pub use crate::{ diagnostic_set::DiagnosticSet, highlight_map::{HighlightId, HighlightMap}, proto, Grammar, Language, LanguageRegistry, }; use crate::{ diagnostic_set::{DiagnosticEntry, DiagnosticGroup}, language_settings::{language_settings, LanguageSettings}, outline::OutlineItem, syntax_map::{ SyntaxLayer, SyntaxMap, SyntaxMapCapture, SyntaxMapCaptures, SyntaxMapMatch, SyntaxMapMatches, SyntaxSnapshot, ToTreeSitterPoint, }, task_context::RunnableRange, text_diff::text_diff, LanguageScope, Outline, OutlineConfig, RunnableCapture, RunnableTag, TextObject, TreeSitterOptions, }; use anyhow::{anyhow, Context as _, Result}; use async_watch as watch; use clock::Lamport; pub use clock::ReplicaId; use collections::HashMap; use fs::MTime; use futures::channel::oneshot; use gpui::{ AnyElement, App, AppContext as _, Context, Entity, EventEmitter, HighlightStyle, Pixels, SharedString, StyledText, Task, TaskLabel, TextStyle, Window, }; use lsp::{LanguageServerId, NumberOrString}; use parking_lot::Mutex; use schemars::JsonSchema; use serde::{Deserialize, Serialize}; use serde_json::Value; use settings::WorktreeId; use smallvec::SmallVec; use smol::future::yield_now; use std::{ any::Any, borrow::Cow, cell::Cell, cmp::{self, Ordering, Reverse}, collections::{BTreeMap, BTreeSet}, ffi::OsStr, fmt, future::Future, iter::{self, Iterator, Peekable}, mem, num::NonZeroU32, ops::{Deref, DerefMut, Range}, path::{Path, PathBuf}, rc, str, sync::{Arc, LazyLock}, time::{Duration, Instant}, vec, }; use sum_tree::TreeMap; use text::operation_queue::OperationQueue; use text::*; pub use text::{ Anchor, Bias, Buffer as TextBuffer, BufferId, BufferSnapshot as TextBufferSnapshot, Edit, OffsetRangeExt, OffsetUtf16, Patch, Point, PointUtf16, Rope, Selection, SelectionGoal, Subscription, TextDimension, TextSummary, ToOffset, ToOffsetUtf16, ToPoint, ToPointUtf16, Transaction, TransactionId, Unclipped, }; use theme::{ActiveTheme as _, SyntaxTheme}; #[cfg(any(test, feature = "test-support"))] use util::RandomCharIter; use util::{debug_panic, maybe, RangeExt}; #[cfg(any(test, feature = "test-support"))] pub use {tree_sitter_rust, tree_sitter_typescript}; pub use lsp::DiagnosticSeverity; /// A label for the background task spawned by the buffer to compute /// a diff against the contents of its file. pub static BUFFER_DIFF_TASK: LazyLock = LazyLock::new(TaskLabel::new); /// Indicate whether a [`Buffer`] has permissions to edit. #[derive(PartialEq, Clone, Copy, Debug)] pub enum Capability { /// The buffer is a mutable replica. ReadWrite, /// The buffer is a read-only replica. ReadOnly, } pub type BufferRow = u32; /// An in-memory representation of a source code file, including its text, /// syntax trees, git status, and diagnostics. pub struct Buffer { text: TextBuffer, branch_state: Option, /// Filesystem state, `None` when there is no path. file: Option>, /// The mtime of the file when this buffer was last loaded from /// or saved to disk. saved_mtime: Option, /// The version vector when this buffer was last loaded from /// or saved to disk. saved_version: clock::Global, preview_version: clock::Global, transaction_depth: usize, was_dirty_before_starting_transaction: Option, reload_task: Option>>, language: Option>, autoindent_requests: Vec>, pending_autoindent: Option>, sync_parse_timeout: Duration, syntax_map: Mutex, reparse: Option>, parse_status: (watch::Sender, watch::Receiver), non_text_state_update_count: usize, diagnostics: SmallVec<[(LanguageServerId, DiagnosticSet); 2]>, remote_selections: TreeMap, diagnostics_timestamp: clock::Lamport, completion_triggers: BTreeSet, completion_triggers_per_language_server: HashMap>, completion_triggers_timestamp: clock::Lamport, deferred_ops: OperationQueue, capability: Capability, has_conflict: bool, /// Memoize calls to has_changes_since(saved_version). /// The contents of a cell are (self.version, has_changes) at the time of a last call. has_unsaved_edits: Cell<(clock::Global, bool)>, change_bits: Vec>>, _subscriptions: Vec, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum ParseStatus { Idle, Parsing, } struct BufferBranchState { base_buffer: Entity, merged_operations: Vec, } /// An immutable, cheaply cloneable representation of a fixed /// state of a buffer. pub struct BufferSnapshot { pub text: text::BufferSnapshot, pub(crate) syntax: SyntaxSnapshot, file: Option>, diagnostics: SmallVec<[(LanguageServerId, DiagnosticSet); 2]>, remote_selections: TreeMap, language: Option>, non_text_state_update_count: usize, } /// The kind and amount of indentation in a particular line. For now, /// assumes that indentation is all the same character. