use crate::{ Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId, LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, size, transparent_black, }; use anyhow::{Context as _, Result, anyhow}; use collections::{FxHashMap, FxHashSet}; #[cfg(target_os = "macos")] use core_video::pixel_buffer::CVPixelBuffer; use derive_more::{Deref, DerefMut}; use futures::FutureExt; use futures::channel::oneshot; use parking_lot::RwLock; use raw_window_handle::{HandleError, HasWindowHandle}; use refineable::Refineable; use slotmap::SlotMap; use smallvec::SmallVec; use std::{ any::{Any, TypeId}, borrow::Cow, cell::{Cell, RefCell}, cmp, fmt::{Debug, Display}, hash::{Hash, Hasher}, marker::PhantomData, mem, ops::{DerefMut, Range}, rc::Rc, sync::{ Arc, Weak, atomic::{AtomicUsize, Ordering::SeqCst}, }, time::{Duration, Instant}, }; use util::post_inc; use util::{ResultExt, measure}; use uuid::Uuid; mod prompts; pub use prompts::*; pub(crate) const DEFAULT_WINDOW_SIZE: Size = size(px(1024.), px(700.)); /// Represents the two different phases when dispatching events. #[derive(Default, Copy, Clone, Debug, Eq, PartialEq)] pub enum DispatchPhase { /// After the capture phase comes the bubble phase, in which mouse event listeners are /// invoked front to back and keyboard event listeners are invoked from the focused element /// to the root of the element tree. This is the phase you'll most commonly want to use when /// registering event listeners. #[default] Bubble, /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard /// listeners are invoked from the root of the tree downward toward the focused element. This phase /// is used for special purposes such as clearing the "pressed" state for click events. If /// you stop event propagation during this phase, you need to know what you're doing. Handlers /// outside of the immediate region may rely on detecting non-local events during this phase. Capture, } impl DispatchPhase { /// Returns true if this represents the "bubble" phase. pub fn bubble(self) -> bool { self == DispatchPhase::Bubble } /// Returns true if this represents the "capture" phase. pub fn capture(self) -> bool { self == DispatchPhase::Capture } } struct WindowInvalidatorInner { pub dirty: bool, pub draw_phase: DrawPhase, pub dirty_views: FxHashSet, } #[derive(Clone)] pub(crate) struct WindowInvalidator { inner: Rc>, } impl WindowInvalidator { pub fn new() -> Self { WindowInvalidator { inner: Rc::new(RefCell::new(WindowInvalidatorInner { dirty: true, draw_phase: DrawPhase::None, dirty_views: FxHashSet::default(), })), } } pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool { let mut inner = self.inner.borrow_mut(); inner.dirty_views.insert(entity); if inner.draw_phase == DrawPhase::None { inner.dirty = true; cx.push_effect(Effect::Notify { emitter: entity }); true } else { false } } pub fn is_dirty(&self) -> bool { self.inner.borrow().dirty } pub fn set_dirty(&self, dirty: bool) { self.inner.borrow_mut().dirty = dirty } pub fn set_phase(&self, phase: DrawPhase) { self.inner.borrow_mut().draw_phase = phase } pub fn take_views(&self) -> FxHashSet { mem::take(&mut self.inner.borrow_mut().dirty_views) } pub fn replace_views(&self, views: FxHashSet) { self.inner.borrow_mut().dirty_views = views; } pub fn not_drawing(&self) -> bool { self.inner.borrow().draw_phase == DrawPhase::None } #[track_caller] pub fn debug_assert_paint(&self) { debug_assert!( matches!(self.inner.borrow().draw_phase, DrawPhase::Paint), "this method can only be called during paint" ); } #[track_caller] pub fn debug_assert_prepaint(&self) { debug_assert!( matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint), "this method can only be called during request_layout, or prepaint" ); } #[track_caller] pub fn debug_assert_paint_or_prepaint(&self) { debug_assert!( matches!( self.inner.borrow().draw_phase, DrawPhase::Paint | DrawPhase::Prepaint ), "this method can only be called during request_layout, prepaint, or paint" ); } } type AnyObserver = Box bool + 'static>; pub(crate) type AnyWindowFocusListener = Box bool + 'static>; pub(crate) struct WindowFocusEvent { pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>, pub(crate) current_focus_path: SmallVec<[FocusId; 8]>, } impl WindowFocusEvent { pub fn is_focus_in(&self, focus_id: FocusId) -> bool { !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id) } pub fn is_focus_out(&self, focus_id: FocusId) -> bool { self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id) } } /// This is provided when subscribing for `Context::on_focus_out` events. pub struct FocusOutEvent { /// A weak focus handle representing what was blurred. pub blurred: WeakFocusHandle, } slotmap::new_key_type! { /// A globally unique identifier for a focusable element. pub struct FocusId; } thread_local! { /// 8MB wasn't quite enough... pub(crate) static ELEMENT_ARENA: RefCell = RefCell::new(Arena::new(32 * 1024 * 1024)); } pub(crate) type FocusMap = RwLock>; impl FocusId { /// Obtains whether the element associated with this handle is currently focused. pub fn is_focused(&self, window: &Window) -> bool { window.focus == Some(*self) } /// Obtains whether the element associated with this handle contains the focused /// element or is itself focused. pub fn contains_focused(&self, window: &Window, cx: &App) -> bool { window .focused(cx) .map_or(false, |focused| self.contains(focused.id, window)) } /// Obtains whether the element associated with this handle is contained within the /// focused element or is itself focused. pub fn within_focused(&self, window: &Window, cx: &App) -> bool { let focused = window.focused(cx); focused.map_or(false, |focused| focused.id.contains(*self, window)) } /// Obtains whether this handle contains the given handle in the most recently rendered frame. pub(crate) fn contains(&self, other: Self, window: &Window) -> bool { window .rendered_frame .dispatch_tree .focus_contains(*self, other) } } /// A handle which can be used to track and manipulate the focused element in a window. pub struct FocusHandle { pub(crate) id: FocusId, handles: Arc, } impl std::fmt::Debug for FocusHandle { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.write_fmt(format_args!("FocusHandle({:?})", self.id)) } } impl FocusHandle { pub(crate) fn new(handles: &Arc) -> Self { let id = handles.write().insert(AtomicUsize::new(1)); Self { id, handles: handles.clone(), } } pub(crate) fn for_id(id: FocusId, handles: &Arc) -> Option { let lock = handles.read(); let ref_count = lock.get(id)?; if ref_count.load(SeqCst) == 0 { None } else { ref_count.fetch_add(1, SeqCst); Some(Self { id, handles: handles.clone(), }) } } /// Converts this focus handle into a weak variant, which does not prevent it from being released. pub fn downgrade(&self) -> WeakFocusHandle { WeakFocusHandle { id: self.id, handles: Arc::downgrade(&self.handles), } } /// Moves the focus to the element associated with this handle. pub fn focus(&self, window: &mut Window) { window.focus(self) } /// Obtains whether the element associated with this handle is currently focused. pub fn is_focused(&self, window: &Window) -> bool { self.id.is_focused(window) } /// Obtains whether the element associated with this handle contains the focused /// element or is itself focused. pub fn contains_focused(&self, window: &Window, cx: &App) -> bool { self.id.contains_focused(window, cx) } /// Obtains whether the element associated with this handle is contained within the /// focused element or is itself focused. pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool { self.id.within_focused(window, cx) } /// Obtains whether this handle contains the given handle in the most recently rendered frame. pub fn contains(&self, other: &Self, window: &Window) -> bool { self.id.contains(other.id, window) } /// Dispatch an action on the element that rendered this focus handle pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) { if let Some(node_id) = window .rendered_frame .dispatch_tree .focusable_node_id(self.id) { window.dispatch_action_on_node(node_id, action, cx) } } } impl Clone for FocusHandle { fn clone(&self) -> Self { Self::for_id(self.id, &self.handles).unwrap() } } impl PartialEq for FocusHandle { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for FocusHandle {} impl Drop for FocusHandle { fn drop(&mut self) { self.handles .read() .get(self.id) .unwrap() .fetch_sub(1, SeqCst); } } /// A weak reference to a focus handle. #[derive(Clone, Debug)] pub struct WeakFocusHandle { pub(crate) id: FocusId, pub(crate) handles: Weak, } impl WeakFocusHandle { /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle]. pub fn upgrade(&self) -> Option { let handles = self.handles.upgrade()?; FocusHandle::for_id(self.id, &handles) } } impl PartialEq for WeakFocusHandle { fn eq(&self, other: &WeakFocusHandle) -> bool { self.id == other.id } } impl Eq for WeakFocusHandle {} impl PartialEq for WeakFocusHandle { fn eq(&self, other: &FocusHandle) -> bool { self.id == other.id } } impl PartialEq for FocusHandle { fn eq(&self, other: &WeakFocusHandle) -> bool { self.id == other.id } } /// Focusable allows users of your view to easily /// focus it (using window.focus_view(cx, view)) pub trait Focusable: 'static { /// Returns the focus handle associated with this view. fn focus_handle(&self, cx: &App) -> FocusHandle; } impl Focusable for Entity { fn focus_handle(&self, cx: &App) -> FocusHandle { self.read(cx).focus_handle(cx) } } /// ManagedView is a view (like a Modal, Popover, Menu, etc.) /// where the lifecycle of the view is handled by another view. pub trait ManagedView: Focusable + EventEmitter + Render {} impl + Render> ManagedView for M {} /// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal. pub struct DismissEvent; type FrameCallback = Box; pub(crate) type AnyMouseListener = Box; #[derive(Clone)] pub(crate) struct CursorStyleRequest { pub(crate) hitbox_id: Option, // None represents whole window pub(crate) style: CursorStyle, } /// An identifier for a [Hitbox]. #[derive(Copy, Clone, Debug, Default, Eq, PartialEq)] pub struct HitboxId(usize); impl HitboxId { /// Checks if the hitbox with this id is currently hovered. pub fn is_hovered(&self, window: &Window) -> bool { window.mouse_hit_test.0.contains(self) } } /// A rectangular region that potentially blocks hitboxes inserted prior. /// See [Window::insert_hitbox] for more details. #[derive(Clone, Debug, Deref)] pub struct Hitbox { /// A unique identifier for the hitbox. pub id: HitboxId, /// The bounds of the hitbox. #[deref] pub bounds: Bounds, /// The content mask when the hitbox was inserted. pub content_mask: ContentMask, /// Whether the hitbox occludes other hitboxes inserted prior. pub opaque: bool, } impl Hitbox { /// Checks if the hitbox is currently hovered. pub fn is_hovered(&self, window: &Window) -> bool { self.id.is_hovered(window) } } #[derive(Default, Eq, PartialEq)] pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>); /// An identifier for a tooltip. #[derive(Copy, Clone, Debug, Default, Eq, PartialEq)] pub struct TooltipId(usize); impl TooltipId { /// Checks if the tooltip is currently hovered. pub fn is_hovered(&self, window: &Window) -> bool { window .tooltip_bounds .as_ref() .map_or(false, |tooltip_bounds| { tooltip_bounds.id == *self && tooltip_bounds.bounds.contains(&window.mouse_position()) }) } } pub(crate) struct TooltipBounds { id: TooltipId, bounds: Bounds, } #[derive(Clone)] pub(crate) struct TooltipRequest { id: TooltipId, tooltip: AnyTooltip, } pub(crate) struct DeferredDraw { current_view: EntityId, priority: usize, parent_node: DispatchNodeId, element_id_stack: SmallVec<[ElementId; 32]>, text_style_stack: Vec, element: Option, absolute_offset: Point, prepaint_range: Range, paint_range: Range, } pub(crate) struct Frame { pub(crate) focus: Option, pub(crate) window_active: bool, pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>, accessed_element_states: Vec<(GlobalElementId, TypeId)>, pub(crate) mouse_listeners: Vec>, pub(crate) dispatch_tree: DispatchTree, pub(crate) scene: Scene, pub(crate) hitboxes: Vec, pub(crate) deferred_draws: Vec, pub(crate) input_handlers: Vec>, pub(crate) tooltip_requests: Vec>, pub(crate) cursor_styles: Vec, #[cfg(any(test, feature = "test-support"))] pub(crate) debug_bounds: FxHashMap>, } #[derive(Clone, Default)] pub(crate) struct PrepaintStateIndex { hitboxes_index: usize, tooltips_index: usize, deferred_draws_index: usize, dispatch_tree_index: usize, accessed_element_states_index: usize, line_layout_index: LineLayoutIndex, } #[derive(Clone, Default)] pub(crate) struct PaintIndex { scene_index: usize, mouse_listeners_index: usize, input_handlers_index: usize, cursor_styles_index: usize, accessed_element_states_index: usize, line_layout_index: LineLayoutIndex, } impl Frame { pub(crate) fn new(dispatch_tree: DispatchTree) -> Self { Frame { focus: None, window_active: false, element_states: FxHashMap::default(), accessed_element_states: Vec::new(), mouse_listeners: Vec::new(), dispatch_tree, scene: Scene::default(), hitboxes: Vec::new(), deferred_draws: Vec::new(), input_handlers: Vec::new(), tooltip_requests: Vec::new(), cursor_styles: Vec::new(), #[cfg(any(test, feature = "test-support"))] debug_bounds: FxHashMap::default(), } } pub(crate) fn clear(&mut self) { self.element_states.clear(); self.accessed_element_states.clear(); self.mouse_listeners.clear(); self.dispatch_tree.clear(); self.scene.clear(); self.input_handlers.clear(); self.tooltip_requests.clear(); self.cursor_styles.clear(); self.hitboxes.clear(); self.deferred_draws.clear(); self.focus = None; } pub(crate) fn hit_test(&self, position: Point) -> HitTest { let mut hit_test = HitTest::default(); for hitbox in self.hitboxes.iter().rev() { let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds); if bounds.contains(&position) { hit_test.0.push(hitbox.id); if hitbox.opaque { break; } } } hit_test } pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> { self.focus .map(|focus_id| self.dispatch_tree.focus_path(focus_id)) .unwrap_or_default() } pub(crate) fn finish(&mut self, prev_frame: &mut Self) { for element_state_key in &self.accessed_element_states { if let Some((element_state_key, element_state)) = prev_frame.element_states.remove_entry(element_state_key) { self.element_states.insert(element_state_key, element_state); } } self.scene.finish(); } } /// Holds the state for a specific window. pub struct Window { pub(crate) handle: AnyWindowHandle, pub(crate) invalidator: WindowInvalidator, pub(crate) removed: bool, pub(crate) platform_window: Box, display_id: Option, sprite_atlas: Arc, text_system: Arc, rem_size: Pixels, /// The stack of override values for the window's rem size. /// /// This is used by `with_rem_size` to allow rendering an element tree with /// a given rem size. rem_size_override_stack: SmallVec<[Pixels; 8]>, pub(crate) viewport_size: Size, layout_engine: Option, pub(crate) root: Option, pub(crate) element_id_stack: SmallVec<[ElementId; 32]>, pub(crate) text_style_stack: Vec, pub(crate) rendered_entity_stack: Vec, pub(crate) element_offset_stack: Vec>, pub(crate) element_opacity: Option, pub(crate) content_mask_stack: Vec>, pub(crate) requested_autoscroll: Option>, pub(crate) image_cache_stack: Vec, pub(crate) rendered_frame: Frame, pub(crate) next_frame: Frame, pub(crate) next_hitbox_id: HitboxId, pub(crate) next_tooltip_id: TooltipId, pub(crate) tooltip_bounds: Option, next_frame_callbacks: Rc>>, pub(crate) dirty_views: FxHashSet, focus_listeners: SubscriberSet<(), AnyWindowFocusListener>, pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>, default_prevented: bool, mouse_position: Point, mouse_hit_test: HitTest, modifiers: Modifiers, scale_factor: f32, pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>, appearance: WindowAppearance, pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>, active: Rc>, hovered: Rc>, pub(crate) needs_present: Rc>, pub(crate) last_input_timestamp: Rc>, pub(crate) refreshing: bool, pub(crate) activation_observers: SubscriberSet<(), AnyObserver>, pub(crate) focus: Option, focus_enabled: bool, pending_input: Option, pending_modifier: ModifierState, pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>, prompt: Option, pub(crate) client_inset: Option, } #[derive(Clone, Debug, Default)] struct ModifierState { modifiers: Modifiers, saw_keystroke: bool, } #[derive(Clone, Copy, Debug, Eq, PartialEq)] pub(crate) enum DrawPhase { None, Prepaint, Paint, Focus, } #[derive(Default, Debug)] struct PendingInput { keystrokes: SmallVec<[Keystroke; 1]>, focus: Option, timer: Option>, } pub(crate) struct ElementStateBox { pub(crate) inner: Box, #[cfg(debug_assertions)] pub(crate) type_name: &'static str, } fn default_bounds(display_id: Option, cx: &mut App) -> Bounds { const DEFAULT_WINDOW_OFFSET: Point = point(px(0.), px(35.)); // TODO, BUG: if you open a window with the currently active window // on the stack, this will erroneously select the 'unwrap_or_else' // code path cx.active_window() .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok()) .map(|mut bounds| { bounds.origin += DEFAULT_WINDOW_OFFSET; bounds }) .unwrap_or_else(|| { let display = display_id .map(|id| cx.find_display(id)) .unwrap_or_else(|| cx.primary_display()); display .map(|display| display.default_bounds()) .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE)) }) } impl Window { pub(crate) fn new( handle: AnyWindowHandle, options: WindowOptions, cx: &mut App, ) -> Result { let WindowOptions { window_bounds, titlebar, focus, show, kind, is_movable, display_id, window_background, app_id, window_min_size, window_decorations, } = options; let bounds = window_bounds .map(|bounds| bounds.get_bounds()) .unwrap_or_else(|| default_bounds(display_id, cx)); let mut platform_window = cx.platform.open_window( handle, WindowParams { bounds, titlebar, kind, is_movable, focus, show, display_id, window_min_size, }, )?; let display_id = platform_window.display().map(|display| display.id()); let sprite_atlas = platform_window.sprite_atlas(); let mouse_position = platform_window.mouse_position(); let modifiers = platform_window.modifiers(); let content_size = platform_window.content_size(); let scale_factor = platform_window.scale_factor(); let appearance = platform_window.appearance(); let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone())); let invalidator = WindowInvalidator::new(); let active = Rc::new(Cell::new(platform_window.is_active())); let hovered = Rc::new(Cell::new(platform_window.is_hovered())); let needs_present = Rc::new(Cell::new(false)); let next_frame_callbacks: Rc>> = Default::default(); let last_input_timestamp = Rc::new(Cell::new(Instant::now())); platform_window .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server)); platform_window.set_background_appearance(window_background); if let Some(ref window_open_state) = window_bounds { match window_open_state { WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(), WindowBounds::Maximized(_) => platform_window.zoom(), WindowBounds::Windowed(_) => {} } } platform_window.on_close(Box::new({ let mut cx = cx.to_async(); move || { let _ = handle.update(&mut cx, |_, window, _| window.remove_window()); } })); platform_window.on_request_frame(Box::new({ let mut cx = cx.to_async(); let invalidator = invalidator.clone(); let active = active.clone(); let needs_present = needs_present.clone(); let next_frame_callbacks = next_frame_callbacks.clone(); let last_input_timestamp = last_input_timestamp.clone(); move |request_frame_options| { let next_frame_callbacks = next_frame_callbacks.take(); if !next_frame_callbacks.is_empty() { handle .update(&mut cx, |_, window, cx| { for callback in next_frame_callbacks { callback(window, cx); } }) .log_err(); } // Keep presenting the current scene for 1 extra second since the // last input to prevent the display from underclocking the refresh rate. let needs_present = request_frame_options.require_presentation || needs_present.get() || (active.get() && last_input_timestamp.get().elapsed() < Duration::from_secs(1)); if invalidator.is_dirty() { measure("frame duration", || { handle .update(&mut cx, |_, window, cx| { window.draw(cx); window.present(); }) .log_err(); }) } else if needs_present { handle .update(&mut cx, |_, window, _| window.present()) .log_err(); } handle .update(&mut cx, |_, window, _| { window.complete_frame(); }) .log_err(); } })); platform_window.on_resize(Box::new({ let mut cx = cx.to_async(); move |_, _| { handle .update(&mut cx, |_, window, cx| window.bounds_changed(cx)) .log_err(); } })); platform_window.on_moved(Box::new({ let mut cx = cx.to_async(); move || { handle .update(&mut cx, |_, window, cx| window.bounds_changed(cx)) .log_err(); } })); platform_window.on_appearance_changed(Box::new({ let mut cx = cx.to_async(); move || { handle .update(&mut cx, |_, window, cx| window.appearance_changed(cx)) .log_err(); } })); platform_window.on_active_status_change(Box::new({ let mut cx = cx.to_async(); move |active| { handle .update(&mut cx, |_, window, cx| { window.active.set(active); window.modifiers = window.platform_window.modifiers(); window .activation_observers .clone() .retain(&(), |callback| callback(window, cx)); window.refresh(); }) .log_err(); } })); platform_window.on_hover_status_change(Box::new({ let mut cx = cx.to_async(); move |active| { handle .update(&mut cx, |_, window, _| { window.hovered.set(active); window.refresh(); }) .log_err(); } })); platform_window.on_input({ let mut cx = cx.to_async(); Box::new(move |event| { handle .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx)) .log_err() .unwrap_or(DispatchEventResult::default()) }) }); if let Some(app_id) = app_id { platform_window.set_app_id(&app_id); } platform_window.map_window().unwrap(); Ok(Window { handle, invalidator, removed: false, platform_window, display_id, sprite_atlas, text_system, rem_size: px(16.), rem_size_override_stack: SmallVec::new(), viewport_size: content_size, layout_engine: Some(TaffyLayoutEngine::new()), root: None, element_id_stack: SmallVec::default(), text_style_stack: Vec::new(), rendered_entity_stack: Vec::new(), element_offset_stack: Vec::new(), content_mask_stack: Vec::new(), element_opacity: None, requested_autoscroll: None, rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())), next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())), next_frame_callbacks, next_hitbox_id: HitboxId::default(), next_tooltip_id: TooltipId::default(), tooltip_bounds: None, dirty_views: FxHashSet::default(), focus_listeners: SubscriberSet::new(), focus_lost_listeners: SubscriberSet::new(), default_prevented: true, mouse_position, mouse_hit_test: HitTest::default(), modifiers, scale_factor, bounds_observers: SubscriberSet::new(), appearance, appearance_observers: SubscriberSet::new(), active, hovered, needs_present, last_input_timestamp, refreshing: false, activation_observers: SubscriberSet::new(), focus: None, focus_enabled: true, pending_input: None, pending_modifier: ModifierState::default(), pending_input_observers: SubscriberSet::new(), prompt: None, client_inset: None, image_cache_stack: Vec::new(), }) } pub(crate) fn new_focus_listener( &self, value: AnyWindowFocusListener, ) -> (Subscription, impl FnOnce() + use<>) { self.focus_listeners.insert((), value) } } #[derive(Clone, Debug, Default, PartialEq, Eq)] pub(crate) struct DispatchEventResult { pub propagate: bool, pub default_prevented: bool, } /// Indicates which region of the window is visible. Content falling outside of this mask will not be /// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type /// to leave room to support more complex shapes in the future. #[derive(Clone, Debug, Default, PartialEq, Eq)] #[repr(C)] pub struct ContentMask { /// The bounds pub bounds: Bounds

, } impl ContentMask { /// Scale the content mask's pixel units by the given scaling factor. pub fn scale(&self, factor: f32) -> ContentMask { ContentMask { bounds: self.bounds.scale(factor), } } /// Intersect the content mask with the given content mask. pub fn intersect(&self, other: &Self) -> Self { let bounds = self.bounds.intersect(&other.bounds); ContentMask { bounds } } } impl Window { fn mark_view_dirty(&mut self, view_id: EntityId) { // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors // should already be dirty. for view_id in self .rendered_frame .dispatch_tree .view_path(view_id) .into_iter() .rev() { if !self.dirty_views.insert(view_id) { break; } } } /// Registers a callback to be invoked when the window appearance changes. pub fn observe_window_appearance( &self, mut callback: impl FnMut(&mut Window, &mut App) + 'static, ) -> Subscription { let (subscription, activate) = self.appearance_observers.insert( (), Box::new(move |window, cx| { callback(window, cx); true }), ); activate(); subscription } /// Replaces the root entity of the window with a new one. pub fn replace_root( &mut self, cx: &mut App, build_view: impl FnOnce(&mut Window, &mut Context) -> E, ) -> Entity where E: 'static + Render, { let view = cx.new(|cx| build_view(self, cx)); self.root = Some(view.clone().into()); self.refresh(); view } /// Returns the root entity of the window, if it has one. pub fn root(&self) -> Option>> where E: 'static + Render, { self.root .as_ref() .map(|view| view.clone().downcast::().ok()) } /// Obtain a handle to the window that belongs to this context. pub fn window_handle(&self) -> AnyWindowHandle { self.handle } /// Mark the window as dirty, scheduling it to be redrawn on the next frame. pub fn refresh(&mut self) { if self.invalidator.not_drawing() { self.refreshing = true; self.invalidator.set_dirty(true); } } /// Close this window. pub fn remove_window(&mut self) { self.removed = true; } /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`. pub fn focused(&self, cx: &App) -> Option { self.focus .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles)) } /// Move focus to the element associated with the given [`FocusHandle`]. pub fn focus(&mut self, handle: &FocusHandle) { if !self.focus_enabled || self.focus == Some(handle.id) { return; } self.focus = Some(handle.id); self.clear_pending_keystrokes(); self.refresh(); } /// Remove focus from all elements within this context's window. pub fn blur(&mut self) { if !self.focus_enabled { return; } self.focus = None; self.refresh(); } /// Blur the window and don't allow anything in it to be focused again. pub fn disable_focus(&mut self) { self.blur(); self.focus_enabled = false; } /// Accessor for the text system. pub fn text_system(&self) -> &Arc { &self.text_system } /// The current text style. Which is composed of all the style refinements provided to `with_text_style`. pub fn text_style(&self) -> TextStyle { let mut style = TextStyle::default(); for refinement in &self.text_style_stack { style.refine(refinement); } style } /// Check if the platform window is maximized /// On some platforms (namely Windows) this is different than the bounds being the size of the display pub fn is_maximized(&self) -> bool { self.platform_window.is_maximized() } /// request a certain window decoration (Wayland) pub fn request_decorations(&self, decorations: WindowDecorations) { self.platform_window.request_decorations(decorations); } /// Start a window resize operation (Wayland) pub fn start_window_resize(&self, edge: ResizeEdge) { self.platform_window.start_window_resize(edge); } /// Return the `WindowBounds` to indicate that how a window should be opened /// after it has been closed pub fn window_bounds(&self) -> WindowBounds { self.platform_window.window_bounds() } /// Return the `WindowBounds` excluding insets (Wayland and X11) pub fn inner_window_bounds(&self) -> WindowBounds { self.platform_window.inner_window_bounds() } /// Dispatch the given action on the currently focused element. pub fn dispatch_action(&mut self, action: Box, cx: &mut App) { let focus_handle = self.focused(cx); let window = self.handle; cx.defer(move |cx| { window .update(cx, |_, window, cx| { let node_id = focus_handle .and_then(|handle| { window .rendered_frame .dispatch_tree .focusable_node_id(handle.id) }) .