_use_limit_reached, }); } if !refreshed_token && response .headers() .get(EXPIRED_LLM_TOKEN_HEADER_NAME) .is_some() { token = llm_api_token.refresh(&client).await?; refreshed_token = true; continue; } if status == StatusCode::FORBIDDEN && response .headers() .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME) .is_some() { if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response .headers() .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME) .and_then(|resource| resource.to_str().ok()) && let Some(plan) = response .headers() .get(CURRENT_PLAN_HEADER_NAME) .and_then(|plan| plan.to_str().ok()) .and_then(|plan| cloud_llm_client::Plan::from_str(plan).ok()) { return Err(anyhow!(ModelRequestLimitReachedError { plan })); } } else if status == StatusCode::PAYMENT_REQUIRED { return Err(anyhow!(PaymentRequiredError)); } let mut body = String::new(); let headers = response.headers().clone(); response.body_mut().read_to_string(&mut body).await?; return Err(anyhow!(ApiError { status, body, headers })); } } } #[derive(Debug, Error)] #[error("cloud language model request failed with status {status}: {body}")] struct ApiError { status: StatusCode, body: String, headers: HeaderMap, } /// Represents error responses from Zed's cloud API. /// /// Example JSON for an upstream HTTP error: /// ```json /// { /// "code": "upstream_http_error", /// "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout", /// "upstream_status": 503 /// } /// ``` #[derive(Debug, serde::Deserialize)] struct CloudApiError { code: String, message: String, #[serde(default)] #[serde(deserialize_with = "deserialize_optional_status_code")] upstream_status: Option, #[serde(default)] retry_after: Option, } fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result, D::Error> where D: serde::Deserializer<'de>, { let opt: Option = Option::deserialize(deserializer)?; Ok(opt.and_then(|code| StatusCode::from_u16(code).ok())) } impl From for LanguageModelCompletionError { fn from(error: ApiError) -> Self { if let Ok(cloud_error) = serde_json::from_str::(&error.body) && cloud_error.code.starts_with("upstream_http_") { let status = if let Some(status) = cloud_error.upstream_status { status } else if cloud_error.code.ends_with("_error") { error.status } else { // If there's a status code in the code string (e.g. "upstream_http_429") // then use that; otherwise, see if the JSON contains a status code. cloud_error .code .strip_prefix("upstream_http_") .and_then(|code_str| code_str.parse::().ok()) .and_then(|code| StatusCode::from_u16(code).ok()) .unwrap_or(error.status) }; return LanguageModelCompletionError::UpstreamProviderError { message: cloud_error.message, status, retry_after: cloud_error.retry_after.map(Duration::from_secs_f64), }; } let retry_after = None; LanguageModelCompletionError::from_http_status( PROVIDER_NAME, error.status, error.body, retry_after, ) } } impl LanguageModel for CloudLanguageModel { fn id(&self) -> LanguageModelId { self.id.clone() } fn name(&self) -> LanguageModelName { LanguageModelName::from(self.model.display_name.clone()) } fn provider_id(&self) -> LanguageModelProviderId { PROVIDER_ID } fn provider_name(&self) -> LanguageModelProviderName { PROVIDER_NAME } fn upstream_provider_id(&self) -> LanguageModelProviderId { use cloud_llm_client::LanguageModelProvider::*; match self.model.provider { Anthropic => language_model::ANTHROPIC_PROVIDER_ID, OpenAi => language_model::OPEN_AI_PROVIDER_ID, Google => language_model::GOOGLE_PROVIDER_ID, } } fn upstream_provider_name(&self) -> LanguageModelProviderName { use cloud_llm_client::LanguageModelProvider::*; match self.model.provider { Anthropic => language_model::ANTHROPIC_PROVIDER_NAME, OpenAi => language_model::OPEN_AI_PROVIDER_NAME, Google => language_model::GOOGLE_PROVIDER_NAME, } } fn supports_tools(&self) -> bool { self.model.supports_tools } fn supports_images(&self) -> bool { self.model.supports_images } fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool { match choice { LanguageModelToolChoice::Auto | LanguageModelToolChoice::Any | LanguageModelToolChoice::None => true, } } fn supports_burn_mode(&self) -> bool { self.model.supports_max_mode } fn telemetry_id(&self) -> String { format!