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Default)] pub struct IndentSize { /// The number of bytes that comprise the indentation. pub len: u32, /// The kind of whitespace used for indentation. pub kind: IndentKind, } /// A whitespace character that's used for indentation. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Default)] pub enum IndentKind { /// An ASCII space character. #[default] Space, /// An ASCII tab character. Tab, } /// The shape of a selection cursor. #[derive(Copy, Clone, Debug, Default, Serialize, Deserialize, PartialEq, Eq, JsonSchema)] #[serde(rename_all = "snake_case")] pub enum CursorShape { /// A vertical bar #[default] Bar, /// A block that surrounds the following character Block, /// An underline that runs along the following character Underline, /// A box drawn around the following character Hollow, } #[derive(Clone, Debug)] struct SelectionSet { line_mode: bool, cursor_shape: CursorShape, selections: Arc<[Selection]>, lamport_timestamp: clock::Lamport, } /// A diagnostic associated with a certain range of a buffer. #[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)] pub struct Diagnostic { /// The name of the service that produced this diagnostic. pub source: Option, /// A machine-readable code that identifies this diagnostic. pub code: Option, /// Whether this diagnostic is a hint, warning, or error. pub severity: DiagnosticSeverity, /// The human-readable message associated with this diagnostic. pub message: String, /// An id that identifies the group to which this diagnostic belongs. /// /// When a language server produces a diagnostic with /// one or more associated diagnostics, those diagnostics are all /// assigned a single group ID. pub group_id: usize, /// Whether this diagnostic is the primary diagnostic for its group. /// /// In a given group, the primary diagnostic is the top-level diagnostic /// returned by the language server. The non-primary diagnostics are the /// associated diagnostics. pub is_primary: bool, /// Whether this diagnostic is considered to originate from an analysis of /// files on disk, as opposed to any unsaved buffer contents. This is a /// property of a given diagnostic source, and is configured for a given /// language server via the [`LspAdapter::disk_based_diagnostic_sources`](crate::LspAdapter::disk_based_diagnostic_sources) method /// for the language server. pub is_disk_based: bool, /// Whether this diagnostic marks unnecessary code. pub is_unnecessary: bool, /// Data from language server that produced this diagnostic. Passed back to the LS when we request code actions for this diagnostic. pub data: Option, } /// An operation used to synchronize this buffer with its other replicas. #[derive(Clone, Debug, PartialEq)] pub enum Operation { /// A text operation. Buffer(text::Operation), /// An update to the buffer's diagnostics. UpdateDiagnostics { /// The id of the language server that produced the new diagnostics. server_id: LanguageServerId, /// The diagnostics. diagnostics: Arc<[DiagnosticEntry]>, /// The buffer's lamport timestamp. lamport_timestamp: clock::Lamport, }, /// An update to the most recent selections in this buffer. UpdateSelections { /// The selections. selections: Arc<[Selection]>, /// The buffer's lamport timestamp. lamport_timestamp: clock::Lamport, /// Whether the selections are in 'line mode'. line_mode: bool, /// The [`CursorShape`] associated with these selections. cursor_shape: CursorShape, }, /// An update to the characters that should trigger autocompletion /// for this buffer. UpdateCompletionTriggers { /// The characters that trigger autocompletion. triggers: Vec, /// The buffer's lamport timestamp. lamport_timestamp: clock::Lamport, /// The language server