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id()); window.dispatch_action_on_node(node_id, action.as_ref(), cx); }) .log_err(); }) } pub(crate) fn dispatch_keystroke_observers( &mut self, event: &dyn Any, action: Option>, context_stack: Vec, cx: &mut App, ) { let Some(key_down_event) = event.downcast_ref::() else { return; }; cx.keystroke_observers.clone().retain(&(), move |callback| { (callback)( &KeystrokeEvent { keystroke: key_down_event.keystroke.clone(), action: action.as_ref().map(|action| action.boxed_clone()), context_stack: context_stack.clone(), }, self, cx, ) }); } /// Schedules the given function to be run at the end of the current effect cycle, allowing entities /// that are currently on the stack to be returned to the app. pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) { let handle = self.handle; cx.defer(move |cx| { handle.update(cx, |_, window, cx| f(window, cx)).ok(); }); } /// Subscribe to events emitted by a entity. /// The entity to which you're subscribing must implement the [`EventEmitter`] trait. /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window. pub fn observe( &mut self, observed: &Entity, cx: &mut App, mut on_notify: impl FnMut(Entity, &mut Window, &mut App) + 'static, ) -> Subscription { let entity_id = observed.entity_id(); let observed = observed.downgrade(); let window_handle = self.handle; cx.new_observer( entity_id, Box::new(move |cx| { window_handle .update(cx, |_, window, cx| { if let Some(handle) = observed.upgrade() { on_notify(handle, window, cx); true } else { false } }) .unwrap_or(false) }), ) } /// Subscribe to events emitted by a entity. /// The entity to which you're subscribing must implement the [`EventEmitter`] trait. /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window. pub fn subscribe( &mut self, entity: &Entity, cx: &mut App, mut on_event: impl FnMut(Entity, &Evt, &mut Window, &mut App) + 'static, ) -> Subscription where Emitter: EventEmitter, Evt: 'static, { let entity_id = entity.entity_id(); let handle = entity.downgrade(); let window_handle = self.handle; cx.new_subscription( entity_id, ( TypeId::of::(), Box::new(move |event, cx| { window_handle .update(cx, |_, window, cx| { if let Some(entity) = handle.upgrade() { let event = event.downcast_ref().expect("invalid event type"); on_event(entity, event, window, cx); true } else { false } }) .unwrap_or(false) }), ), ) } /// Register a callback to be invoked when the given `Entity` is released. pub fn observe_release( &self, entity: &Entity, cx: &mut App, mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static, ) -> Subscription where T: 'static, { let entity_id = entity.entity_id(); let window_handle = self.handle; let (subscription, activate) = cx.release_listeners.insert( entity_id, Box::new(move |entity, cx| { let entity = entity.downcast_mut().expect("invalid entity type"); let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx)); }), ); activate(); subscription } /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across /// await points in async code. pub fn to_async(&self, cx: &App) -> AsyncWindowContext { AsyncWindowContext::new_context(cx.to_async(), self.handle) } /// Schedule the given closure to be run directly after the current frame is rendered. pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) { RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback)); } /// Schedule a frame to be drawn on the next animation frame. /// /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF. /// It will cause the window to redraw on the next frame, even if no other changes have occurred. /// /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window. pub fn request_animation_frame(&self) { let entity = self.current_view(); self.on_next_frame(move |_, cx| cx.notify(entity)); } /// Spawn the future returned by the given closure on the application thread pool. /// The closure is provided a handle to the current window and an `AsyncWindowContext` for /// use within your future. #[track_caller] pub fn spawn(&self, cx: &App, f: AsyncFn) -> Task where R: 'static, AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static, { let handle = self.handle; cx.spawn(async move |app| { let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle); f(&mut async_window_cx).await }) } fn bounds_changed(&mut self, cx: &mut App) { self.scale_factor = self.platform_window.scale_factor(); self.viewport_size = self.platform_window.content_size(); self.display_id = self.platform_window.display().map(|display| display.id()); self.refresh(); self.bounds_observers .clone() .retain(&(), |callback| callback(self, cx)); } /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays. pub fn bounds(&self) -> Bounds { self.platform_window.bounds() } /// Set the content size of the window. pub fn resize(&mut self, size: Size) { self.platform_window.resize(size); } /// Returns whether or not the window is currently fullscreen pub fn is_fullscreen(&self) -> bool { self.platform_window.is_fullscreen() } pub(crate) fn appearance_changed(&mut self, cx: &mut App) { self.appearance = self.platform_window.appearance(); self.appearance_observers .clone() .retain(&(), |callback| callback(self, cx)); } /// Returns the appearance of the current window. pub fn appearance(&self) -> WindowAppearance { self.appearance } /// Returns the size of the drawable area within the window. pub fn viewport_size(&self) -> Size { self.viewport_size } /// Returns whether this window is focused by the operating system (receiving key events). pub fn is_window_active(&self) -> bool { self.active.get() } /// Returns whether this window is considered to be the window /// that currently owns the mouse cursor. /// On mac, this is equivalent to `is_window_active`. pub fn is_window_hovered(&self) -> bool { if cfg!(any( target_os = "windows", target_os = "linux", target_os = "freebsd" )) { self.hovered.get() } else { self.is_window_active() } } /// Toggle zoom on the window. pub fn zoom_window(&self) { self.platform_window.zoom(); } /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11) pub fn show_window_menu(&self, position: Point) { self.platform_window.show_window_menu(position) } /// Tells the compositor to take control of window movement (Wayland and X11) /// /// Events may not be received during a move operation. pub fn start_window_move(&self) { self.platform_window.start_window_move() } /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11) pub fn set_client_inset(&mut self, inset: Pixels) { self.client_inset = Some(inset); self.platform_window.set_client_inset(inset); } /// Returns the client_inset value by [`Self::set_client_inset`]. pub fn client_inset(&self) -> Option { self.client_inset } /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11) pub fn window_decorations(&self) -> Decorations { self.platform_window.window_decorations() } /// Returns which window controls are currently visible (Wayland) pub fn window_controls(&self) -> WindowControls { self.platform_window.window_controls() } /// Updates the window's title at the platform level. pub fn set_window_title(&mut self, title: &str) { self.platform_window.set_title(title); } /// Sets the application identifier. pub fn set_app_id(&mut self, app_id: &str) { self.platform_window.set_app_id(app_id); } /// Sets the window background appearance. pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) { self.platform_window .set_background_appearance(background_appearance); } /// Mark the window as dirty at the platform level. pub fn set_window_edited(&mut self, edited: bool) { self.platform_window.set_edited(edited); } /// Determine the display on which the window is visible. pub fn display(&self, cx: &App) -> Option> { cx.platform .displays() .into_iter() .find(|display| Some(display.id()) == self.display_id) } /// Show the platform character palette. pub fn show_character_palette(&self) { self.platform_window.show_character_palette(); } /// The scale factor of the display associated with the window. For example, it could /// return 2.0 for a "retina" display, indicating that each logical pixel should actually /// be rendered as two pixels on screen. pub fn scale_factor(&self) -> f32 { self.scale_factor } /// The size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn rem_size(&self) -> Pixels { self.rem_size_override_stack .last() .copied() .unwrap_or(self.rem_size) } /// Sets the size of an em for the base font of the application. Adjusting this value allows the /// UI to scale, just like zooming a web page. pub fn set_rem_size(&mut self, rem_size: impl Into) { self.rem_size = rem_size.into(); } /// Acquire a globally unique identifier for the given ElementId. /// Only valid for the duration of the provided closure. pub fn with_global_id( &mut self, element_id: ElementId, f: impl FnOnce(&GlobalElementId, &mut Self) -> R, ) -> R { self.element_id_stack.push(element_id); let global_id = GlobalElementId(self.element_id_stack.clone()); let result = f(&global_id, self); self.element_id_stack.pop(); result } /// Executes the provided function with the specified rem size. /// /// This method must only be called as part of element drawing. pub fn with_rem_size(&mut self, rem_size: Option>, f: F) -> R where F: FnOnce(&mut Self) -> R, { self.invalidator.debug_assert_paint_or_prepaint(); if let Some(rem_size) = rem_size { self.rem_size_override_stack.push(rem_size.into()); let result = f(self); self.rem_size_override_stack.pop(); result } else { f(self) } } /// The line height associated with the current text style. pub fn line_height(&self) -> Pixels { self.text_style().line_height_in_pixels(self.rem_size()) } /// Call to prevent the default action of an event. Currently only used to prevent /// parent elements from becoming focused on mouse down. pub fn prevent_default(&mut self) { self.default_prevented = true; } /// Obtain whether default has been prevented for the event currently being dispatched. pub fn default_prevented(&self) -> bool { self.default_prevented } /// Determine whether the given action is available along the dispatch path to the currently focused element. pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool { let target = self .focused(cx) .and_then(|focused_handle| { self.rendered_frame .dispatch_tree .focusable_node_id(focused_handle.id) }) .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id()); self.rendered_frame .dispatch_tree .is_action_available(action, target) } /// The position of the mouse relative to the window. pub fn mouse_position(&self) -> Point { self.mouse_position } /// The current state of the keyboard's modifiers pub fn modifiers(&self) -> Modifiers { self.modifiers } fn complete_frame(&self) { self.platform_window.completed_frame(); } /// Produces a new frame and assigns it to `rendered_frame`. To actually show /// the contents of the new [Scene], use [present]. #[profiling::function] pub fn draw(&mut self, cx: &mut App) { self.invalidate_entities(); cx.entities.clear_accessed(); debug_assert!(self.rendered_entity_stack.is_empty()); self.invalidator.set_dirty(false); self.requested_autoscroll = None; // Restore the previously-used input handler. if let Some(input_handler) = self.platform_window.take_input_handler() { self.rendered_frame.input_handlers.push(Some(input_handler)); } self.draw_roots(cx); self.dirty_views.clear(); self.next_frame.window_active = self.active.get(); // Register requested input handler with the platform window. if let Some(input_handler) = self.next_frame.input_handlers.pop() { self.platform_window .set_input_handler(input_handler.unwrap()); } self.layout_engine.as_mut().unwrap().clear(); self.text_system().finish_frame(); self.next_frame.finish(&mut self.rendered_frame); ELEMENT_ARENA.with_borrow_mut(|element_arena| { let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.; if percentage >= 80. { log::warn!("elevated element arena occupation: {}.", percentage); } element_arena.clear(); }); self.invalidator.set_phase(DrawPhase::Focus); let previous_focus_path = self.rendered_frame.focus_path(); let previous_window_active = self.rendered_frame.window_active; mem::swap(&mut self.rendered_frame, &mut self.next_frame); self.next_frame.clear(); let current_focus_path = self.rendered_frame.focus_path(); let current_window_active = self.rendered_frame.window_active; if previous_focus_path != current_focus_path || previous_window_active != current_window_active { if !previous_focus_path.is_empty() && current_focus_path.is_empty() { self.focus_lost_listeners .clone() .retain(&(), |listener| listener(self, cx)); } let event = WindowFocusEvent { previous_focus_path: if previous_window_active { previous_focus_path } else { Default::default() }, current_focus_path: if current_window_active { current_focus_path } else { Default::default() }, }; self.focus_listeners .clone() .retain(&(), |listener| listener(&event, self, cx)); } debug_assert!(self.rendered_entity_stack.is_empty()); self.record_entities_accessed(cx); self.reset_cursor_style(cx); self.refreshing = false; self.invalidator.set_phase(DrawPhase::None); self.needs_present.set(true); } fn record_entities_accessed(&mut self, cx: &mut App) { let mut entities_ref = cx.entities.accessed_entities.borrow_mut(); let mut entities = mem::take(entities_ref.deref_mut()); drop(entities_ref); let handle = self.handle; cx.record_entities_accessed( handle, // Try moving window invalidator into the Window self.invalidator.clone(), &entities, ); let mut entities_ref = cx.entities.accessed_entities.borrow_mut(); mem::swap(&mut entities, entities_ref.deref_mut()); } fn invalidate_entities(&mut self) { let mut views = self.invalidator.take_views(); for entity in views.drain() { self.mark_view_dirty(entity); } self.invalidator.replace_views(views); } #[profiling::function] fn present(&self) { self.platform_window.draw(&self.rendered_frame.scene); self.needs_present.set(false); profiling::finish_frame!