//! A list element that can be used to render a large number of differently sized elements //! efficiently. Clients of this API need to ensure that elements outside of the scrolled //! area do not change their height for this element to function correctly. If your elements //! do change height, notify the list element via [`ListState::splice`] or [`ListState::reset`]. //! In order to minimize re-renders, this element's state is stored intrusively //! on your own views, so that your code can coordinate directly with the list element's cached state. //! //! If all of your elements are the same height, see [`UniformList`] for a simpler API use crate::{ point, px, size, AnyElement, AvailableSpace, Bounds, ContentMask, DispatchPhase, Edges, Element, FocusHandle, GlobalElementId, Hitbox, IntoElement, Pixels, Point, ScrollWheelEvent, Size, Style, StyleRefinement, Styled, WindowContext, }; use collections::VecDeque; use refineable::Refineable as _; use std::{cell::RefCell, ops::Range, rc::Rc}; use sum_tree::{Bias, SumTree}; use taffy::style::Overflow; /// Construct a new list element pub fn list(state: ListState) -> List { List { state, style: StyleRefinement::default(), sizing_behavior: ListSizingBehavior::default(), } } /// A list element pub struct List { state: ListState, style: StyleRefinement, sizing_behavior: ListSizingBehavior, } impl List { /// Set the sizing behavior for the list. pub fn with_sizing_behavior(mut self, behavior: ListSizingBehavior) -> Self { self.sizing_behavior = behavior; self } } /// The list state that views must hold on behalf of the list element. #[derive(Clone)] pub struct ListState(Rc>); struct StateInner { last_layout_bounds: Option>, last_padding: Option>, render_item: Box AnyElement>, items: SumTree, logical_scroll_top: Option, alignment: ListAlignment, overdraw: Pixels, reset: bool, #[allow(clippy::type_complexity)] scroll_handler: Option>, } /// Whether the list is scrolling from top to bottom or bottom to top. #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub enum ListAlignment { /// The list is scrolling from top to bottom, like most lists. Top, /// The list is scrolling from bottom to top, like a chat log. Bottom, } /// A scroll event that has been converted to be in terms of the list's items. pub struct ListScrollEvent { /// The range of items currently visible in the list, after applying the scroll event. pub visible_range: Range, /// The number of items that are currently visible in the list, after applying the scroll event. pub count: usize, /// Whether the list has been scrolled. pub is_scrolled: bool, } /// The sizing behavior to apply during layout. #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub enum ListSizingBehavior { /// The list should calculate its size based on the size of its items. Infer, /// The list should not calculate a fixed size. #[default] Auto, } /// The horizontal sizing behavior to apply during layout. #[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub enum ListHorizontalSizingBehavior { /// List items' width can never exceed the width of the list. #[default] FitList, /// List items' width may go over the width of the list, if any item is wider. Unconstrained, } struct LayoutItemsResponse { max_item_width: Pixels, scroll_top: ListOffset, item_layouts: VecDeque, } struct ItemLayout { index: usize, element: AnyElement, size: Size, } /// Frame state used by the [List] element after layout. pub struct ListPrepaintState { hitbox: Hitbox, layout: LayoutItemsResponse, } #[derive(Clone)] enum ListItem { Unmeasured { focus_handle: Option, }, Measured { size: Size, focus_handle: Option, }, } impl ListItem { fn size(&self) -> Option> { if let ListItem::Measured { size, .. } = self { Some(*size) } else { None } } fn focus_handle(&self) -> Option { match self { ListItem::Unmeasured { focus_handle } | ListItem::Measured { focus_handle, .. } => { focus_handle.clone() } } } fn contains_focused(&self, cx: &WindowContext) -> bool { match self { ListItem::Unmeasured { focus_handle } | ListItem::Measured { focus_handle, .. } => { focus_handle .as_ref() .is_some_and(|handle| handle.contains_focused(cx)) } } } } #[derive(Clone, Debug, Default, PartialEq)] struct ListItemSummary { count: usize, rendered_count: usize, unrendered_count: usize, height: Pixels, has_focus_handles: bool, } #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)] struct Count(usize); #[derive(Clone, Debug, Default)] struct Height(Pixels); impl ListState { /// Construct a new list state, for storage on a view. /// /// The overdraw parameter controls how much extra space is rendered /// above and below the visible area. Elements within this area will /// be measured even though they are not visible. This can help ensure /// that the list doesn't flicker or pop in when scrolling. pub fn new( item_count: usize, alignment: ListAlignment, overdraw: Pixels, render_item: R, ) -> Self where R: 'static + FnMut(usize, &mut WindowContext) -> AnyElement, { let this = Self(Rc::new(RefCell::new(StateInner { last_layout_bounds: None, last_padding: None, render_item: Box::new(render_item), items: SumTree::default(), logical_scroll_top: None, alignment, overdraw, scroll_handler: None, reset: false, }))); this.splice(0..0, item_count); this } /// Reset this instantiation of the list state. /// /// Note that this will cause scroll events to be dropped until the next paint. pub fn reset(&self, element_count: usize) { let old_count = { let state = &mut *self.0.borrow_mut(); state.reset = true; state.logical_scroll_top = None; state.items.summary().count }; self.splice(0..old_count, element_count); } /// The number of items in this list. pub fn item_count(&self) -> usize { self.0.borrow().items.summary().count } /// Inform the list state that the items in `old_range` have been replaced /// by `count` new items that must be recalculated. pub fn splice(&self, old_range: Range, count: usize) { self.splice_focusable(old_range, (0..count).map(|_| None)) } /// Register with the list state that the items in `old_range` have been replaced /// by new items. As opposed to [`splice`], this method allows an iterator of optional focus handles /// to be supplied to properly integrate with items in the list that can be focused. If a focused item /// is scrolled out of view, the list will continue to render it to allow keyboard interaction. pub fn splice_focusable( &self, old_range: Range, focus_handles: impl IntoIterator>, ) { let state = &mut *self.0.borrow_mut(); let mut old_items = state.items.cursor::(&()); let mut new_items = old_items.slice(&Count(old_range.start), Bias::Right, &()); old_items.seek_forward(&Count(old_range.end), Bias::Right, &()); let mut spliced_count = 0; new_items.extend( focus_handles.into_iter().map(|focus_handle| { spliced_count += 1; ListItem::Unmeasured { focus_handle } }), &(), ); new_items.append(old_items.suffix(&()), &()); drop(old_items); state.items = new_items; if let Some(ListOffset { item_ix, offset_in_item, }) = state.logical_scroll_top.as_mut() { if old_range.contains(item_ix) { *item_ix = old_range.start; *offset_in_item = px(0.); } else if old_range.end <= *item_ix { *item_ix = *item_ix - (old_range.end - old_range.start) + spliced_count; } } } /// Set a handler that will be called when the list is scrolled. pub fn set_scroll_handler( &self, handler: impl FnMut(&ListScrollEvent, &mut WindowContext) + 'static, ) { self.0.borrow_mut().scroll_handler = Some(Box::new(handler)) } /// Get the current scroll offset, in terms of the list's items. pub fn logical_scroll_top(&self) -> ListOffset { self.0.borrow().logical_scroll_top() } /// Scroll the list to the given offset pub fn scroll_to(&self, mut scroll_top: ListOffset) { let state = &mut *self.0.borrow_mut(); let item_count = state.items.summary().count; if scroll_top.item_ix >= item_count { scroll_top.item_ix = item_count; scroll_top.offset_in_item = px(0.); } state.logical_scroll_top = Some(scroll_top); } /// Scroll the list to the given item, such that the item is fully visible. pub fn scroll_to_reveal_item(&self, ix: usize) { let state = &mut *self.0.borrow_mut(); let mut scroll_top = state.logical_scroll_top(); let height = state .last_layout_bounds .map_or(px(0.), |bounds| bounds.size.height); let padding = state.last_padding.unwrap_or_default(); if ix <= scroll_top.item_ix { scroll_top.item_ix = ix; scroll_top.offset_in_item = px(0.); } else { let mut cursor = state.items.cursor::(&()); cursor.seek(&Count(ix + 1), Bias::Right, &()); let bottom = cursor.start().height + padding.top; let goal_top = px(0.).max(bottom - height + padding.bottom); cursor.seek(&Height(goal_top), Bias::Left, &()); let start_ix = cursor.start().count; let start_item_top = cursor.start().height; if start_ix >= scroll_top.item_ix { scroll_top.item_ix = start_ix; scroll_top.offset_in_item = goal_top - start_item_top; } } state.logical_scroll_top = Some(scroll_top); } /// Get the bounds for the given item in window coordinates, if it's /// been rendered. pub fn bounds_for_item(&self, ix: usize) -> Option> { let state = &*self.0.borrow(); let bounds = state.last_layout_bounds.unwrap_or_default(); let scroll_top = state.logical_scroll_top(); if ix < scroll_top.item_ix { return None; } let mut cursor = state.items.cursor::<(Count, Height)>(&()); cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &()); let scroll_top = cursor.start().1 .0 + scroll_top.offset_in_item; cursor.seek_forward(&Count(ix), Bias::Right, &()); if let Some(&ListItem::Measured { size, .. }) = cursor.item() { let &(Count(count), Height(top)) = cursor.start(); if count == ix { let top = bounds.top() + top - scroll_top; return Some(Bounds::from_corners( point(bounds.left(), top), point(bounds.right(), top + size.height), )); } } None } } impl StateInner { fn visible_range(&self, height: Pixels, scroll_top: &ListOffset) -> Range { let mut cursor = self.items.cursor::(&()); cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &()); let start_y = cursor.start().height + scroll_top.offset_in_item; cursor.seek_forward(&Height(start_y + height), Bias::Left, &()); scroll_top.item_ix..cursor.start().count + 1 } fn scroll( &mut self, scroll_top: &ListOffset, height: Pixels, delta: Point, cx: &mut WindowContext, ) { // Drop scroll events after a reset, since we can't calculate // the new logical scroll top without the item heights if self.reset { return; } let padding = self.last_padding.unwrap_or_default(); let scroll_max = (self.items.summary().height + padding.top + padding.bottom - height).max(px(0.)); let new_scroll_top = (self.scroll_top(scroll_top) - delta.y) .max(px(0.)) .min(scroll_max); if self.alignment == ListAlignment::Bottom && new_scroll_top == scroll_max { self.logical_scroll_top = None; } else { let mut cursor = self.items.cursor::(&()); cursor.seek(&Height(new_scroll_top), Bias::Right, &()); let item_ix = cursor.start().count; let offset_in_item = new_scroll_top - cursor.start().height; self.logical_scroll_top = Some(ListOffset { item_ix, offset_in_item, }); } if self.scroll_handler.is_some() { let visible_range = self.visible_range(height, scroll_top); self.scroll_handler.as_mut().unwrap()( &ListScrollEvent { visible_range, count: self.items.summary().count, is_scrolled: self.logical_scroll_top.is_some(), }, cx, ); } cx.refresh(); } fn logical_scroll_top(&self) -> ListOffset { self.logical_scroll_top .unwrap_or_else(|| match self.alignment { ListAlignment::Top => ListOffset { item_ix: 0, offset_in_item: px(0.), }, ListAlignment::Bottom => ListOffset { item_ix: self.items.summary().count, offset_in_item: px(0.), }, }) } fn scroll_top(&self, logical_scroll_top: &ListOffset) -> Pixels { let mut cursor = self.items.cursor::(&()); cursor.seek(&Count(logical_scroll_top.item_ix), Bias::Right, &()); cursor.start().height + logical_scroll_top.offset_in_item } fn layout_items( &mut self, available_width: Option, available_height: Pixels, padding: &Edges, cx: &mut WindowContext, ) -> LayoutItemsResponse { let old_items = self.items.clone(); let mut measured_items = VecDeque::new(); let mut item_layouts = VecDeque::new(); let mut rendered_height = padding.top; let mut max_item_width = px(0.); let mut scroll_top = self.logical_scroll_top(); let mut rendered_focused_item = false; let available_item_space = size( available_width.map_or(AvailableSpace::MinContent, |width| { AvailableSpace::Definite(width) }), AvailableSpace::MinContent, ); let mut cursor = old_items.cursor::(&()); // Render items after the scroll top, including those in the trailing overdraw cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &()); for (ix, item) in cursor.by_ref().enumerate() { let visible_height = rendered_height - scroll_top.offset_in_item; if visible_height >= available_height + self.overdraw { break; } // Use the previously cached height and focus handle if available let mut size = item.size(); // If