ID. server_id: LanguageServerId, }, } /// An event that occurs in a buffer. #[derive(Clone, Debug, PartialEq)] pub enum BufferEvent { /// The buffer was changed in a way that must be /// propagated to its other replicas. Operation { operation: Operation, is_local: bool, }, /// The buffer was edited. Edited, /// The buffer's `dirty` bit changed. DirtyChanged, /// The buffer was saved. Saved, /// The buffer's file was changed on disk. FileHandleChanged, /// The buffer was reloaded. Reloaded, /// The buffer is in need of a reload ReloadNeeded, /// The buffer's language was changed. LanguageChanged, /// The buffer's syntax trees were updated. Reparsed, /// The buffer's diagnostics were updated. DiagnosticsUpdated, /// The buffer gained or lost editing capabilities. CapabilityChanged, /// The buffer was explicitly requested to close. Closed, /// The buffer was discarded when closing. Discarded, } /// The file associated with a buffer. pub trait File: Send + Sync { /// Returns the [`LocalFile`] associated with this file, if the /// file is local. fn as_local(&self) -> Option<&dyn LocalFile>; /// Returns whether this file is local. fn is_local(&self) -> bool { self.as_local().is_some() } /// Returns whether the file is new, exists in storage, or has been deleted. Includes metadata /// only available in some states, such as modification time. fn disk_state(&self) -> DiskState; /// Returns the path of this file relative to the worktree's root directory. fn path(&self) -> &Arc; /// Returns the path of this file relative to the worktree's parent directory (this means it /// includes the name of the worktree's root folder). fn full_path(&self, cx: &App) -> PathBuf; /// Returns the last component of this handle's absolute path. If this handle refers to the root /// of its worktree, then this method will return the name of the worktree itself. fn file_name<'a>(&'a self, cx: &'a App) -> &'a OsStr; /// Returns the id of the worktree to which this file belongs. /// /// This is needed for looking up project-specific settings. fn worktree_id(&self, cx: &App) -> WorktreeId; /// Converts this file into an [`Any`] trait object. fn as_any(&self) -> &dyn Any; /// Converts this file into a protobuf message. fn to_proto(&self, cx: &App) -> rpc::proto::File; /// Return whether Zed considers this to be a private file. fn is_private(&self) -> bool; } /// The file's storage status - whether it's stored (`Present`), and if so when it was last /// modified. In the case where the file is not stored, it can be either `New` or `Deleted`. In the /// UI these two states are distinguished. For example, the buffer tab does not display a deletion /// indicator for new files. #[derive(Copy, Clone, Debug, PartialEq)] pub enum DiskState { /// File created in Zed that has not been saved. New, /// File present on the filesystem. Present { mtime: MTime }, /// Deleted file that was previously present. Deleted, } impl DiskState { /// Returns the file's last known modification time on disk. pub fn mtime(self) -> Option { match self { DiskState::New => None, DiskState::Present { mtime } => Some(mtime), DiskState::Deleted => None, } } pub fn exists(&self) -> bool { match self { DiskState::New => false, DiskState::Present { .. } => true, DiskState::Deleted => false, } } } /// The file associated with a buffer, in the case where the file is on the local disk. pub trait LocalFile: File { /// Returns the absolute path of this file fn abs_path(&self, cx: &App) -> PathBuf; /// Loads the file contents from disk and returns them as a UTF-8 encoded string. fn load(&self, cx: &App) -> Task>; /// Loads the file's contents from disk. fn load_bytes(&self, cx: &App) -> Task>>; } /// The auto-indent behavior associated with an editing operation. /// For some editing operations, each affected line of text has its /// indentation recomputed. For other operations, the entire block /// of edited text is adjusted uniformly. #[derive(Clone, Debug)] pub enum AutoindentMode { /// Indent each line of inserted text. EachLine, /// Apply the same indentation adjustment to all of the lines /// in a given insertion. Block { /// The original indentation column of the first line of each /// insertion, if it has been copied. /// /// Knowing this makes it possible to preserve the relative indentation /// of every line in the insertion from when it was copied. /// /// If the original indent column is `a`, and the first line of insertion /// is then auto-indented to column `b`, then every other line of /// the insertion will be auto-indented to column `b - a` original_indent_columns: Vec>, }, } #[derive(Clone)] struct AutoindentRequest { before_edit: BufferSnapshot, entries: Vec, is_block_mode: bool, ignore_empty_lines: bool, } #[derive(Debug, Clone)] struct AutoindentRequestEntry { /// A range of the buffer whose indentation should be adjusted. range: Range, /// Whether or not these lines should be considered brand new, for the /// purpose of auto-indent. When text is not new, its indentation will /// only be adjusted if the suggested indentation level has *changed* /// since the edit was made. first_line_is_new: bool, indent_size: IndentSize, original_indent_column: Option, } #[derive(Debug)] struct IndentSuggestion { basis_row: u32, delta: Ordering, within_error: bool, } struct BufferChunkHighlights<'a> { captures: SyntaxMapCaptures<'a>, next_capture: Option>, stack: Vec<(usize, HighlightId)>, highlight_maps: Vec, } /// An iterator that yields chunks of a buffer's text, along with their /// syntax highlights and diagnostic status. pub struct BufferChunks<'a> { buffer_snapshot: Option<&'a BufferSnapshot>, range: Range, chunks: text::Chunks<'a>, diagnostic_endpoints: Option>>, error_depth: usize, warning_depth: usize, information_depth: usize, hint_depth: usize, unnecessary_depth: usize, highlights: Option>, } /// A chunk of a buffer's text, along with its syntax highlight and /// diagnostic status. #[derive(Clone, Debug, Default)] pub struct Chunk<'a> { /// The text of the chunk. pub text: &'a str, /// The syntax highlighting style of the chunk. pub syntax_highlight_id: Option, /// The highlight style that has been applied to this chunk in /// the editor. pub highlight_style: Option, /// The severity of diagnostic associated with this chunk, if any. pub diagnostic_severity: Option, /// Whether this chunk of text is marked as unnecessary. pub is_unnecessary: bool, /// Whether this chunk of text was originally a tab character. pub is_tab: bool, /// An optional recipe for how the chunk should be presented. pub renderer: Option, } /// A recipe for how the chunk should be presented. #[derive(Clone)] pub struct ChunkRenderer { /// creates a custom element to represent this chunk. pub render: Arc AnyElement>, /// If true, the element is constrained to the shaped width of the text. pub constrain_width: bool, } pub struct ChunkRendererContext<'a, 'b> { pub window: &'a mut Window, pub context: &'b mut App, pub max_width: Pixels, } impl fmt::Debug for ChunkRenderer { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ChunkRenderer") .field("constrain_width", &self.constrain_width) .finish() } } impl Deref for ChunkRendererContext<'_, '_> { type Target = App; fn deref(&self) -> &Self::Target { self.context } } impl DerefMut for ChunkRendererContext<'_, '_> { fn deref_mut(&mut self) -> &mut Self::Target { self.context } } /// A set of edits to a given version of a buffer, computed asynchronously. #[derive(Debug)] pub struct Diff { pub base_version: clock::Global, pub line_ending: LineEnding, pub edits: Vec<(Range, Arc)>, } #[derive(Clone, Copy)] pub(crate) struct DiagnosticEndpoint { offset: usize, is_start: bool, severity: DiagnosticSeverity, is_unnecessary: bool, } /// A class of characters, used for characterizing a run of text. #[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug)] pub enum CharKind { /// Whitespace. Whitespace, /// Punctuation. Punctuation, /// Word. Word, } /// A runnable is a set of data about a region that could be resolved into a task pub struct Runnable { pub tags: SmallVec<[RunnableTag; 1]>, pub language: Arc, pub buffer: BufferId, } #[derive(Default, Clone, Debug)] pub struct HighlightedText { pub text: SharedString, pub highlights: Vec<(Range, HighlightStyle)>, } #[derive(Default, Debug)] struct HighlightedTextBuilder { pub text: String, pub highlights: Vec<(Range, HighlightStyle)>, } impl