("zed.dev/{}", self.model.id) } fn tool_input_format(&self) -> LanguageModelToolSchemaFormat { match self.model.provider { cloud_llm_client::LanguageModelProvider::Anthropic | cloud_llm_client::LanguageModelProvider::OpenAi => { LanguageModelToolSchemaFormat::JsonSchema } cloud_llm_client::LanguageModelProvider::Google => { LanguageModelToolSchemaFormat::JsonSchemaSubset } } } fn max_token_count(&self) -> u64 { self.model.max_token_count as u64 } fn max_token_count_in_burn_mode(&self) -> Option { self.model .max_token_count_in_max_mode .filter(|_| self.model.supports_max_mode) .map(|max_token_count| max_token_count as u64) } fn cache_configuration(&self) -> Option { match &self.model.provider { cloud_llm_client::LanguageModelProvider::Anthropic => { Some(LanguageModelCacheConfiguration { min_total_token: 2_048, should_speculate: true, max_cache_anchors: 4, }) } cloud_llm_client::LanguageModelProvider::OpenAi | cloud_llm_client::LanguageModelProvider::Google => None, } } fn count_tokens( &self, request: LanguageModelRequest, cx: &App, ) -> BoxFuture<'static, Result> { match self.model.provider { cloud_llm_client::LanguageModelProvider::Anthropic => { count_anthropic_tokens(request, cx) } cloud_llm_client::LanguageModelProvider::OpenAi => { let model = match open_ai::Model::from_id(&self.model.id.0) { Ok(model) => model, Err(err) => return async move { Err(anyhow!(err)) }.boxed(), }; count_open_ai_tokens(request, model, cx) } cloud_llm_client::LanguageModelProvider::Google => { let client = self.client.clone(); let llm_api_token = self.llm_api_token.clone(); let model_id = self.model.id.to_string(); let generate_content_request = into_google(request, model_id.clone(), GoogleModelMode::Default); async move { let http_client = &client.http_client(); let token = llm_api_token.acquire(&client).await?; let request_body = CountTokensBody { provider: cloud_llm_client::LanguageModelProvider::Google, model: model_id, provider_request: serde_json::to_value(&google_ai::CountTokensRequest { generate_content_request, })?, }; let request = http_client::Request::builder() .method(Method::POST) .uri( http_client .build_zed_llm_url("/count_tokens", &[])? .as_ref(), ) .header("Content-Type", "application/json") .header("Authorization", format!("Bearer {token}")) .body(serde_json::to_string(&request_body)?.into())?; let mut response = http_client.send(request).await?; let status = response.status(); let headers = response.headers().clone(); let mut response_body = String::new(); response .body_mut() .read_to_string(&mut response_body) .await?; if status.is_success() { let response_body: CountTokensResponse = serde_json::from_str(&response_body)?; Ok(response_body.tokens as u64) } else { Err(anyhow!(ApiError { status, body: response_body, headers })) } } .boxed() } } } fn stream_completion( &self, request: LanguageModelRequest, cx: &AsyncApp, ) -> BoxFuture< 'static, Result< BoxStream<'static, Result>, LanguageModelCompletionError, >, > { let thread_id = request.thread_id.clone(); let prompt_id = request.prompt_id.clone(); let intent = request.intent; let mode = request.mode; let app_version = cx.update(|cx| AppVersion::global(cx)).ok(); let thinking_allowed = request.thinking_allowed; match self.model.provider { cloud_llm_client::LanguageModelProvider::Anthropic => { let request = into_anthropic( request, self.model.id.to_string(), 1.0, self.model.max_output_tokens as u64, if thinking_allowed && self.model.id.0.ends_with("-thinking") { AnthropicModelMode::Thinking { budget_tokens: Some(4_096), } } else { AnthropicModelMode::Default }, ); let client = self.client.clone(); let llm_api_token = self.llm_api_token.clone(); let future = self.request_limiter.stream(async move { let PerformLlmCompletionResponse { response, usage, includes_status_messages, tool_use_limit_reached, } = Self::perform_llm_completion( client.clone(), llm_api_token, app_version, CompletionBody { thread_id, prompt_id, intent, mode, provider: cloud_llm_client::LanguageModelProvider::Anthropic, model: request.model.clone(), provider_request: serde_json::to_value(&request) .map_err(|e| anyhow!