(); } fn draw_roots(&mut self, cx: &mut App) { self.invalidator.set_phase(DrawPhase::Prepaint); self.tooltip_bounds.take(); // Layout all root elements. let mut root_element = self.root.as_ref().unwrap().clone().into_any(); root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx); let mut sorted_deferred_draws = (0..self.next_frame.deferred_draws.len()).collect::>(); sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority); self.prepaint_deferred_draws(&sorted_deferred_draws, cx); let mut prompt_element = None; let mut active_drag_element = None; let mut tooltip_element = None; if let Some(prompt) = self.prompt.take() { let mut element = prompt.view.any_view().into_any(); element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx); prompt_element = Some(element); self.prompt = Some(prompt); } else if let Some(active_drag) = cx.active_drag.take() { let mut element = active_drag.view.clone().into_any(); let offset = self.mouse_position() - active_drag.cursor_offset; element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx); active_drag_element = Some(element); cx.active_drag = Some(active_drag); } else { tooltip_element = self.prepaint_tooltip(cx); } self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position); // Now actually paint the elements. self.invalidator.set_phase(DrawPhase::Paint); root_element.paint(self, cx); self.paint_deferred_draws(&sorted_deferred_draws, cx); if let Some(mut prompt_element) = prompt_element { prompt_element.paint(self, cx); } else if let Some(mut drag_element) = active_drag_element { drag_element.paint(self, cx); } else if let Some(mut tooltip_element) = tooltip_element { tooltip_element.paint(self, cx); } } fn prepaint_tooltip(&mut self, cx: &mut App) -> Option { // Use indexing instead of iteration to avoid borrowing self for the duration of the loop. for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() { let Some(Some(tooltip_request)) = self .next_frame .tooltip_requests .get(tooltip_request_index) .cloned() else { log::error!("Unexpectedly absent TooltipRequest"); continue; }; let mut element = tooltip_request.tooltip.view.clone().into_any(); let mouse_position = tooltip_request.tooltip.mouse_position; let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx); let mut tooltip_bounds = Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size); let window_bounds = Bounds { origin: Point::default(), size: self.viewport_size(), }; if tooltip_bounds.right() > window_bounds.right() { let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.); if new_x >= Pixels::ZERO { tooltip_bounds.origin.x = new_x; } else { tooltip_bounds.origin.x = cmp::max( Pixels::ZERO, tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(), ); } } if tooltip_bounds.bottom() > window_bounds.bottom() { let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.); if new_y >= Pixels::ZERO { tooltip_bounds.origin.y = new_y; } else { tooltip_bounds.origin.y = cmp::max( Pixels::ZERO, tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(), ); } } // It's possible for an element to have an active tooltip while not being painted (e.g. // via the `visible_on_hover` method). Since mouse listeners are not active in this // case, instead update the tooltip's visibility here. let is_visible = (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx); if !is_visible { continue; } self.with_absolute_element_offset(tooltip_bounds.origin, |window| { element.prepaint(window, cx) }); self.tooltip_bounds = Some(TooltipBounds { id: tooltip_request.id, bounds: tooltip_bounds, }); return Some(element); } None } fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) { assert_eq!(self.element_id_stack.len(), 0); let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws); for deferred_draw_ix in deferred_draw_indices { let deferred_draw = &mut deferred_draws[*deferred_draw_ix]; self.element_id_stack .clone_from(&deferred_draw.element_id_stack); self.text_style_stack .clone_from(&deferred_draw.text_style_stack); self.next_frame .dispatch_tree .set_active_node(deferred_draw.parent_node); let prepaint_start = self.prepaint_index(); if let Some(element) = deferred_draw.element.as_mut() { self.with_rendered_view(deferred_draw.current_view, |window| { window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| { element.prepaint(window, cx) }); }) } else { self.reuse_prepaint(deferred_draw.prepaint_range.clone()); } let prepaint_end = self.prepaint_index(); deferred_draw.prepaint_range = prepaint_start..prepaint_end; } assert_eq!( self.next_frame.deferred_draws.len(), 0, "cannot call defer_draw during deferred drawing" ); self.next_frame.deferred_draws = deferred_draws; self.element_id_stack.clear(); self.text_style_stack.clear(); } fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) { assert_eq!(self.element_id_stack.len(), 0); let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws); for deferred_draw_ix in deferred_draw_indices { let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix]; self.element_id_stack .clone_from(&deferred_draw.element_id_stack); self.next_frame .dispatch_tree .set_active_node(deferred_draw.parent_node); let paint_start = self.paint_index(); if let Some(element) = deferred_draw.element.as_mut() { self.with_rendered_view(deferred_draw.current_view, |window| { element.paint(window, cx); }) } else { self.reuse_paint(deferred_draw.paint_range.clone()); } let paint_end = self.paint_index(); deferred_draw.paint_range = paint_start..paint_end; } self.next_frame.deferred_draws = deferred_draws; self.element_id_stack.clear(); } pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex { PrepaintStateIndex { hitboxes_index: self.next_frame.hitboxes.len(), tooltips_index: self.next_frame.tooltip_requests.len(), deferred_draws_index: self.next_frame.deferred_draws.len(), dispatch_tree_index: self.next_frame.dispatch_tree.len(), accessed_element_states_index: self.next_frame.accessed_element_states.len(), line_layout_index: self.text_system.layout_index(), } } pub(crate) fn reuse_prepaint(&mut self, range: Range) { self.next_frame.hitboxes.extend( self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index] .iter() .cloned(), ); self.next_frame.tooltip_requests.extend( self.rendered_frame.tooltip_requests [range.start.tooltips_index..range.end.tooltips_index] .iter_mut() .map(|request| request.take()), ); self.next_frame.accessed_element_states.extend( self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index ..range.end.accessed_element_states_index] .iter() .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)), ); self.text_system .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index); let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree( range.start.dispatch_tree_index..range.end.dispatch_tree_index, &mut self.rendered_frame.dispatch_tree, self.focus, ); if reused_subtree.contains_focus() { self.next_frame.focus = self.focus; } self.next_frame.deferred_draws.extend( self.rendered_frame.deferred_draws [range.start.deferred_draws_index..range.end.deferred_draws_index] .iter() .map(|deferred_draw| DeferredDraw { current_view: deferred_draw.current_view, parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node), element_id_stack: deferred_draw.element_id_stack.clone(), text_style_stack: deferred_draw.text_style_stack.clone(), priority: deferred_draw.priority, element: None, absolute_offset: deferred_draw.absolute_offset, prepaint_range: deferred_draw.prepaint_range.clone(), paint_range: deferred_draw.paint_range.clone(), }), ); } pub(crate) fn paint_index(&self) -> PaintIndex { PaintIndex { scene_index: self.next_frame.scene.len(), mouse_listeners_index: self.next_frame.mouse_listeners.len(), input_handlers_index: self.next_frame.input_handlers.len(), cursor_styles_index: self.next_frame.cursor_styles.len(), accessed_element_states_index: self.next_frame.accessed_element_states.len(), line_layout_index: self.text_system.layout_index(), } } pub(crate) fn reuse_paint(&mut self, range: Range) { self.next_frame.cursor_styles.extend( self.rendered_frame.cursor_styles [range.start.cursor_styles_index..range.end.cursor_styles_index] .iter() .cloned(), ); self.next_frame.input_handlers.extend( self.rendered_frame.input_handlers [range.start.input_handlers_index..range.end.input_handlers_index] .iter_mut() .map(|handler| handler.take()), ); self.next_frame.mouse_listeners.extend( self.rendered_frame.mouse_listeners [range.start.mouse_listeners_index..range.end.mouse_listeners_index] .iter_mut() .map(|listener| listener.take()), ); self.next_frame.accessed_element_states.extend( self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index ..range.end.accessed_element_states_index] .iter() .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)), ); self.text_system .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index); self.next_frame.scene.replay( range.start.scene_index..range.end.scene_index, &self.rendered_frame.scene, ); } /// Push a text style onto the stack, and call a function with that style active. /// Use [`Window::text_style`] to get the current, combined text style. This method /// should only be called as part of element drawing. pub fn with_text_style(&mut self, style: Option, f: F) -> R where F: FnOnce(&mut Self) -> R, { self.invalidator.debug_assert_paint_or_prepaint(); if let Some(style) = style { self.text_style_stack.push(style); let result = f(self); self.text_style_stack.pop(); result } else { f(self) } } /// Updates the cursor style at the platform level. This method should only be called /// during the prepaint phase of element drawing. pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: Option<&Hitbox>) { self.invalidator.debug_assert_paint(); self.next_frame.cursor_styles.push(CursorStyleRequest { hitbox_id: hitbox.map(|hitbox| hitbox.id), style, }); } /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called /// during the paint phase of element drawing. pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId { self.invalidator.debug_assert_prepaint(); let id = TooltipId(post_inc(&mut self.next_tooltip_id.0)); self.next_frame .tooltip_requests .push(Some(TooltipRequest { id, tooltip })); id } /// Invoke the given function with the given content mask after intersecting it /// with the current mask. This method should only be called during element drawing. pub fn with_content_mask( &mut self, mask: Option>, f: impl FnOnce(&mut Self) -> R, ) -> R { self.invalidator.debug_assert_paint_or_prepaint(); if let Some(mask) = mask { let mask = mask.intersect(&self.content_mask()); self.content_mask_stack.push(mask); let result = f(self); self.content_mask_stack.pop(); result } else { f(self) } } /// Updates the global element offset relative to the current offset. This is used to implement /// scrolling. This method should only be called during the prepaint phase of element drawing. pub fn with_element_offset( &mut self, offset: Point, f: impl FnOnce(&mut Self) -> R, ) -> R { self.invalidator.debug_assert_prepaint(); if offset.is_zero() { return f(self); }; let abs_offset = self.element_offset() + offset; self.with_absolute_element_offset(abs_offset, f) } /// Updates the global element offset based on the given offset. This is used to implement /// drag handles and other manual painting of elements. This method should only be called during /// the prepaint phase of element drawing. pub fn with_absolute_element_offset( &mut self, offset: Point, f: impl FnOnce(&mut Self) -> R, ) -> R { self.invalidator.debug_assert_prepaint(); self.element_offset_stack.push(offset); let result = f(self); self.element_offset_stack.pop(); result } pub(crate) fn with_element_opacity( &mut self, opacity: Option, f: impl FnOnce(&mut Self) -> R, ) -> R { if opacity.is_none() { return f(self); } self.invalidator.debug_assert_paint_or_prepaint(); self.element_opacity = opacity; let result = f(self); self.element_opacity = None; result } /// Perform prepaint on child elements in a "retryable" manner, so that any side effects /// of prepaints can be discarded before prepainting again. This is used to support autoscroll /// where we need to prepaint children to detect the autoscroll bounds, then adjust the /// element offset and prepaint again. See [`List`] for an example. This method should only be /// called during the prepaint phase of element drawing. pub fn transact(&mut self, f: impl FnOnce(&mut Self) -> Result) -> Result { self.invalidator.debug_assert_prepaint(); let index = self.prepaint_index(); let result = f(self); if result.is_err() { self.next_frame.hitboxes.truncate(index.hitboxes_index); self.next_frame .tooltip_requests .truncate(index.tooltips_index); self.next_frame .deferred_draws .truncate(index.deferred_draws_index); self.next_frame .dispatch_tree .truncate(index.dispatch_tree_index); self.next_frame .accessed_element_states .truncate(index.accessed_element_states_index); self.text_system.truncate_layouts(index.line_layout_index); } result } /// When you call this method during [`prepaint`], containing elements will attempt to /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element /// that supports this method being called on the elements it contains. This method should only be /// called during the prepaint phase of element drawing. pub fn request_autoscroll(&mut self, bounds: Bounds) { self.invalidator.debug_assert_prepaint(); self.requested_autoscroll = Some(bounds); } /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior /// described in [`request_autoscroll`]. pub fn take_autoscroll(&mut self) -> Option> { self.invalidator.debug_assert_prepaint(); self.requested_autoscroll.take() } /// Asynchronously load an asset, if the asset hasn't finished loading this will return None. /// Your view will be re-drawn once the asset has finished loading. /// /// Note that the multiple calls to this method will only result in one `Asset::load` call at a /// time. pub fn use_asset(&mut self, source: &A::Source, cx: &mut App) -> Option { let (task, is_first) = cx.fetch_asset::(source); task.clone().now_or_never().or_else(|| { if is_first { let entity = self.current_view(); self.spawn(cx, { let task = task.clone(); async move |cx| { task.await; cx.on_next_frame(move |_, cx| { cx.notify(entity); }); } }) .detach(); } None }) } /// Obtain the current element offset. This method should only be called during the /// prepaint phase of element drawing. pub fn element_offset(&self) -> Point { self.invalidator.debug_assert_prepaint(); self.element_offset_stack .last() .copied() .unwrap_or_default() } /// Obtain the current element opacity. This method should only be called during the /// prepaint phase of element drawing. pub(crate) fn element_opacity(&self) -> f32 { self.invalidator.debug_assert_paint_or_prepaint(); self.element_opacity.unwrap_or(1.0) } /// Obtain the current content mask. This method should only be called during element drawing. pub fn content_mask(&self) -> ContentMask { self.invalidator.debug_assert_paint_or_prepaint(); self.content_mask_stack .last() .cloned() .unwrap_or_else(|| ContentMask { bounds: Bounds { origin: Point::default(), size: self.viewport_size, }, }) } /// Provide elements in the called function with a new namespace in which their identifiers must be unique. /// This can be used within a custom element to distinguish multiple sets of child elements. pub fn with_element_namespace( &mut self, element_id: impl Into, f: impl FnOnce(&mut Self) -> R, ) -> R { self.element_id_stack.push(element_id.into()); let result = f(self); self.element_id_stack.pop(); result } /// Updates or initializes state for an element with the given id that lives across multiple /// frames. If an element with this ID existed in the rendered frame, its state will be passed /// to the given closure. The state returned by the closure will be stored so it can be referenced /// when drawing the next frame. This method should only be called as part of element drawing. pub fn with_element_state( &mut self, global_id: &GlobalElementId, f: impl FnOnce(Option, &mut Self) -> (R, S), ) -> R where S: 'static, { self.invalidator.debug_assert_paint_or_prepaint(); let key = (GlobalElementId(global_id.0.clone()), TypeId::of::()); self.next_frame .accessed_element_states .push((GlobalElementId(key.0.clone()), TypeId::of::())); if let Some(any) = self .next_frame .element_states .remove(&key) .or_else(|| self.rendered_frame.element_states.remove(&key)) { let ElementStateBox { inner, #[cfg(debug_assertions)] type_name, } = any; // Using the extra inner option to avoid needing to reallocate a new box. let mut state_box = inner .downcast::>() .map_err(|_| { #[cfg(debug_assertions)] { anyhow::anyhow!( "invalid element state type for id, requested {:?}, actual: {:?}", std::any::type_name::(), type_name ) } #[cfg(not(debug_assertions))] { anyhow::anyhow!( "invalid element state type for id, requested {:?}", std::any::type_name::(), ) } }) .unwrap(); let state = state_box.take().expect( "reentrant call to with_element_state for the same state type and element id", ); let (result, state) = f(Some(state), self); state_box.replace(state); self.next_frame.element_states.insert( key, ElementStateBox { inner: state_box, #[cfg(debug_assertions)] type_name, }, ); result } else { let (result, state) = f(None, self); self.next_frame.element_states.insert( key, ElementStateBox { inner: Box::new(Some(state)), #[cfg(debug_assertions)] type_name: std::any::type_name::(), }, ); result } } /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state` /// when the element is guaranteed to have an id. /// /// The first option means 'no ID provided' /// The second option means 'not yet initialized' pub fn with_optional_element_state( &mut self, global_id: Option<&GlobalElementId>, f: impl FnOnce(Option>, &mut Self) -> (R, Option), ) -> R where S: 'static, { self.invalidator.debug_assert_paint_or_prepaint(); if let Some(global_id) = global_id { self.with_element_state(global_id, |state, cx| { let (result, state) = f(Some(state), cx); let state = state.expect("you must return some state when you pass some element id"); (result, state) }) } else { let (result, state) = f(None, self); debug_assert!( state.is_none(), "you must not return an element state when passing None for the global id" ); result } } /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements, /// with higher values being drawn on top. /// /// This method should only be called as part of the prepaint phase of element drawing. pub fn defer_draw( &mut self, element: AnyElement, absolute_offset: Point, priority: usize, ) { self.invalidator.debug_assert_prepaint(); let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap(); self.next_frame.deferred_draws.push(DeferredDraw { current_view: self.current_view(), parent_node, element_id_stack: self.element_id_stack.clone(), text_style_stack: self.text_style_stack.clone(), priority, element: Some(element), absolute_offset, prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(), paint_range: PaintIndex::default()..PaintIndex::default(), }); } /// Creates a new painting layer for the specified bounds. A "layer" is a batch /// of geometry that are non-overlapping and have the same draw order. This is typically used /// for performance reasons. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_layer(&mut self, bounds: Bounds, f: impl FnOnce(&mut Self) -> R) -> R { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let clipped_bounds = bounds.intersect(&content_mask.bounds); if !clipped_bounds.is_empty() { self.next_frame .scene .push_layer(clipped_bounds.scale(scale_factor)); } let result = f(self); if !clipped_bounds.is_empty() { self.next_frame.scene.pop_layer(); } result } /// Paint one or more drop shadows into the scene for the next frame at the current z-index. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_shadows( &mut self, bounds: Bounds, corner_radii: Corners, shadows: &[BoxShadow], ) { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let opacity = self.element_opacity(); for shadow in shadows { let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius); self.next_frame.scene.insert_primitive(Shadow { order: 0, blur_radius: shadow.blur_radius.scale(scale_factor), bounds: shadow_bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), corner_radii: corner_radii.scale(scale_factor), color: shadow.color.opacity(opacity), }); } } /// Paint one or more quads into the scene for the next frame at the current stacking context. /// Quads are colored rectangular regions with an optional background, border, and corner radius. /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type. /// /// This method should only be called as part of the paint phase of element drawing. /// /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners /// where the circular arcs meet. This will not display well when combined with dashed borders. /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds. pub fn paint_quad(&mut self, quad: PaintQuad) { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let opacity = self.element_opacity(); self.next_frame.scene.insert_primitive(Quad { order: 0, bounds: quad.bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), background: quad.background.opacity(opacity), border_color: quad.border_color.opacity(opacity), corner_radii: quad.corner_radii.scale(scale_factor), border_widths: quad.border_widths.scale(scale_factor), border_style: quad.border_style, }); } /// Paint the given `Path` into the scene for the next frame at the current z-index. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_path(&mut self, mut path: Path, color: impl Into) { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let content_mask = self.content_mask(); let opacity = self.element_opacity(); path.content_mask = content_mask; let color: Background = color.into(); path.color = color.opacity(opacity); self.next_frame .scene .insert_primitive(path.scale(scale_factor)); } /// Paint an underline into the scene for the next frame at the current z-index. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_underline( &mut self, origin: Point, width: Pixels, style: &UnderlineStyle, ) { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let height = if style.wavy { style.thickness * 3. } else { style.thickness }; let bounds = Bounds { origin, size: size(width, height), }; let content_mask = self.content_mask(); let element_opacity = self.element_opacity(); self.next_frame.scene.insert_primitive(Underline { order: 0, pad: 0, bounds: bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), color: style.color.unwrap_or_default().opacity(element_opacity), thickness: style.thickness.scale(scale_factor), wavy: style.wavy, }); } /// Paint a strikethrough into the scene for the next frame at the current z-index. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_strikethrough( &mut self, origin: Point, width: Pixels, style: &StrikethroughStyle, ) { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let height = style.thickness; let bounds = Bounds { origin, size: size(width, height), }; let content_mask = self.content_mask(); let opacity = self.element_opacity(); self.next_frame.scene.insert_primitive(Underline { order: 0, pad: 0, bounds: bounds.scale(scale_factor), content_mask: content_mask.scale(scale_factor), thickness: style.thickness.scale(scale_factor), color: style.color.unwrap_or_default().opacity(opacity), wavy: false, }); } /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index. /// /// The y component of the origin is the baseline of the glyph. /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem). /// This method is only useful if you need to paint a single glyph that has already been shaped. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_glyph( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, color: Hsla, ) -> Result<()> { self.invalidator.debug_assert_paint(); let element_opacity = self.element_opacity(); let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let subpixel_variant = Point { x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8, }; let params = RenderGlyphParams { font_id, glyph_id, font_size, subpixel_variant, scale_factor, is_emoji: false, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok(Some((size, Cow::Owned(bytes)))) })? .expect("Callback above only errors or returns Some"); let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); self.next_frame.scene.insert_primitive(MonochromeSprite { order: 0, pad: 0, bounds, content_mask, color: color.opacity(element_opacity), tile, transformation: TransformationMatrix::unit(), }); } Ok(()) } /// Paints an emoji glyph into the scene for the next frame at the current z-index. /// /// The y component of the origin is the baseline of the glyph. /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem). /// This method is only useful if you need to paint a single emoji that has already been shaped. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_emoji( &mut self, origin: Point, font_id: FontId, glyph_id: GlyphId, font_size: Pixels, ) -> Result<()> { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let glyph_origin = origin.scale(scale_factor); let params = RenderGlyphParams { font_id, glyph_id, font_size, // We don't render emojis with subpixel variants. subpixel_variant: Default::default(), scale_factor, is_emoji: true, }; let raster_bounds = self.text_system().raster_bounds(¶ms)?; if !raster_bounds.is_zero() { let tile = self .