we're within the visible area or the height wasn't cached, render and measure the item's element if visible_height < available_height || size.is_none() { let item_index = scroll_top.item_ix + ix; let mut element = (self.render_item)(item_index, cx); let element_size = element.layout_as_root(available_item_space, cx); size = Some(element_size); if visible_height < available_height { item_layouts.push_back(ItemLayout { index: item_index, element, size: element_size, }); if item.contains_focused(cx) { rendered_focused_item = true; } } } let size = size.unwrap(); rendered_height += size.height; max_item_width = max_item_width.max(size.width); measured_items.push_back(ListItem::Measured { size, focus_handle: item.focus_handle(), }); } rendered_height += padding.bottom; // Prepare to start walking upward from the item at the scroll top. cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &()); // If the rendered items do not fill the visible region, then adjust // the scroll top upward. if rendered_height - scroll_top.offset_in_item < available_height { while rendered_height < available_height { cursor.prev(&()); if let Some(item) = cursor.item() { let item_index = cursor.start().0; let mut element = (self.render_item)(item_index, cx); let element_size = element.layout_as_root(available_item_space, cx); let focus_handle = item.focus_handle(); rendered_height += element_size.height; measured_items.push_front(ListItem::Measured { size: element_size, focus_handle, }); item_layouts.push_front(ItemLayout { index: item_index, element, size: element_size, }); if item.contains_focused(cx) { rendered_focused_item = true; } } else { break; } } scroll_top = ListOffset { item_ix: cursor.start().0, offset_in_item: rendered_height - available_height, }; match self.alignment { ListAlignment::Top => { scroll_top.offset_in_item = scroll_top.offset_in_item.max(px(0.)); self.logical_scroll_top = Some(scroll_top); } ListAlignment::Bottom => { scroll_top = ListOffset { item_ix: cursor.start().0, offset_in_item: rendered_height - available_height, }; self.logical_scroll_top = None; } }; } // Measure items in the leading overdraw let mut leading_overdraw = scroll_top.offset_in_item; while leading_overdraw < self.overdraw { cursor.prev(&()); if let Some(item) = cursor.item() { let size = if let ListItem::Measured { size, .. } = item { *size } else { let mut element = (self.render_item)(cursor.start().0, cx); element.layout_as_root(available_item_space, cx) }; leading_overdraw += size.height; measured_items.push_front(ListItem::Measured { size, focus_handle: item.focus_handle(), }); } else { break; } } let measured_range = cursor.start().0..(cursor.start().0 + measured_items.len()); let mut cursor = old_items.cursor::(&()); let mut new_items = cursor.slice(&Count(measured_range.start), Bias::Right, &()); new_items.extend(measured_items, &()); cursor.seek(&Count(measured_range.end), Bias::Right, &()); new_items.append(cursor.suffix(&()), &()); self.items = new_items; // If none of the visible items are focused, check if an off-screen item is focused // and include it to be rendered after the visible items so keyboard interaction continues // to work for it. if !rendered_focused_item { let mut cursor = self .items .filter::<_, Count>(&(), |summary| summary.has_focus_handles); cursor.next(&()); while let Some(item) = cursor.item() { if item.contains_focused(cx) { let item_index = cursor.start().0; let mut element = (self.render_item)(cursor.start().0, cx); let size = element.layout_as_root(available_item_space, cx); item_layouts.push_back(ItemLayout { index: item_index, element, size, }); break; } cursor.next(&()); } } LayoutItemsResponse { max_item_width, scroll_top, item_layouts, } } fn prepaint_items( &mut self, bounds: Bounds, padding: Edges, autoscroll: bool, cx: &mut WindowContext, ) -> Result { cx.transact(|cx| { let mut layout_response = self.layout_items(Some(bounds.size.width), bounds.size.height, &padding, cx); // Avoid honoring autoscroll requests from elements other than our children. cx.take_autoscroll(); // Only paint the visible items, if there is actually any space for them (taking padding into account) if bounds.size.height > padding.top + padding.bottom { let mut item_origin = bounds.origin + Point::new(px(0.), padding.top); item_origin.y -= layout_response.scroll_top.offset_in_item; for item in &mut layout_response.item_layouts { cx.with_content_mask(Some(ContentMask { bounds }), |cx| { item.element.prepaint_at(item_origin, cx); }); if let Some(autoscroll_bounds) = cx.take_autoscroll() { if autoscroll { if autoscroll_bounds.top() < bounds.top() { return Err(ListOffset { item_ix: item.index, offset_in_item: autoscroll_bounds.top() - item_origin.y, }); } else if autoscroll_bounds.bottom() > bounds.bottom() { let mut cursor = self.items.cursor::(&()); cursor.seek(&Count(item.index), Bias::Right, &()); let mut height = bounds.size.height - padding.top - padding.bottom; // Account for the height of the element down until the autoscroll bottom. height -= autoscroll_bounds.bottom() - item_origin.y; // Keep decreasing the scroll top until we fill all the available space. while height > Pixels::ZERO { cursor.prev(&()); let Some(item) = cursor.item() else { break }; let size = item.size().unwrap_or_else(|| { let mut item = (self.render_item)(cursor.start().0, cx); let item_available_size = size( bounds.size.width.into(), AvailableSpace::MinContent, ); item.layout_as_root(item_available_size, cx) }); height -= size.height; } return Err(ListOffset { item_ix: cursor.start().0, offset_in_item: if height < Pixels::ZERO { -height } else { Pixels::ZERO }, }); } } } item_origin.y += item.size.height; } } else { layout_response.item_layouts.clear(); } Ok(layout_response) }) } } impl std::fmt::Debug for ListItem { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Self::Unmeasured { .. } => write!(f, "Unrendered"), Self::Measured { size, .. } => f.debug_struct("Rendered").field("size", size).finish(), } } } /// An offset into the list's items, in terms of the item index and the number /// of pixels off the top left of the item. #[derive(Debug, Clone, Copy, Default)] pub struct ListOffset { /// The index of an item in the list pub item_ix: usize, /// The number of pixels to offset from the item index. pub offset_in_item: Pixels, } impl Element for List { type RequestLayoutState = (); type PrepaintState = ListPrepaintState; fn id(&self) -> Option { None } fn request_layout( &mut self, _id: Option<&GlobalElementId>, cx: &mut crate::WindowContext, ) -> (crate::LayoutId, Self::RequestLayoutState) { let layout_id = match self.sizing_behavior { ListSizingBehavior::Infer => { let mut style = Style::default(); style.overflow.y = Overflow::Scroll; style.refine(&self.style); cx.with_text_style(style.text_style().cloned(), |cx| { let state = &mut *self.state.0.borrow_mut(); let available_height = if let Some(last_bounds) = state.last_layout_bounds { last_bounds.size.height } else { // If we don't have the last layout bounds (first render), // we might just use the overdraw value as the available height to layout enough items. state.overdraw }; let padding = style.padding.to_pixels( state.last_layout_bounds.unwrap_or_default().size.into(), cx.rem_size(), ); let layout_response = state.layout_items(None, available_height, &padding, cx); let max_element_width = layout_response.max_item_width; let summary = state.items.summary(); let total_height = summary.height; cx.request_measured_layout( style, move |known_dimensions, available_space, _cx| { let width = known_dimensions .width .unwrap_or(match available_space.width { AvailableSpace::Definite(x) => x, AvailableSpace::MinContent | AvailableSpace::MaxContent => { max_element_width } }); let height = match available_space.height { AvailableSpace::Definite(height) => total_height.min(height), AvailableSpace::MinContent | AvailableSpace::MaxContent => { total_height } }; size(width, height) }, ) }) } ListSizingBehavior::Auto => { let mut style = Style::default(); style.refine(&self.style); cx.with_text_style(style.text_style().cloned(), |cx| { cx.request_layout(style, None) }) } }; (layout_id, ()) } fn prepaint( &mut self, _id: Option<&GlobalElementId>, bounds: Bounds, _: &mut Self::RequestLayoutState, cx: &mut WindowContext, ) -> ListPrepaintState { let state = &mut *self.state.0.borrow_mut(); state.reset = false; let mut style = Style::default(); style.refine(&self.style); let hitbox = cx.insert_hitbox(bounds, false); // If the width of the list has changed, invalidate all cached item heights if