(e))?, }, ) .await .map_err(|err| match err.downcast::() { Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)), Err(err) => anyhow!(err), })?; let mut mapper = AnthropicEventMapper::new(); Ok(map_cloud_completion_events( Box::pin( response_lines(response, includes_status_messages) .chain(usage_updated_event(usage)) .chain(tool_use_limit_reached_event(tool_use_limit_reached)), ), move |event| mapper.map_event(event), )) }); async move { Ok(future.await?.boxed()) }.boxed() } cloud_llm_client::LanguageModelProvider::OpenAi => { let client = self.client.clone(); let model = match open_ai::Model::from_id(&self.model.id.0) { Ok(model) => model, Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(), }; let request = into_open_ai( request, model.id(), model.supports_parallel_tool_calls(), model.supports_prompt_cache_key(), None, None, ); let llm_api_token = self.llm_api_token.clone(); let future = self.request_limiter.stream(async move { let PerformLlmCompletionResponse { response, usage, includes_status_messages, tool_use_limit_reached, } = Self::perform_llm_completion( client.clone(), llm_api_token, app_version, CompletionBody { thread_id, prompt_id, intent, mode, provider: cloud_llm_client::LanguageModelProvider::OpenAi, model: request.model.clone(), provider_request: serde_json::to_value(&request) .map_err(|e| anyhow!(e))?, }, ) .await?; let mut mapper = OpenAiEventMapper::new(); Ok(map_cloud_completion_events( Box::pin( response_lines(response, includes_status_messages) .chain(usage_updated_event(usage)) .chain(tool_use_limit_reached_event(tool_use_limit_reached)), ), move |event| mapper.map_event(event), )) }); async move { Ok(future.await?.boxed()) }.boxed() } cloud_llm_client::LanguageModelProvider::Google => { let client = self.client.clone(); let request = into_google(request, self.model.id.to_string(), GoogleModelMode::Default); let llm_api_token = self.llm_api_token.clone(); let future = self.request_limiter.stream(async move { let PerformLlmCompletionResponse { response, usage, includes_status_messages, tool_use_limit_reached, } = Self::perform_llm_completion( client.clone(), llm_api_token, app_version, CompletionBody { thread_id, prompt_id, intent, mode, provider: cloud_llm_client::LanguageModelProvider::Google, model: request.model.model_id.clone(), provider_request: serde_json::to_value(&request) .map_err(|e| anyhow!(e))?, }, ) .await?; let mut mapper = GoogleEventMapper::new(); Ok(map_cloud_completion_events( Box::pin( response_lines(response, includes_status_messages) .chain(usage_updated_event(usage)) .chain(tool_use_limit_reached_event(tool_use_limit_reached)), ), move |event| mapper.map_event(event), )) }); async move { Ok(future.await?.boxed()) }.boxed() } } } } fn map_cloud_completion_events( stream: Pin>> + Send>>, mut map_callback: F, ) -> BoxStream<'static, Result> where T: DeserializeOwned + 'static, F: FnMut(T) -> Vec> + Send + 'static, { stream .flat_map(move |event| { futures::stream::iter(match event { Err(error) => { vec![Err(LanguageModelCompletionError::from(error))] } Ok(CompletionEvent::Status(event)) => { vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))] } Ok(CompletionEvent::Event(event)) => map_callback(event), }) }) .boxed() } fn usage_updated_event( usage: Option, ) -> impl Stream>> { futures::stream::iter(usage.map(|usage| { Ok(CompletionEvent::Status( CompletionRequestStatus::UsageUpdated { amount: usage.amount as usize, limit: usage.limit, }, )) })) } fn tool_use_limit_reached_event( tool_use_limit_reached: bool, ) -> impl Stream>> { futures::stream::iter(tool_use_limit_reached.then(|| { Ok(CompletionEvent::Status( CompletionRequestStatus::ToolUseLimitReached, )) })) } fn