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?; Ok(Some((size, Cow::Owned(bytes)))) })? .expect("Callback above only errors or returns Some"); let bounds = Bounds { origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into), size: tile.bounds.size.map(Into::into), }; let content_mask = self.content_mask().scale(scale_factor); let opacity = self.element_opacity(); self.next_frame.scene.insert_primitive(PolychromeSprite { order: 0, pad: 0, grayscale: false, bounds, corner_radii: Default::default(), content_mask, tile, opacity, }); } Ok(()) } /// Paint a monochrome SVG into the scene for the next frame at the current stacking context. /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_svg( &mut self, bounds: Bounds, path: SharedString, transformation: TransformationMatrix, color: Hsla, cx: &App, ) -> Result<()> { self.invalidator.debug_assert_paint(); let element_opacity = self.element_opacity(); let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let params = RenderSvgParams { path, size: bounds.size.map(|pixels| { DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32) }), }; let Some(tile) = self.sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { let Some(bytes) = cx.svg_renderer.render(¶ms)? else { return Ok(None); }; Ok(Some((params.size, Cow::Owned(bytes)))) })? else { return Ok(()); }; let content_mask = self.content_mask().scale(scale_factor); self.next_frame.scene.insert_primitive(MonochromeSprite { order: 0, pad: 0, bounds: bounds .map_origin(|origin| origin.floor()) .map_size(|size| size.ceil()), content_mask, color: color.opacity(element_opacity), tile, transformation, }); Ok(()) } /// Paint an image into the scene for the next frame at the current z-index. /// This method will panic if the frame_index is not valid /// /// This method should only be called as part of the paint phase of element drawing. pub fn paint_image( &mut self, bounds: Bounds, corner_radii: Corners, data: Arc, frame_index: usize, grayscale: bool, ) -> Result<()> { self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let params = RenderImageParams { image_id: data.id, frame_index, }; let tile = self .sprite_atlas .get_or_insert_with(¶ms.clone().into(), &mut || { Ok(Some(( data.size(frame_index), Cow::Borrowed( data.as_bytes(frame_index) .expect("It's the caller's job to pass a valid frame index"), ), ))) })? .expect("Callback above only returns Some"); let content_mask = self.content_mask().scale(scale_factor); let corner_radii = corner_radii.scale(scale_factor); let opacity = self.element_opacity(); self.next_frame.scene.insert_primitive(PolychromeSprite { order: 0, pad: 0, grayscale, bounds: bounds .map_origin(|origin| origin.floor()) .map_size(|size| size.ceil()), content_mask, corner_radii, tile, opacity, }); Ok(()) } /// Paint a surface into the scene for the next frame at the current z-index. /// /// This method should only be called as part of the paint phase of element drawing. #[cfg(target_os = "macos")] pub fn paint_surface(&mut self, bounds: Bounds, image_buffer: CVPixelBuffer) { use crate::PaintSurface; self.invalidator.debug_assert_paint(); let scale_factor = self.scale_factor(); let bounds = bounds.scale(scale_factor); let content_mask = self.content_mask().scale(scale_factor); self.next_frame.scene.insert_primitive(PaintSurface { order: 0, bounds, content_mask, image_buffer, }); } /// Removes an image from the sprite atlas. pub fn drop_image(&mut self, data: Arc) -> Result<()> { for frame_index in 0..data.frame_count() { let params = RenderImageParams { image_id: data.id, frame_index, }; self.sprite_atlas.remove(¶ms.clone().into()); } Ok(()) } /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which /// layout is being requested, along with the layout ids of any children. This method is called during /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout. /// /// This method should only be called as part of the request_layout or prepaint phase of element drawing. #[must_use] pub fn request_layout( &mut self, style: Style, children: impl IntoIterator, cx: &mut App, ) -> LayoutId { self.invalidator.debug_assert_prepaint(); cx.layout_id_buffer.clear(); cx.layout_id_buffer.extend(children); let rem_size = self.rem_size(); self.layout_engine .as_mut() .unwrap() .request_layout(style, rem_size, &cx.layout_id_buffer) } /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children, /// this variant takes a function that is invoked during layout so you can use arbitrary logic to /// determine the element's size. One place this is used internally is when measuring text. /// /// The given closure is invoked at layout time with the known dimensions and available space and /// returns a `Size`. /// /// This method should only be called as part of the request_layout or prepaint phase of element drawing. pub fn request_measured_layout< F: FnMut(Size>, Size, &mut Window, &mut App) -> Size + 'static, >( &mut self, style: Style, measure: F, ) -> LayoutId { self.invalidator.debug_assert_prepaint(); let rem_size = self.rem_size(); self.layout_engine .as_mut() .unwrap() .request_measured_layout(style, rem_size, measure) } /// Compute the layout for the given id within the given available space. /// This method is called for its side effect, typically by the framework prior to painting. /// After calling it, you can request the bounds of the given layout node id or any descendant. /// /// This method should only be called as part of the prepaint phase of element drawing. pub fn compute_layout( &mut self, layout_id: LayoutId, available_space: Size, cx: &mut App, ) { self.invalidator.debug_assert_prepaint(); let mut layout_engine = self.layout_engine.take().unwrap(); layout_engine.compute_layout(layout_id, available_space, self, cx); self.layout_engine = Some(layout_engine); } /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by /// GPUI itself automatically in order to pass your element its `Bounds` automatically. /// /// This method should only be called as part of element drawing. pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds { self.invalidator.debug_assert_prepaint(); let mut bounds = self .layout_engine .as_mut() .unwrap() .layout_bounds(layout_id) .map(Into::into); bounds.origin += self.element_offset(); bounds } /// This method should be called during `prepaint`. You can use /// the returned [Hitbox] during `paint` or in an event handler /// to determine whether the inserted hitbox was the topmost. /// /// This method should only be called as part of the prepaint phase of element drawing. pub fn insert_hitbox(&mut self, bounds: Bounds, opaque: bool) -> Hitbox { self.invalidator.debug_assert_prepaint(); let content_mask = self.content_mask(); let id = self.next_hitbox_id; self.next_hitbox_id.0 += 1; let hitbox = Hitbox { id, bounds, content_mask, opaque, }; self.next_frame.hitboxes.push(hitbox.clone()); hitbox } /// Sets the key context for the current element. This context will be used to translate /// keybindings into actions. /// /// This method should only be called as part of the paint phase of element drawing. pub fn set_key_context(&mut self, context: KeyContext) { self.invalidator.debug_assert_paint(); self.next_frame.dispatch_tree.set_key_context(context); } /// Sets the focus handle for the current element. This handle will be used to manage focus state /// and keyboard event dispatch for the element. /// /// This method should only be called as part of the prepaint phase of element drawing. pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) { self.invalidator.debug_assert_prepaint(); if focus_handle.is_focused(self) { self.next_frame.focus = Some(focus_handle.id); } self.next_frame.dispatch_tree.set_focus_id(focus_handle.id); } /// Sets the view id for the current element, which will be used to manage view caching. /// /// This method should only be called as part of element prepaint. We plan on removing this /// method eventually when we solve some issues that require us to construct editor elements /// directly instead of always using editors via views. pub fn set_view_id(&mut self, view_id: EntityId) { self.invalidator.debug_assert_prepaint(); self.next_frame.dispatch_tree.set_view_id(view_id); } /// Get the entity ID for the currently rendering view pub fn current_view(&self) -> EntityId { self.invalidator.debug_assert_paint_or_prepaint(); self.rendered_entity_stack.last().copied().unwrap() } pub(crate) fn with_rendered_view( &mut self, id: EntityId, f: impl FnOnce(&mut Self) -> R, ) -> R { self.rendered_entity_stack.push(id); let result = f(self); self.rendered_entity_stack.pop(); result } /// Executes the provided function with the specified image cache. pub(crate) fn with_image_cache(&mut self, image_cache: AnyImageCache, f: F) -> R where F: FnOnce(&mut Self) -> R, { self.image_cache_stack.push(image_cache); let result = f(self); self.image_cache_stack.pop(); result } /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the /// platform to receive textual input with proper integration with concerns such /// as IME interactions. This handler will be active for the upcoming frame until the following frame is /// rendered. /// /// This method should only be called as part of the paint phase of element drawing. /// /// [element_input_handler]: crate::ElementInputHandler pub fn handle_input( &mut self, focus_handle: &FocusHandle, input_handler: impl InputHandler, cx: &App, ) { self.invalidator.debug_assert_paint(); if focus_handle.is_focused(self) { let cx = self.to_async(cx); self.next_frame .input_handlers .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler)))); } } /// Register a mouse event listener on the window for the next frame. The type of event /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This method should only be called as part of the paint phase of element drawing. pub fn on_mouse_event( &mut self, mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static, ) { self.invalidator.debug_assert_paint(); self.next_frame.mouse_listeners.push(Some(Box::new( move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| { if let Some(event) = event.downcast_ref() { handler(event, phase, window, cx) } }, ))); } /// Register a key event listener on the window for the next frame. The type of event /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This is a fairly low-level method, so prefer using event handlers on elements unless you have /// a specific need to register a global listener. /// /// This method should only be called as part of the paint phase of element drawing. pub fn on_key_event( &mut self, listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static, ) { self.invalidator.debug_assert_paint(); self.next_frame.dispatch_tree.on_key_event(Rc::new( move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| { if let Some(event) = event.downcast_ref::() { listener(event, phase, window, cx) } }, )); } /// Register a modifiers changed event listener on the window for the next frame. /// /// This is a fairly low-level method, so prefer using event handlers on elements unless you have /// a specific need to register a global listener. /// /// This method should only be called as part of the paint phase of element drawing. pub fn on_modifiers_changed( &mut self, listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static, ) { self.invalidator.debug_assert_paint(); self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new( move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| { listener(event, window, cx) }, )); } /// Register a listener to be called when the given focus handle or one of its descendants receives focus. /// This does not fire if the given focus handle - or one of its descendants - was previously focused. /// Returns a subscription and persists until the subscription is dropped. pub fn on_focus_in( &mut self, handle: &FocusHandle, cx: &mut App, mut listener: impl FnMut(&mut Window, &mut App) + 'static, ) -> Subscription { let focus_id = handle.id; let (subscription, activate) = self.new_focus_listener(Box::new(move |event, window, cx| { if event.is_focus_in(focus_id) { listener(window, cx); } true })); cx.defer(move |_| activate()); subscription } /// Register a listener to be called when the given focus handle or one of its descendants loses focus. /// Returns a subscription and persists until the subscription is dropped. pub fn on_focus_out( &mut self, handle: &FocusHandle, cx: &mut App, mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static, ) -> Subscription { let focus_id = handle.id; let (subscription, activate) = self.new_focus_listener(Box::new(move |event, window, cx| { if let Some(blurred_id) = event.previous_focus_path.last().copied() { if event.is_focus_out(focus_id) { let event = FocusOutEvent { blurred: WeakFocusHandle { id: blurred_id, handles: Arc::downgrade(&cx.focus_handles), }, }; listener(event, window, cx) } } true })); cx.defer(move |_| activate()); subscription } fn reset_cursor_style(&self, cx: &mut App) { // Set the cursor only if we're the active window. if self.is_window_hovered() { let style = self .rendered_frame .cursor_styles .iter() .rev() .find(|request| { request .hitbox_id .map_or(true, |hitbox_id| hitbox_id.is_hovered(self)) }) .map(|request| request.style) .unwrap_or(CursorStyle::Arrow); cx.platform.set_cursor_style(style); } } /// Dispatch a given keystroke as though the user had typed it. /// You can create a keystroke with Keystroke::parse(""). pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool { let keystroke = keystroke.with_simulated_ime(); let result = self.dispatch_event( PlatformInput::KeyDown(KeyDownEvent { keystroke: keystroke.clone(), is_held: false, }), cx, ); if !result.propagate { return true; } if let Some(input) = keystroke.key_char { if let Some(mut input_handler) = self.platform_window.take_input_handler() { input_handler.dispatch_input(&input, self, cx); self.platform_window.set_input_handler(input_handler); return true; } } false } /// Return a key binding string for an action, to display in the UI. Uses the highest precedence /// binding for the action (last binding added to the keymap). pub fn keystroke_text_for(&self, action: &dyn Action) -> String { self.bindings_for_action(action) .last() .map(|binding| { binding .keystrokes() .iter() .map(ToString::to_string) .collect::>() .join(" ") }) .unwrap_or_else(|| action.name().to_string()) } /// Dispatch a mouse or keyboard event on the window. #[profiling::function] pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult { self.last_input_timestamp.set(Instant::now()); // Handlers may set this to false by calling `stop_propagation`. cx.propagate_event = true; // Handlers may set this to true by calling `prevent_default`. self.default_prevented = false; let event = match event { // Track the mouse position with our own state, since accessing the platform // API for the mouse position can only occur on the main thread. PlatformInput::MouseMove(mouse_move) => { self.mouse_position = mouse_move.position; self.modifiers = mouse_move.modifiers; PlatformInput::MouseMove(mouse_move) } PlatformInput::MouseDown(mouse_down) => { self.mouse_position = mouse_down.position; self.modifiers = mouse_down.modifiers; PlatformInput::MouseDown(mouse_down) } PlatformInput::MouseUp(mouse_up) => { self.mouse_position = mouse_up.position; self.modifiers = mouse_up.modifiers; PlatformInput::MouseUp(mouse_up) } PlatformInput::MouseExited(mouse_exited) => { self.modifiers = mouse_exited.modifiers; PlatformInput::MouseExited(mouse_exited) } PlatformInput::ModifiersChanged(modifiers_changed) => { self.modifiers = modifiers_changed.modifiers; PlatformInput::ModifiersChanged(modifiers_changed) } PlatformInput::ScrollWheel(scroll_wheel) => { self.mouse_position = scroll_wheel.position; self.modifiers = scroll_wheel.modifiers; PlatformInput::ScrollWheel(scroll_wheel) } // Translate dragging and dropping of external files from the operating system // to internal drag and drop events. PlatformInput::FileDrop(file_drop) => match file_drop { FileDropEvent::Entered { position, paths } => { self.mouse_position = position; if cx.active_drag.is_none() { cx.active_drag = Some(AnyDrag { value: Arc::new(paths.clone()), view: cx.new(|_| paths).into(), cursor_offset: position, cursor_style: None, }); } PlatformInput::MouseMove(MouseMoveEvent { position, pressed_button: Some(MouseButton::Left), modifiers: Modifiers::default(), }) } FileDropEvent::Pending { position } => { self.mouse_position = position; PlatformInput::MouseMove(MouseMoveEvent { position, pressed_button: Some(MouseButton::Left), modifiers: Modifiers::default(), }) } FileDropEvent::Submit { position } => { cx.activate(true); self.mouse_position = position; PlatformInput::MouseUp(MouseUpEvent { button: MouseButton::Left, position, modifiers: Modifiers::default(), click_count: 1, }) } FileDropEvent::Exited => { cx.active_drag.take(); PlatformInput::FileDrop(FileDropEvent::Exited) } }, PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event, }; if let Some(any_mouse_event) = event.mouse_event() { self.dispatch_mouse_event(any_mouse_event, cx); } else if let Some(any_key_event) = event.keyboard_event() { self.dispatch_key_event(any_key_event, cx); } DispatchEventResult { propagate: cx.propagate_event, default_prevented: self.default_prevented, } } fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) { let hit_test = self.rendered_frame.hit_test(self.mouse_position()); if hit_test != self.mouse_hit_test { self.mouse_hit_test = hit_test; self.reset_cursor_style(cx); } let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners); // Capture phase, events bubble from back to front. Handlers for this phase are used for // special purposes, such as detecting events outside of a given Bounds. for listener in &mut mouse_listeners { let listener = listener.as_mut().unwrap(); listener(event, DispatchPhase::Capture, self, cx); if !cx.propagate_event { break; } } // Bubble phase, where most normal handlers do their work. if cx.propagate_event { for listener in mouse_listeners.iter_mut().rev() { let listener = listener.as_mut().unwrap(); listener(event, DispatchPhase::Bubble, self, cx); if !cx.propagate_event { break; } } } self.rendered_frame.mouse_listeners = mouse_listeners; if cx.has_active_drag() { if event.is::() { // If this was a mouse move event, redraw the window so that the // active drag can follow the mouse cursor. self.refresh(); } else if event.is::() { // If this was a mouse up event, cancel the active drag and redraw // the window. cx.active_drag = None; self.refresh(); } } } fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) { if self.invalidator.is_dirty() { self.draw(cx); } let node_id = self .focus .and_then(|focus_id| { self.rendered_frame .dispatch_tree .focusable_node_id(focus_id) }) .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id()); let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id); let mut keystroke: Option = None; if let Some(event) = event.downcast_ref::() { if event.modifiers.number_of_modifiers() == 0 && self.pending_modifier.modifiers.number_of_modifiers() == 1 && !self.pending_modifier.saw_keystroke { let key = match self.pending_modifier.modifiers { modifiers if modifiers.shift => Some("shift"), modifiers if modifiers.control => Some("control"), modifiers if modifiers.alt => Some("alt"), modifiers if modifiers.platform => Some("platform"), modifiers if modifiers.function => Some("function"), _ => None, }; if let Some(key) = key { keystroke = Some(Keystroke { key: key.to_string(), key_char: None, modifiers: Modifiers::default(), }); } } if self.pending_modifier.modifiers.number_of_modifiers() == 0 && event.modifiers.number_of_modifiers() == 1 { self.pending_modifier.saw_keystroke = false } self.pending_modifier.modifiers = event.modifiers } else if let Some(key_down_event) = event.downcast_ref::() { self.pending_modifier.saw_keystroke = true; keystroke = Some(key_down_event.keystroke.clone()); } let Some(keystroke) = keystroke else { self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx); return; }; let mut currently_pending = self.pending_input.take().unwrap_or_default(); if currently_pending.focus.is_some() && currently_pending.focus != self.focus { currently_pending = PendingInput::default(); } let match_result = self.rendered_frame.dispatch_tree.dispatch_key( currently_pending.keystrokes, keystroke, &dispatch_path, ); if !match_result.to_replay.is_empty() { self.replay_pending_input(match_result.to_replay, cx) } if !match_result.pending.is_empty() { currently_pending.keystrokes = match_result.pending; currently_pending.focus = self.focus; currently_pending.timer = Some(self.spawn(cx, async move |cx| { cx.background_executor.timer(Duration::from_secs(1)).await; cx.update(move |window, cx| { let Some(currently_pending) = window .pending_input .take() .filter(|pending| pending.focus == window.focus) else { return; }; let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id); let to_replay = window .rendered_frame .dispatch_tree .flush_dispatch(currently_pending.keystrokes, &dispatch_path); window.replay_pending_input(to_replay, cx) }) .log_err(); })); self.pending_input = Some(currently_pending); self.pending_input_changed(cx); cx.propagate_event = false; return; } cx.propagate_event = true; for binding in match_result.bindings { self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx); if !cx.propagate_event { self.dispatch_keystroke_observers( event, Some(binding.action), match_result.context_stack.clone(), cx, ); self.pending_input_changed(cx); return; } } self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx); self.pending_input_changed(cx); } fn finish_dispatch_key_event( &mut self, event: &dyn Any, dispatch_path: SmallVec<[DispatchNodeId; 32]>, context_stack: Vec, cx: &mut App, ) { self.dispatch_key_down_up_event(event, &dispatch_path, cx); if !cx.propagate_event { return; } self.dispatch_modifiers_changed_event(event, &dispatch_path, cx); if !cx.propagate_event { return; } self.dispatch_keystroke_observers(event, None, context_stack, cx); } fn pending_input_changed(&mut self, cx: &mut App) { self.pending_input_observers .clone() .retain(&(), |callback| callback(self, cx)); } fn dispatch_key_down_up_event( &mut self, event: &dyn Any, dispatch_path: &SmallVec<[DispatchNodeId; 32]>, cx: &mut App, ) { // Capture phase for node_id in dispatch_path { let node = self.rendered_frame.dispatch_tree.node(*node_id); for key_listener in node.key_listeners.clone() { key_listener(event, DispatchPhase::Capture, self, cx); if !cx.propagate_event { return; } } } // Bubble phase for node_id in dispatch_path.iter().rev() { // Handle low level key events let node = self.rendered_frame.dispatch_tree.node(*node_id); for key_listener in node.key_listeners.clone() { key_listener(event, DispatchPhase::Bubble, self, cx); if !cx.propagate_event { return; } } } } fn dispatch_modifiers_changed_event( &mut self, event: &dyn Any, dispatch_path: &SmallVec<[DispatchNodeId; 32]>, cx: &mut App, ) { let Some(event) = event.downcast_ref::() else { return; }; for node_id in dispatch_path.iter().rev() { let node = self.rendered_frame.dispatch_tree.node(*node_id); for listener in node.modifiers_changed_listeners.clone() { listener(event, self, cx); if !cx.propagate_event { return; } } } } /// Determine whether a potential multi-stroke key binding is in progress on this window. pub fn has_pending_keystrokes(&self) -> bool { self.pending_input.is_some() } pub(crate) fn clear_pending_keystrokes(&mut self) { self.pending_input.take(); } /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding. pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> { self.pending_input .as_ref() .map(|pending_input| pending_input.keystrokes.as_slice()) } fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) { let node_id = self .focus .and_then(|focus_id| { self.rendered_frame .dispatch_tree .focusable_node_id(focus_id) }) .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id()); let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id); 'replay: for replay in replays { let event = KeyDownEvent { keystroke: replay.keystroke.clone(), is_held: false, }; cx.propagate_event = true; for binding in replay.bindings { self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx); if !cx.propagate_event { self.dispatch_keystroke_observers( &event, Some(binding.action), Vec::default(), cx, ); continue 'replay; } } self.dispatch_key_down_up_event(&event, &dispatch_path, cx); if !cx.propagate_event { continue 'replay; } if let Some(input) = replay.keystroke.key_char.as_ref().cloned() { if let Some(mut input_handler) = self.platform_window.take_input_handler() { input_handler.dispatch_input(&input, self, cx); self.platform_window.set_input_handler(input_handler) } } } } fn dispatch_action_on_node( &mut self, node_id: DispatchNodeId, action: &dyn Action, cx: &mut App, ) { let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id); // Capture phase for global actions. cx.propagate_event = true; if let Some(mut global_listeners) = cx .global_action_listeners .remove(&action.as_any().type_id()) { for listener in &global_listeners { listener(action.as_any(), DispatchPhase::Capture, cx); if !cx.propagate_event { break; } } global_listeners.extend( cx.global_action_listeners .remove(&action.as_any().type_id()) .unwrap_or_default(), ); cx.global_action_listeners .insert(action.as_any().type_id(), global_listeners); } if !cx.propagate_event { return; } // Capture phase for window actions. for node_id in &dispatch_path { let node = self.rendered_frame.dispatch_tree.node(*node_id); for DispatchActionListener { action_type, listener, } in node.action_listeners.clone() { let any_action = action.as_any(); if action_type == any_action.type_id() { listener(any_action, DispatchPhase::Capture, self, cx); if !cx.propagate_event { return; } } } } // Bubble phase for window actions. for node_id in dispatch_path.iter().rev() { let node = self.rendered_frame.dispatch_tree.node(*node_id); for DispatchActionListener { action_type, listener, } in node.action_listeners.clone() { let any_action = action.as_any(); if action_type == any_action.type_id() { cx.propagate_event = false; // Actions stop propagation by default during the bubble phase listener(any_action, DispatchPhase::Bubble, self, cx); if !cx.propagate_event { return; } } } } // Bubble phase for global actions. if let Some(mut global_listeners) = cx .global_action_listeners .remove(&action.as_any().type_id()) { for listener in global_listeners.iter().rev() { cx.propagate_event = false; // Actions stop propagation by default during the bubble phase listener(action.as_any(), DispatchPhase::Bubble, cx); if !cx.propagate_event { break; } } global_listeners.extend( cx.global_action_listeners .remove(&action.as_any().type_id()) .unwrap_or_default(), ); cx.global_action_listeners .insert(action.as_any().type_id(), global_listeners); } } /// Register the given handler to be invoked whenever the global of the given type /// is updated. pub fn observe_global( &mut self, cx: &mut App, f: impl Fn(&mut Window, &mut App) + 'static, ) -> Subscription { let window_handle = self.handle; let (subscription, activate) = cx.global_observers.insert( TypeId::of::(), Box::new(move |cx| { window_handle .update(cx, |_, window, cx| f(window, cx)) .is_ok() }), ); cx.defer(move |_| activate()); subscription } /// Focus the current window and bring it to the foreground at the platform level. pub fn activate_window(&self) { self.platform_window.activate(); } /// Minimize the current window at the platform level. pub fn minimize_window(&self) { self.platform_window.minimize(); } /// Toggle full screen status on the current window at the platform level. pub fn toggle_fullscreen(&self) { self.platform_window.toggle_fullscreen(); } /// Updates the IME panel position suggestions for languages like japanese, chinese. pub fn invalidate_character_coordinates(&self) { self.on_next_frame(|window, cx| { if let Some(mut input_handler) = window.platform_window.take_input_handler() { if let Some(bounds) = input_handler.selected_bounds(window, cx) { window .platform_window .update_ime_position(bounds.scale(window.scale_factor())); } window.platform_window.set_input_handler(input_handler); } }); } /// Present a platform dialog. /// The provided message will be presented, along with buttons for each answer. /// When a button is clicked, the returned Receiver will receive the index of the clicked button. pub fn prompt( &mut self, level: PromptLevel, message: &str, detail: Option<&str>, answers: &[&str], cx: &mut App, ) -> oneshot::Receiver { let prompt_builder = cx.prompt_builder.take(); let Some(prompt_builder) = prompt_builder else { unreachable!("Re-entrant window prompting is not supported by GPUI"); }; let receiver = match &prompt_builder { PromptBuilder::Default => self .platform_window .prompt(level, message, detail, answers) .unwrap_or_else(|| { self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx) }), PromptBuilder::Custom(_) => { self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx) } }; cx.prompt_builder = Some(prompt_builder); receiver } fn build_custom_prompt( &mut self, prompt_builder: &PromptBuilder, level: PromptLevel, message: &str, detail: Option<&str>, answers: &[&str], cx: &mut App, ) -> oneshot::Receiver { let (sender, receiver) = oneshot::channel(); let handle = PromptHandle::new(sender); let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx); self.prompt = Some(handle); receiver } /// Returns the current context stack. pub fn context_stack(&self) -> Vec { let dispatch_tree = &self.rendered_frame.dispatch_tree; let node_id = self .focus .