use super::*; use arrayvec::ArrayVec; use std::{cmp::Ordering, sync::Arc}; #[derive(Clone)] struct StackEntry<'a, T: Item, S, U> { tree: &'a SumTree, index: usize, seek_dimension: S, sum_dimension: U, } #[derive(Clone)] pub struct Cursor<'a, T: Item, S, U> { tree: &'a SumTree, stack: ArrayVec<[StackEntry<'a, T, S, U>; 16]>, seek_dimension: S, sum_dimension: U, did_seek: bool, at_end: bool, } impl<'a, T, S, U> Cursor<'a, T, S, U> where T: Item, S: Dimension<'a, T::Summary>, U: Dimension<'a, T::Summary>, { pub fn new(tree: &'a SumTree) -> Self { Self { tree, stack: ArrayVec::new(), seek_dimension: S::default(), sum_dimension: U::default(), did_seek: false, at_end: false, } } fn reset(&mut self) { self.did_seek = false; self.at_end = false; self.stack.truncate(0); self.seek_dimension = S::default(); self.sum_dimension = U::default(); } pub fn start(&self) -> &U { &self.sum_dimension } pub fn end(&self, cx: &::Context) -> U { if let Some(item_summary) = self.item_summary() { let mut end = self.start().clone(); end.add_summary(item_summary, cx); end } else { self.start().clone() } } pub fn item(&self) -> Option<&'a T> { assert!(self.did_seek, "Must seek before calling this method"); if let Some(entry) = self.stack.last() { match *entry.tree.0 { Node::Leaf { ref items, .. } => { if entry.index == items.len() { None } else { Some(&items[entry.index]) } } _ => unreachable!(), } } else { None } } pub fn item_summary(&self) -> Option<&'a T::Summary> { assert!(self.did_seek, "Must seek before calling this method"); if let Some(entry) = self.stack.last() { match *entry.tree.0 { Node::Leaf { ref item_summaries, .. } => { if entry.index == item_summaries.len() { None } else { Some(&item_summaries[entry.index]) } } _ => unreachable!(), } } else { None } } pub fn prev_item(&self) -> Option<&'a T> { assert!(self.did_seek, "Must seek before calling this method"); if let Some(entry) = self.stack.last() { if entry.index == 0 { if let Some(prev_leaf) = self.prev_leaf() { Some(prev_leaf.0.items().last().unwrap()) } else { None } } else { match *entry.tree.0 { Node::Leaf { ref items, .. } => Some(&items[entry.index - 1]), _ => unreachable!(), } } } else if self.at_end { self.tree.last() } else { None } } fn prev_leaf(&self) -> Option<&'a SumTree> { for entry in self.stack.iter().rev().skip(1) { if entry.index != 0 { match *entry.tree.0 { Node::Internal { ref child_trees, .. } => return Some(child_trees[entry.index - 1].rightmost_leaf()), Node::Leaf { .. } => unreachable!(), }; } } None } #[allow(unused)] pub fn prev(&mut self, cx: &::Context) { assert!(self.did_seek, "Must seek before calling this method"); if self.at_end { self.seek_dimension = S::default(); self.sum_dimension = U::default(); self.descend_to_last_item(self.tree, cx); self.at_end = false; } else { while let Some(entry) = self.stack.pop() { if entry.index > 0 { let new_index = entry.index - 1; if let Some(StackEntry { seek_dimension, sum_dimension, .. }) = self.stack.last() { self.seek_dimension = seek_dimension.clone(); self.sum_dimension = sum_dimension.clone(); } else { self.seek_dimension = S::default(); self.sum_dimension = U::default(); } match entry.tree.0.as_ref() { Node::Internal { child_trees, child_summaries, .. } => { for summary in &child_summaries[0..new_index] { self.seek_dimension.add_summary(summary, cx); self.sum_dimension.add_summary(summary, cx); } self.stack.push(StackEntry { tree: entry.tree, index: new_index, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); self.descend_to_last_item(&child_trees[new_index], cx); } Node::Leaf { item_summaries, .. } => { for item_summary in &item_summaries[0..new_index] { self.seek_dimension.add_summary(item_summary, cx); self.sum_dimension.add_summary(item_summary, cx); } self.stack.push(StackEntry { tree: entry.tree, index: new_index, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); } } break; } } } } pub fn next(&mut self, cx: &::Context) { self.next_internal(|_| true, cx) } fn next_internal(&mut self, filter_node: F, cx: &::Context) where F: Fn(&T::Summary) -> bool, { let mut descend = false; if self.stack.is_empty() && !self.at_end { self.stack.push(StackEntry { tree: self.tree, index: 0, seek_dimension: S::default(), sum_dimension: U::default(), }); descend = true; self.did_seek = true; } while self.stack.len() > 0 { let new_subtree = { let entry = self.stack.last_mut().unwrap(); match entry.tree.0.as_ref() { Node::Internal { child_trees, child_summaries, .. } => { if !descend { let summary = &child_summaries[entry.index]; entry.seek_dimension.add_summary(summary, cx); entry.sum_dimension.add_summary(summary, cx); entry.index += 1; } while entry.index < child_summaries.len() { let next_summary = &child_summaries[entry.index]; if filter_node(next_summary) { break; } else { self.seek_dimension.add_summary(next_summary, cx); self.sum_dimension.add_summary(next_summary, cx); } entry.index += 1; } child_trees.get(entry.index) } Node::Leaf { item_summaries, .. } => { if !descend { let item_summary = &item_summaries[entry.index]; self.seek_dimension.add_summary(item_summary, cx); entry.seek_dimension.add_summary(item_summary, cx); self.sum_dimension.add_summary(item_summary, cx); entry.sum_dimension.add_summary(item_summary, cx); entry.index += 1; } loop { if let Some(next_item_summary) = item_summaries.get(entry.index) { if filter_node(next_item_summary) { return; } else { self.seek_dimension.add_summary(next_item_summary, cx); entry.seek_dimension.add_summary(next_item_summary, cx); self.sum_dimension.add_summary(next_item_summary, cx); entry.sum_dimension.add_summary(next_item_summary, cx); entry.index += 1; } } else { break None; } } } } }; if let Some(subtree) = new_subtree { descend = true; self.stack.push(StackEntry { tree: subtree, index: 0, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); } else { descend = false; self.stack.pop(); } } self.at_end = self.stack.is_empty(); debug_assert!(self.stack.is_empty() || self.stack.last().unwrap().tree.0.is_leaf()); } fn descend_to_last_item( &mut self, mut subtree: &'a SumTree, cx: &::Context, ) { self.did_seek = true; loop { match subtree.0.as_ref() { Node::Internal { child_trees, child_summaries, .. } => { for summary in &child_summaries[0..child_summaries.len() - 1] { self.seek_dimension.add_summary(summary, cx); self.sum_dimension.add_summary(summary, cx); } self.stack.push(StackEntry { tree: subtree, index: child_trees.len() - 1, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); subtree = child_trees.last().unwrap(); } Node::Leaf { item_summaries, .. } => { let last_index = item_summaries.len().saturating_sub(1); for item_summary in &item_summaries[0..last_index] { self.seek_dimension.add_summary(item_summary, cx); self.sum_dimension.add_summary(item_summary, cx); } self.stack.push(StackEntry { tree: subtree, index: last_index, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); break; } } } } } impl<'a, T, S, U> Cursor<'a, T, S, U> where T: Item, S: SeekDimension<'a, T::Summary>, U: Dimension<'a, T::Summary>, { pub fn seek(&mut self, pos: &S, bias: SeekBias, cx: &::Context) -> bool { self.reset(); self.seek_internal::<()>(Some(pos), bias, &mut SeekAggregate::None, cx) } pub fn seek_forward( &mut self, pos: &S, bias: SeekBias, cx: &::Context, ) -> bool { self.seek_internal::<()>(Some(pos), bias, &mut SeekAggregate::None, cx) } pub fn slice( &mut self, end: &S, bias: SeekBias, cx: &::Context, ) -> SumTree { let mut slice = SeekAggregate::Slice(SumTree::new()); self.seek_internal::<()>(Some(end), bias, &mut slice, cx); if let SeekAggregate::Slice(slice) = slice { slice } else { unreachable!() } } pub fn suffix(&mut self, cx: &::Context) -> SumTree { let mut slice = SeekAggregate::Slice(SumTree::new()); self.seek_internal::<()>(None, SeekBias::Right, &mut slice, cx); if let SeekAggregate::Slice(slice) = slice { slice } else { unreachable!() } } pub fn summary( &mut self, end: &S, bias: SeekBias, cx: &::Context, ) -> D where D: Dimension<'a, T::Summary>, { let mut summary = SeekAggregate::Summary(D::default()); self.seek_internal(Some(end), bias, &mut summary, cx); if let SeekAggregate::Summary(summary) = summary { summary } else { unreachable!() } } fn seek_internal( &mut self, target: Option<&S>, bias: SeekBias, aggregate: &mut SeekAggregate, cx: &::Context, ) -> bool where D: Dimension<'a, T::Summary>, { if let Some(target) = target { debug_assert!