response_lines( response: Response, includes_status_messages: bool, ) -> impl Stream>> { futures::stream::try_unfold( (String::new(), BufReader::new(response.into_body())), move |(mut line, mut body)| async move { match body.read_line(&mut line).await { Ok(0) => Ok(None), Ok(_) => { let event = if includes_status_messages { serde_json::from_str::>(&line)? } else { CompletionEvent::Event(serde_json::from_str::(&line)?) }; line.clear(); Ok(Some((event, (line, body)))) } Err(e) => Err(e.into()), } }, ) } #[derive(IntoElement, RegisterComponent)] struct ZedAiConfiguration { is_connected: bool, plan: Option, subscription_period: Option<(DateTime, DateTime)>, eligible_for_trial: bool, account_too_young: bool, sign_in_callback: Arc, } impl RenderOnce for ZedAiConfiguration { fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement { let young_account_banner = YoungAccountBanner; let is_pro = self.plan == Some(Plan::ZedPro); let subscription_text = match (self.plan, self.subscription_period) { (Some(Plan::ZedPro), Some(_)) => { "You have access to Zed's hosted models through your Pro subscription." } (Some(Plan::ZedProTrial), Some(_)) => { "You have access to Zed's hosted models through your Pro trial." } (Some(Plan::ZedFree), Some(_)) => { "You have basic access to Zed's hosted models through the Free plan." } _ => { if self.eligible_for_trial { "Subscribe for access to Zed's hosted models. Start with a 14 day free trial." } else { "Subscribe for access to Zed's hosted models." } } }; let manage_subscription_buttons = if is_pro { Button::new("manage_settings", "Manage Subscription") .full_width() .style(ButtonStyle::Tinted(TintColor::Accent)) .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx))) .into_any_element() } else if self.plan.is_none() || self.eligible_for_trial { Button::new("start_trial", "Start 14-day Free Pro Trial") .full_width() .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent)) .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx))) .into_any_element() } else { Button::new("upgrade", "Upgrade to Pro") .full_width() .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent)) .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))) .into_any_element() }; if !self.is_connected { return v_flex() .gap_2() .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models.")) .child( Button::new("sign_in", "Sign In to use Zed AI") .icon_color(Color::Muted) .icon(IconName::Github) .icon_size(IconSize::Small) .icon_position(IconPosition::Start) .full_width() .on_click({ let callback = self.sign_in_callback.clone(); move |_, window, cx| (callback)(window, cx) }), ); } v_flex().gap_2().w_full().map(|this| { if self.account_too_young { this.child(young_account_banner).child( Button::new("upgrade", "Upgrade to Pro") .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent)) .full_width() .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))), ) } else { this.text_sm() .child(subscription_text) .child(manage_subscription_buttons) } }) } } struct ConfigurationView { state: Entity, sign_in_callback: Arc, } impl ConfigurationView { fn new(state: Entity) -> Self { let sign_in_callback = Arc::new({ let state = state.clone(); move |_window: &mut Window, cx: &mut App| { state.update(cx, |state, cx| { state.authenticate(cx).detach_and_log_err(cx); }); } }); Self { state, sign_in_callback, } } } impl Render for ConfigurationView { fn render(&mut self, _: &mut Window, cx: &mut Context) -> impl IntoElement { let state = self.state.read(cx); let user_store = state.user_store.read(cx); ZedAiConfiguration { is_connected: !state.is_signed_out(cx), plan: user_store.plan(), subscription_period: user_store.subscription_period(), eligible_for_trial: user_store.trial_started_at().is_none(), account_too_young: user_store.account_too_young(), sign_in_callback: self.sign_in_callback.clone(), } } } impl Component for ZedAiConfiguration { fn name() -> &'static str { "AI Configuration Content" } fn sort_name() -> &'static str { "AI Configuration Content" } fn scope() -> ComponentScope { ComponentScope::Onboarding } fn preview(_window: &mut Window, _cx: &mut App) -> Option { fn configuration( is_connected: bool, plan: Option, eligible_for_trial: bool, account_too_young: bool, ) -> AnyElement { ZedAiConfiguration { is_connected, plan, subscription_period: plan .is_some() .