state.last_layout_bounds.map_or(true, |last_bounds| { last_bounds.size.width != bounds.size.width }) { let new_items = SumTree::from_iter( state.items.iter().map(|item| ListItem::Unmeasured { focus_handle: item.focus_handle(), }), &(), ); state.items = new_items; } let padding = style.padding.to_pixels(bounds.size.into(), cx.rem_size()); let layout = match state.prepaint_items(bounds, padding, true, cx) { Ok(layout) => layout, Err(autoscroll_request) => { state.logical_scroll_top = Some(autoscroll_request); state.prepaint_items(bounds, padding, false, cx).unwrap() } }; state.last_layout_bounds = Some(bounds); state.last_padding = Some(padding); ListPrepaintState { hitbox, layout } } fn paint( &mut self, _id: Option<&GlobalElementId>, bounds: Bounds, _: &mut Self::RequestLayoutState, prepaint: &mut Self::PrepaintState, cx: &mut crate::WindowContext, ) { cx.with_content_mask(Some(ContentMask { bounds }), |cx| { for item in &mut prepaint.layout.item_layouts { item.element.paint(cx); } }); let list_state = self.state.clone(); let height = bounds.size.height; let scroll_top = prepaint.layout.scroll_top; let hitbox_id = prepaint.hitbox.id; cx.on_mouse_event(move |event: &ScrollWheelEvent, phase, cx| { if phase == DispatchPhase::Bubble && hitbox_id.is_hovered(cx) { list_state.0.borrow_mut().scroll( &scroll_top, height, event.delta.pixel_delta(px(20.)), cx, ) } }); } } impl IntoElement for List { type Element = Self; fn into_element(self) -> Self::Element { self } } impl Styled for List { fn style(&mut self) -> &mut StyleRefinement { &mut self.style } } impl sum_tree::Item for ListItem { type Summary = ListItemSummary; fn summary(&self, _: &()) -> Self::Summary { match self { ListItem::Unmeasured { focus_handle } => ListItemSummary { count: 1, rendered_count: 0, unrendered_count: 1, height: px(0.), has_focus_handles: focus_handle.is_some(), }, ListItem::Measured { size, focus_handle, .. } => ListItemSummary { count: 1, rendered_count: 1, unrendered_count: 0, height: size.height, has_focus_handles: focus_handle.is_some(), }, } } } impl sum_tree::Summary for ListItemSummary { type Context = (); fn zero(_cx: &()) -> Self { Default::default() } fn add_summary(&mut self, summary: &Self, _: &()) { self.count += summary.count; self.rendered_count += summary.rendered_count; self.unrendered_count += summary.unrendered_count; self.height += summary.height; self.has_focus_handles |= summary.has_focus_handles; } } impl<'a> sum_tree::Dimension<'a, ListItemSummary> for Count { fn zero(_cx: &()) -> Self { Default::default() } fn add_summary(&mut self, summary: &'a ListItemSummary, _: &()) { self.0 += summary.count; } } impl<'a> sum_tree::Dimension<'a, ListItemSummary> for Height { fn zero(_cx: &()) -> Self { Default::default() } fn add_summary(&mut self, summary: &'a ListItemSummary, _: &()) { self.0 += summary.height; } } impl<'a> sum_tree::SeekTarget<'a, ListItemSummary, ListItemSummary> for Count { fn cmp(&self, other: &ListItemSummary, _: &()) -> std::cmp::Ordering { self.0.partial_cmp(&other.count).unwrap() } } impl<'a> sum_tree::SeekTarget<'a, ListItemSummary, ListItemSummary> for Height { fn cmp(&self, other: &ListItemSummary, _: &()) -> std::cmp::Ordering { self.0.partial_cmp(&other.height).unwrap() } } #[cfg(test)] mod test { use gpui::{ScrollDelta, ScrollWheelEvent}; use crate::{self as gpui, TestAppContext}; #[gpui::test] fn test_reset_after_paint_before_scroll(cx: &mut TestAppContext) { use crate::{div, list, point, px, size, Element, ListState, Styled}; let cx = cx.add_empty_window(); let state = ListState::new(5, crate::ListAlignment::Top, px(10.), |_, _| { div().h(px(10.)).w_full().into_any() }); // Ensure that the list is scrolled to the top state.scroll_to(gpui::ListOffset { item_ix: 0, offset_in_item: px(0.0), }); // Paint cx.draw(point(px(0.), px(0.)), size(px(100.), px(20.)), |_| { list(state.clone()).w_full().h_full() }); // Reset state.reset(5); // And then receive a scroll event _before_ the next paint cx.simulate_event(ScrollWheelEvent { position: point(px(1.), px(1.)), delta: ScrollDelta::Pixels(point(px(0.), px(-500.))), ..Default::default() }); // Scroll position should stay at the top of the list assert_eq!(state.logical_scroll_top().item_ix, 0); assert_eq!(state.logical_scroll_top().offset_in_item, px(0.)); } }