(target.cmp(&self.seek_dimension, cx) >= Ordering::Equal); } if !self.did_seek { self.did_seek = true; self.stack.push(StackEntry { tree: self.tree, index: 0, seek_dimension: Default::default(), sum_dimension: Default::default(), }); } let mut ascending = false; 'outer: while let Some(entry) = self.stack.last_mut() { match *entry.tree.0 { Node::Internal { ref child_summaries, ref child_trees, .. } => { if ascending { entry.index += 1; } for (child_tree, child_summary) in child_trees[entry.index..] .iter() .zip(&child_summaries[entry.index..]) { let mut child_end = self.seek_dimension.clone(); child_end.add_summary(&child_summary, cx); let comparison = target.map_or(Ordering::Greater, |t| t.cmp(&child_end, cx)); if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == SeekBias::Right) { self.seek_dimension = child_end; self.sum_dimension.add_summary(child_summary, cx); match aggregate { SeekAggregate::None => {} SeekAggregate::Slice(slice) => { slice.push_tree(child_tree.clone(), cx); } SeekAggregate::Summary(summary) => { summary.add_summary(child_summary, cx); } } entry.index += 1; entry.seek_dimension = self.seek_dimension.clone(); entry.sum_dimension = self.sum_dimension.clone(); } else { self.stack.push(StackEntry { tree: child_tree, index: 0, seek_dimension: self.seek_dimension.clone(), sum_dimension: self.sum_dimension.clone(), }); ascending = false; continue 'outer; } } } Node::Leaf { ref items, ref item_summaries, .. } => { let mut slice_items = ArrayVec::<[T; 2 * TREE_BASE]>::new(); let mut slice_item_summaries = ArrayVec::<[T::Summary; 2 * TREE_BASE]>::new(); let mut slice_items_summary = match aggregate { SeekAggregate::Slice(_) => Some(T::Summary::default()), _ => None, }; for (item, item_summary) in items[entry.index..] .iter() .zip(&item_summaries[entry.index..]) { let mut child_end = self.seek_dimension.clone(); child_end.add_summary(item_summary, cx); let comparison = target.map_or(Ordering::Greater, |t| t.cmp(&child_end, cx)); if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == SeekBias::Right) { self.seek_dimension = child_end; self.sum_dimension.add_summary(item_summary, cx); match aggregate { SeekAggregate::None => {} SeekAggregate::Slice(_) => { slice_items.push(item.clone()); slice_item_summaries.push(item_summary.clone()); slice_items_summary .as_mut() .unwrap() .add_summary(item_summary, cx); } SeekAggregate::Summary(summary) => { summary.add_summary(item_summary, cx); } } entry.index += 1; } else { if let SeekAggregate::Slice(slice) = aggregate { slice.push_tree( SumTree(Arc::new(Node::Leaf { summary: slice_items_summary.unwrap(), items: slice_items, item_summaries: slice_item_summaries, })), cx, ); } break 'outer; } } if let SeekAggregate::Slice(slice) = aggregate { if !slice_items.is_empty() { slice.push_tree( SumTree(Arc::new(Node::Leaf { summary: slice_items_summary.unwrap(), items: slice_items, item_summaries: slice_item_summaries, })), cx, ); } } } } self.stack.pop(); ascending = true; } self.at_end = self.stack.is_empty(); debug_assert!(self.stack.is_empty() || self.stack.last().unwrap().tree.0.is_leaf()); let mut end = self.seek_dimension.clone(); if bias == SeekBias::Left { if let Some(summary) = self.item_summary() { end.add_summary(summary, cx); } } target.map_or(false, |t| t.cmp(&end, cx) == Ordering::Equal) } } impl<'a, T, S, Seek, Sum> Iterator for Cursor<'a, T, Seek, Sum> where T: Item, S: Summary, Seek: Dimension<'a, T::Summary>, Sum: Dimension<'a, T::Summary>, { type Item = &'a T; fn next(&mut self) -> Option { if !self.did_seek { self.next(&()); } if let Some(item) = self.item() { self.next(&()); Some(item) } else { None } } } pub struct FilterCursor<'a, F: Fn(&T::Summary) -> bool, T: Item, U> { cursor: Cursor<'a, T, (), U>, filter_node: F, } impl<'a, F, T, U> FilterCursor<'a, F, T, U> where F: Fn(&T::Summary) -> bool, T: Item, U: Dimension<'a, T::Summary>, { pub fn new( tree: &'a SumTree, filter_node: F, cx: &::Context, ) -> Self { let mut cursor = tree.cursor::<(), U>(); cursor.next_internal(&filter_node, cx); Self { cursor, filter_node, } } pub fn start(&self) -> &U { self.cursor.start() } pub fn item(&self) -> Option<&'a T> { self.cursor.item() } pub fn next(&mut self, cx: &::Context) { self.cursor.next_internal(&self.filter_node, cx); } } impl<'a, F, T, S, U> Iterator for FilterCursor<'a, F, T, U> where F: Fn(&T::Summary) -> bool, T: Item, S: Summary, U: Dimension<'a, T::Summary>, { type Item = &'a T; fn next(&mut self) -> Option { if let Some(item) = self.item() { self.cursor.next_internal(&self.filter_node, &()); Some(item) } else { None } } } enum SeekAggregate { None, Slice(SumTree), Summary(D), }