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))), eligible_for_trial, account_too_young, sign_in_callback: Arc::new(|_, _| {}), } .into_any_element() } Some( v_flex() .p_4() .gap_4() .children(vec![ single_example("Not connected", configuration(false, None, false, false)), single_example( "Accept Terms of Service", configuration(true, None, true, false), ), single_example( "No Plan - Not eligible for trial", configuration(true, None, false, false), ), single_example( "No Plan - Eligible for trial", configuration(true, None, true, false), ), single_example( "Free Plan", configuration(true, Some(Plan::ZedFree), true, false), ), single_example( "Zed Pro Trial Plan", configuration(true, Some(Plan::ZedProTrial), true, false), ), single_example( "Zed Pro Plan", configuration(true, Some(Plan::ZedPro), true, false), ), ]) .into_any_element(), ) } } #[cfg(test)] mod tests { use super::*; use http_client::http::{HeaderMap, StatusCode}; use language_model::LanguageModelCompletionError; #[test] fn test_api_error_conversion_with_upstream_http_error() { // upstream_http_error with 503 status should become ServerOverloaded let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::UpstreamProviderError { message, .. } => { assert_eq!( message, "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout" ); } _ => panic!( "Expected UpstreamProviderError for upstream 503, got: {:?}", completion_error ), } // upstream_http_error with 500 status should become ApiInternalServerError let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::UpstreamProviderError { message, .. } => { assert_eq!( message, "Received an error from the OpenAI API: internal server error" ); } _ => panic!( "Expected UpstreamProviderError for upstream 500, got: {:?}", completion_error ), } // upstream_http_error with 429 status should become RateLimitExceeded let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::UpstreamProviderError { message, .. } => { assert_eq!( message, "Received an error from the Google API: rate limit exceeded" ); } _ => panic!( "Expected UpstreamProviderError for upstream 429, got: {:?}", completion_error ), } // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed let error_body = "Regular internal server error"; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::ApiInternalServerError { provider, message } => { assert_eq!(provider, PROVIDER_NAME); assert_eq!(message, "Regular internal server error"); } _ => panic!( "Expected ApiInternalServerError for regular 500, got: {:?}", completion_error ), } // upstream_http_429 format should be converted to UpstreamProviderError let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::UpstreamProviderError { message, status, retry_after, } => { assert_eq!(message, "Upstream Anthropic rate limit exceeded."); assert_eq!(status, StatusCode::TOO_MANY_REQUESTS); assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5))); } _ => panic!( "Expected UpstreamProviderError for upstream_http_429, got: {:?}", completion_error ), } // Invalid JSON in error body should fall back to regular error handling let error_body = "Not JSON at all"; let api_error = ApiError { status: StatusCode::INTERNAL_SERVER_ERROR, body: error_body.to_string(), headers: HeaderMap::new(), }; let completion_error: LanguageModelCompletionError = api_error.into(); match completion_error { LanguageModelCompletionError::ApiInternalServerError { provider, .. } => { assert_eq!(provider, PROVIDER_NAME); } _ => panic!( "Expected ApiInternalServerError for invalid JSON, got: {:?}", completion_error ), } } }