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id)) .unwrap_or_else(|| dispatch_tree.root_node_id()); dispatch_tree .dispatch_path(node_id) .iter() .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone()) .collect() } /// Returns all available actions for the focused element. pub fn available_actions(&self, cx: &App) -> Vec> { let node_id = self .focus .and_then(|focus_id| { self.rendered_frame .dispatch_tree .focusable_node_id(focus_id) }) .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id()); let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id); for action_type in cx.global_action_listeners.keys() { if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) { let action = cx.actions.build_action_type(action_type).ok(); if let Some(action) = action { actions.insert(ix, action); } } } actions } /// Returns key bindings that invoke an action on the currently focused element. Bindings are /// returned in the order they were added. For display, the last binding should take precedence. pub fn bindings_for_action(&self, action: &dyn Action) -> Vec { self.rendered_frame .dispatch_tree .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack) } /// Returns any bindings that would invoke an action on the given focus handle if it were /// focused. Bindings are returned in the order they were added. For display, the last binding /// should take precedence. pub fn bindings_for_action_in( &self, action: &dyn Action, focus_handle: &FocusHandle, ) -> Vec { let dispatch_tree = &self.rendered_frame.dispatch_tree; let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else { return vec![]; }; let context_stack: Vec<_> = dispatch_tree .dispatch_path(node_id) .into_iter() .filter_map(|node_id| dispatch_tree.node(node_id).context.clone()) .collect(); dispatch_tree.bindings_for_action(action, &context_stack) } /// Returns the key bindings for the given action in the given context. pub fn bindings_for_action_in_context( &self, action: &dyn Action, context: KeyContext, ) -> Vec { let dispatch_tree = &self.rendered_frame.dispatch_tree; dispatch_tree.bindings_for_action(action, &[context]) } /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle. pub fn listener_for( &self, view: &Entity, f: impl Fn(&mut V, &E, &mut Window, &mut Context) + 'static, ) -> impl Fn(&E, &mut Window, &mut App) + 'static { let view = view.downgrade(); move |e: &E, window: &mut Window, cx: &mut App| { view.update(cx, |view, cx| f(view, e, window, cx)).ok(); } } /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle. pub fn handler_for) + 'static>( &self, view: &Entity, f: Callback, ) -> impl Fn(&mut Window, &mut App) + use { let view = view.downgrade(); move |window: &mut Window, cx: &mut App| { view.update(cx, |view, cx| f(view, window, cx)).ok(); } } /// Register a callback that can interrupt the closing of the current window based the returned boolean. /// If the callback returns false, the window won't be closed. pub fn on_window_should_close( &self, cx: &App, f: impl Fn(&mut Window, &mut App) -> bool + 'static, ) { let mut cx = self.to_async(cx); self.platform_window.on_should_close(Box::new(move || { cx.update(|window, cx| f(window, cx)).unwrap_or(true) })) } /// Register an action listener on the window for the next frame. The type of action /// is determined by the first parameter of the given listener. When the next frame is rendered /// the listener will be cleared. /// /// This is a fairly low-level method, so prefer using action handlers on elements unless you have /// a specific need to register a global listener. pub fn on_action( &mut self, action_type: TypeId, listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static, ) { self.next_frame .dispatch_tree .on_action(action_type, Rc::new(listener)); } /// Read information about the GPU backing this window. /// Currently returns None on Mac and Windows. pub fn gpu_specs(&self) -> Option { self.platform_window.gpu_specs() } } // #[derive(Clone, Copy, Eq, PartialEq, Hash)] slotmap::new_key_type! { /// A unique identifier for a window. pub struct WindowId; } impl WindowId { /// Converts this window ID to a `u64`. pub fn as_u64(&self) -> u64 { self.0.as_ffi() } } impl From for WindowId { fn from(value: u64) -> Self { WindowId(slotmap::KeyData::from_ffi(value)) } } /// A handle to a window with a specific root view type. /// Note that this does not keep the window alive on its own. #[derive(Deref, DerefMut)] pub struct WindowHandle { #[deref] #[deref_mut] pub(crate) any_handle: AnyWindowHandle, state_type: PhantomData, } impl WindowHandle { /// Creates a new handle from a window ID. /// This does not check if the root type of the window is `V`. pub fn new(id: WindowId) -> Self { WindowHandle { any_handle: AnyWindowHandle { id, state_type: TypeId::of::(), }, state_type: PhantomData, } } /// Get the root view out of this window. /// /// This will fail if the window is closed or if the root view's type does not match `V`. #[cfg(any(test, feature = "test-support"))] pub fn root(&self, cx: &mut C) -> Result> where C: AppContext, { crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| { root_view .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed")) })) } /// Updates the root view of this window. /// /// This will fail if the window has been closed or if the root view's type does not match pub fn update( &self, cx: &mut C, update: impl FnOnce(&mut V, &mut Window, &mut Context) -> R, ) -> Result where C: AppContext, { cx.update_window(self.any_handle, |root_view, window, cx| { let view = root_view .downcast::() .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(view.update(cx, |view, cx| update(view, window, cx))) })? } /// Read the root view out of this window. /// /// This will fail if the window is closed or if the root view's type does not match `V`. pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> { let x = cx .windows .get(self.id) .and_then(|window| { window .as_ref() .and_then(|window| window.root.clone()) .map(|root_view| root_view.downcast::()) }) .ok_or_else(|| anyhow!("window not found"))? .map_err(|_| anyhow!("the type of the window's root view has changed"))?; Ok(x.read(cx)) } /// Read the root view out of this window, with a callback /// /// This will fail if the window is closed or if the root view's type does not match `V`. pub fn read_with(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result where C: AppContext, { cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx)) } /// Read the root view pointer off of this window. /// /// This will fail if the window is closed or if the root view's type does not match `V`. pub fn entity(&self, cx: &C) -> Result> where C: AppContext, { cx.read_window(self, |root_view, _cx| root_view.clone()) } /// Check if this window is 'active'. /// /// Will return `None` if the window is closed or currently /// borrowed. pub fn is_active(&self, cx: &mut App) -> Option { cx.update_window(self.any_handle, |_, window, _| window.is_window_active()) .ok() } } impl Copy for WindowHandle {} impl Clone for WindowHandle { fn clone(&self) -> Self { *self } } impl PartialEq for WindowHandle { fn eq(&self, other: &Self) -> bool { self.any_handle == other.any_handle } } impl Eq for WindowHandle {} impl Hash for WindowHandle { fn hash(&self, state: &mut H) { self.any_handle.hash(state); } } impl From> for AnyWindowHandle { fn from(val: WindowHandle) -> Self { val.any_handle } } unsafe impl Send for WindowHandle {} unsafe impl Sync for WindowHandle {} /// A handle to a window with any root view type, which can be downcast to a window with a specific root view type. #[derive(Copy, Clone, PartialEq, Eq, Hash)] pub struct AnyWindowHandle { pub(crate) id: WindowId, state_type: TypeId, } impl AnyWindowHandle { /// Get the ID of this window. pub fn window_id(&self) -> WindowId { self.id } /// Attempt to convert this handle to a window handle with a specific root view type. /// If the types do not match, this will return `None`. pub fn downcast(&self) -> Option> { if TypeId::of::() == self.state_type { Some(WindowHandle { any_handle: *self, state_type: PhantomData, }) } else { None } } /// Updates the state of the root view of this window. /// /// This will fail if the window has been closed. pub fn update( self, cx: &mut C, update: impl FnOnce(AnyView, &mut Window, &mut App) -> R, ) -> Result where C: AppContext, { cx.update_window(self, update) } /// Read the state of the root view of this window. /// /// This will fail if the window has been closed. pub fn read(self, cx: &C, read: impl FnOnce(Entity, &App) -> R) -> Result where C: AppContext, T: 'static, { let view = self .downcast::() .context("the type of the window's root view has changed")?; cx.read_window(&view, read) } } impl HasWindowHandle for Window { fn window_handle(&self) -> Result, HandleError> { self.platform_window.window_handle() } } /// An identifier for an [`Element`](crate::Element). /// /// Can be constructed with a string, a number, or both, as well /// as other internal representations. #[derive(Clone, Debug, Eq, PartialEq, Hash)] pub enum ElementId { /// The ID of a View element View(EntityId), /// An integer ID. Integer(usize), /// A string based ID. Name(SharedString), /// A UUID. Uuid(Uuid), /// An ID that's equated with a focus handle. FocusHandle(FocusId), /// A combination of a name and an integer. NamedInteger(SharedString, usize), /// A path Path(Arc), } impl Display for ElementId { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?, ElementId::Integer(ix) => write!(f, "{}", ix)?, ElementId::Name(name) => write!(f, "{}", name)?, ElementId::FocusHandle(_) => write!(f, "FocusHandle")?, ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?, ElementId::Uuid(uuid) => write!(f, "{}", uuid)?, ElementId::Path(path) => write!(f, "{}", path.display())?, } Ok(()) } } impl TryInto for ElementId { type Error = anyhow::Error; fn try_into(self) -> anyhow::Result { if let ElementId::Name(name) = self { Ok(name) } else { Err(anyhow!("element id is not string")) } } } impl From for ElementId { fn from(id: usize) -> Self { ElementId::Integer(id) } } impl From for ElementId { fn from(id: i32) -> Self { Self::Integer(id as usize) } } impl From for ElementId { fn from(name: SharedString) -> Self { ElementId::Name(name) } } impl From> for ElementId { fn from(path: Arc) -> Self { ElementId::Path(path) } } impl From<&'static str> for ElementId { fn from(name: &'static str) -> Self { ElementId::Name(name.into()) } } impl<'a> From<&'a FocusHandle> for ElementId { fn from(handle: &'a FocusHandle) -> Self { ElementId::FocusHandle(handle.id) } } impl From<(&'static str, EntityId)> for ElementId { fn from((name, id): (&'static str, EntityId)) -> Self { ElementId::NamedInteger(name.into(), id.as_u64() as usize) } } impl From<(&'static str, usize)> for ElementId { fn from((name, id): (&'static str, usize)) -> Self { ElementId::NamedInteger(name.into(), id) } } impl From<(SharedString, usize)> for ElementId { fn from((name, id): (SharedString, usize)) -> Self { ElementId::NamedInteger(name, id) } } impl From<(&'static str, u64)> for ElementId { fn from((name, id): (&'static str, u64)) -> Self { ElementId::NamedInteger(name.into(), id as usize) } } impl From for ElementId { fn from(value: Uuid) -> Self { Self::Uuid(value) } } impl From<(&'static str, u32)> for ElementId { fn from((name, id): (&'static str, u32)) -> Self { ElementId::NamedInteger(name.into(), id as usize) } } /// A rectangle to be rendered in the window at the given position and size. /// Passed as an argument [`Window::paint_quad`]. #[derive(Clone)] pub struct PaintQuad { /// The bounds of the quad within the window. pub bounds: Bounds, /// The radii of the quad's corners. pub corner_radii: Corners, /// The background color of the quad. pub background: Background, /// The widths of the quad's borders. pub border_widths: Edges, /// The color of the quad's borders. pub border_color: Hsla, /// The style of the quad's borders. pub border_style: BorderStyle, } impl PaintQuad { /// Sets the corner radii of the quad. pub fn corner_radii(self, corner_radii: impl Into>) -> Self { PaintQuad { corner_radii: corner_radii.into(), ..self } } /// Sets the border widths of the quad. pub fn border_widths(self, border_widths: impl Into>) -> Self { PaintQuad { border_widths: border_widths.into(), ..self } } /// Sets the border color of the quad. pub fn border_color(self, border_color: impl Into) -> Self { PaintQuad { border_color: border_color.into(), ..self } } /// Sets the background color of the quad. pub fn background(self, background: impl Into) -> Self { PaintQuad { background: background.into(), ..self } } } /// Creates a quad with the given parameters. pub fn quad( bounds: Bounds, corner_radii: impl Into>, background: impl Into, border_widths: impl Into>, border_color: impl Into, border_style: BorderStyle, ) -> PaintQuad { PaintQuad { bounds, corner_radii: corner_radii.into(), background: background.into(), border_widths: border_widths.into(), border_color: border_color.into(), border_style, } } /// Creates a filled quad with the given bounds and background color. pub fn fill(bounds: impl Into>, background: impl Into) -> PaintQuad { PaintQuad { bounds: bounds.into(), corner_radii: (0.).into(), background: background.into(), border_widths: (0.).into(), border_color: transparent_black(), border_style: BorderStyle::default(), } } /// Creates a rectangle outline with the given bounds, border color, and a 1px border width pub fn outline( bounds: impl Into>, border_color: impl Into, border_style: BorderStyle, ) -> PaintQuad { PaintQuad { bounds: bounds.into(), corner_radii: (0.).into(), background: transparent_black().into(), border_widths: (1.).into(), border_color: border_color.into(), border_style, } }