HighlightedText { pub fn from_buffer_range( range: Range, snapshot: &text::BufferSnapshot, syntax_snapshot: &SyntaxSnapshot, override_style: Option, syntax_theme: &SyntaxTheme, ) -> Self { let mut highlighted_text = HighlightedTextBuilder::default(); highlighted_text.add_text_from_buffer_range( range, snapshot, syntax_snapshot, override_style, syntax_theme, ); highlighted_text.build() } pub fn to_styled_text(&self, default_style: &TextStyle) -> StyledText { gpui::StyledText::new(self.text.clone()) .with_default_highlights(default_style, self.highlights.iter().cloned()) } /// Returns the first line without leading whitespace unless highlighted /// and a boolean indicating if there are more lines after pub fn first_line_preview(self) -> (Self, bool) { let newline_ix = self.text.find('\n').unwrap_or(self.text.len()); let first_line = &self.text[..newline_ix]; // Trim leading whitespace, unless an edit starts prior to it. let mut preview_start_ix = first_line.len() - first_line.trim_start().len(); if let Some((first_highlight_range, _)) = self.highlights.first() { preview_start_ix = preview_start_ix.min(first_highlight_range.start); } let preview_text = &first_line[preview_start_ix..]; let preview_highlights = self .highlights .into_iter() .take_while(|(range, _)| range.start < newline_ix) .filter_map(|(mut range, highlight)| { range.start = range.start.saturating_sub(preview_start_ix); range.end = range.end.saturating_sub(preview_start_ix).min(newline_ix); if range.is_empty() { None } else { Some((range, highlight)) } }); let preview = Self { text: SharedString::new(preview_text), highlights: preview_highlights.collect(), }; (preview, self.text.len() > newline_ix) } } impl HighlightedTextBuilder { pub fn build(self) -> HighlightedText { HighlightedText { text: self.text.into(), highlights: self.highlights, } } pub fn add_text_from_buffer_range( &mut self, range: Range, snapshot: &text::BufferSnapshot, syntax_snapshot: &SyntaxSnapshot, override_style: Option, syntax_theme: &SyntaxTheme, ) { let range = range.to_offset(snapshot); for chunk in Self::highlighted_chunks(range, snapshot, syntax_snapshot) { let start = self.text.len(); self.text.push_str(chunk.text); let end = self.text.len(); if let Some(mut highlight_style) = chunk .syntax_highlight_id .and_then(|id| id.style(syntax_theme)) { if let Some(override_style) = override_style { highlight_style.highlight(override_style); } self.highlights.push((start..end, highlight_style)); } else if let Some(override_style) = override_style { self.highlights.push((start..end, override_style)); } } } fn highlighted_chunks<'a>( range: Range, snapshot: &'a text::BufferSnapshot, syntax_snapshot: &'a SyntaxSnapshot, ) -> BufferChunks<'a> { let captures = syntax_snapshot.captures(range.clone(), snapshot, |grammar| { grammar.highlights_query.as_ref() }); let highlight_maps = captures .grammars() .iter() .map(|grammar| grammar.highlight_map()) .collect(); BufferChunks::new( snapshot.as_rope(), range, Some((captures, highlight_maps)), false, None, ) } } #[derive(Clone)] pub struct EditPreview { old_snapshot: text::BufferSnapshot, applied_edits_snapshot: text::BufferSnapshot, syntax_snapshot: SyntaxSnapshot, } impl EditPreview { pub fn highlight_edits( &self, current_snapshot: &BufferSnapshot, edits: &[(Range, String)], include_deletions: bool, cx: &App, ) -> HighlightedText { let Some(visible_range_in_preview_snapshot) = self.compute_visible_range(edits) else { return HighlightedText::default(); }; let mut highlighted_text = HighlightedTextBuilder::default(); let mut offset_in_preview_snapshot = visible_range_in_preview_snapshot.start; let insertion_highlight_style = HighlightStyle { background_color: Some(cx.theme().status().created_background), ..Default::default() }; let deletion_highlight_style = HighlightStyle { background_color: Some(cx.theme().status().deleted_background), ..Default::default() }; let syntax_theme = cx.theme().syntax(); for (range, edit_text) in edits { let edit_new_end_in_preview_snapshot = range .end .bias_right(&self.old_snapshot) .to_offset(&self.applied_edits_snapshot); let edit_start_in_preview_snapshot = edit_new_end_in_preview_snapshot - edit_text.len(); let unchanged_range_in_preview_snapshot = offset_in_preview_snapshot..edit_start_in_preview_snapshot; if !unchanged_range_in_preview_snapshot.is_empty() { highlighted_text.add_text_from_buffer_range( unchanged_range_in_preview_snapshot, &self.applied_edits_snapshot, &self.syntax_snapshot, None, &syntax_theme, ); } let range_in_current_snapshot = range.to_offset(current_snapshot); if include_deletions && !range_in_current_snapshot.is_empty() { highlighted_text.add_text_from_buffer_range( range_in_current_snapshot, ¤t_snapshot.text, ¤t_snapshot.syntax, Some(deletion_highlight_style), &syntax_theme, ); } if !edit_text.is_empty() { highlighted_text.add_text_from_buffer_range( edit_start_in_preview_snapshot..edit_new_end_in_preview_snapshot, &self.applied_edits_snapshot, &self.syntax_snapshot, Some(insertion_highlight_style), &syntax_theme, ); } offset_in_preview_snapshot = edit_new_end_in_preview_snapshot; } highlighted_text.add_text_from_buffer_range( offset_in_preview_snapshot..visible_range_in_preview_snapshot.end, &self.applied_edits_snapshot, &self.syntax_snapshot, None, &syntax_theme, ); highlighted_text.build() } fn compute_visible_range(&self, edits: &[(Range, String)]) -> Option> { let (first, _) = edits.first()?; let (last, _) = edits.last()?; let start = first .start .bias_left(&self.old_snapshot) .to_point(&self.applied_edits_snapshot); let end = last .end .bias_right(&self.old_snapshot) .to_point(&self.applied_edits_snapshot); // Ensure that the first line of the first edit and the last line of the last edit are always fully visible let range = Point::new(start.row, 0) ..Point::new(end.row, self.applied_edits_snapshot.line_len(end.row)); Some(range.to_offset(&self.applied_edits_snapshot)) } } #[derive(Clone, Debug, PartialEq, Eq)] pub struct BracketMatch { pub open_range: Range, pub close_range: Range, pub newline_only: bool, } impl Buffer { /// Create a new buffer with the given base text. pub fn local>(base_text: T, cx: &Context) -> Self { Self::build( TextBuffer::new(0, cx.entity_id().as_non_zero_u64().into(), base_text.into()), None, Capability::ReadWrite, ) } /// Create a new buffer with the given base text that has proper line endings and other normalization applied. pub fn local_normalized( base_text_normalized: Rope, line_ending: LineEnding, cx: &Context, ) -> Self { Self::build( TextBuffer::new_normalized( 0, cx.entity_id().as_non_zero_u64().into(), line_ending, base_text_normalized, ), None, Capability::ReadWrite, ) } /// Create a new buffer that is a replica of a remote buffer. pub fn remote( remote_id: BufferId, replica_id: ReplicaId, capability: Capability, base_text: impl Into, ) -> Self { Self::build( TextBuffer::new(replica_id, remote_id, base_text.into()), None, capability, ) } /// Create a new buffer that is a replica of a remote buffer, populating its /// state from the given protobuf message. pub fn from_proto( replica_id: ReplicaId, capability: Capability, message: proto::BufferState, file: Option>, ) -> Result { let buffer_id = BufferId::new(message.id) .with_context(|| anyhow!("Could not deserialize buffer_id"))?; let buffer = TextBuffer::new(replica_id, buffer_id, message.base_text); let mut this = Self::build(buffer, file, capability); this.text.set_line_ending(proto::deserialize_line_ending( rpc::proto::LineEnding::from_i32(message.line_ending) .ok_or_else(|| anyhow!("missing line_ending"))?, )); this.saved_version = proto::deserialize_version(&message.saved_version); this.saved_mtime = message.saved_mtime.map(|time| time.into()); Ok(this) } /// Serialize the buffer's state to a protobuf message. pub fn to_proto(&self, cx: &App) -> proto::BufferState { proto::BufferState { id: self.remote_id().into(), file: self.file.as_ref().map(|f| f.to_proto(cx)), base_text: self.base_text().to_string(), line_ending: proto::serialize_line_ending(self.line_ending()) as i32, saved_version: proto::serialize_version(&self.saved_version), saved_mtime: self.saved_mtime.map(|time| time.into()), } } /// Serialize as protobufs all of the changes to the buffer since the given version. pub fn serialize_ops( &self, since: Option, cx: &App, ) -> Task> { let mut operations = Vec::new(); operations.extend(self.deferred_ops.iter().map(proto::serialize_operation)); operations.extend(self.remote_selections.iter().map(|(_, set)| { proto::serialize_operation(&Operation::UpdateSelections { selections: set.selections.clone(), lamport_timestamp: set.lamport_timestamp, line_mode: set.line_mode, cursor_shape: set.cursor_shape, }) })); for (server_id, diagnostics) in &self.diagnostics { operations.push(proto::serialize_operation(&Operation::UpdateDiagnostics { lamport_timestamp: self.diagnostics_timestamp, server_id: *server_id, diagnostics: diagnostics.iter().cloned().collect(), })); } for (server_id, completions) in &self.completion_triggers_per_language_server { operations.push(proto::serialize_operation( &Operation::UpdateCompletionTriggers { triggers: completions.iter().cloned().collect(), lamport_timestamp: self.completion_triggers_timestamp, server_id: *server_id, }, )); } let text_operations = self.text.operations().clone(); cx.background_spawn(async move { let since = since.unwrap_or_default(); operations.extend( text_operations .iter() .filter(|(_, op)| !since.observed(op.timestamp())) .map(|(_, op)| proto::serialize_operation(&Operation::Buffer(op.clone()))), ); operations.sort_unstable_by_key(proto::lamport_timestamp_for_operation); operations }) } /// Assign a language to the buffer, returning the buffer. pub fn with_language(mut self, language: Arc, cx: &mut Context) -> Self { self.set_language(Some(language), cx); self } /// Returns the [`Capability`] of this buffer. pub fn capability(&self) -> Capability { self.capability } /// Whether this buffer can only be read. pub fn read_only(&self) -> bool { self.capability == Capability::ReadOnly } /// Builds a [`Buffer`] with the given underlying [`TextBuffer`], diff base, [`File`] and [`Capability`]. pub fn build(buffer: TextBuffer, file: Option>, capability: Capability) -> Self { let saved_mtime = file.as_ref().and_then(|file| file.disk_state().mtime()); let snapshot = buffer.snapshot(); let syntax_map = Mutex::new(SyntaxMap::new(&snapshot)); Self { saved_mtime, saved_version: buffer.version(), preview_version: buffer.version(), reload_task: None, transaction_depth: 0, was_dirty_before_starting_transaction: None, has_unsaved_edits: Cell::new((buffer.version(), false)), text: buffer, branch_state: None, file, capability, syntax_map, reparse: None, non_text_state_update_count: 0, sync_parse_timeout: Duration::from_millis(1), parse_status: async_watch::channel(ParseStatus::Idle), autoindent_requests: Default::default(), pending_autoindent: Default::default(), language: None, remote_selections: Default::default(), diagnostics: Default::default(), diagnostics_timestamp: Default::default(), completion_triggers: Default::default(), completion_triggers_per_language_server: Default::default(), completion_triggers_timestamp: Default::default(), deferred_ops: OperationQueue::new(), has_conflict: false, change_bits: Default::default(), _subscriptions: Vec::new(), } } pub fn build_snapshot( text: Rope, language: Option>, language_registry: Option>, cx: &mut App, ) -> impl Future { let entity_id = cx.reserve_entity::().entity_id(); let buffer_id = entity_id.as_non_zero_u64().into(); async move { let text = TextBuffer::new_normalized(0, buffer_id, Default::default(), text).snapshot(); let mut syntax = SyntaxMap::new(&text).snapshot(); if let Some(language) = language.clone() { let text = text.clone(); let language = language.clone(); let language_registry = language_registry.clone(); syntax.reparse(&text, language_registry, language); } BufferSnapshot { text, syntax, file: None, diagnostics: Default::default(), remote_selections: Default::default(), language, non_text_state_update_count: 0, } } } pub fn build_empty_snapshot(cx: &mut App) -> BufferSnapshot { let entity_id = cx.reserve_entity::().entity_id(); let buffer_id = entity_id.as_non_zero_u64().into(); let text = TextBuffer::new_normalized(0, buffer_id, Default::default(), Rope::new()).snapshot(); let syntax = SyntaxMap::new(&text).snapshot(); BufferSnapshot { text, syntax, file: None, diagnostics: Default::default(), remote_selections: Default::default(), language: None, non_text_state_update_count: 0, } } #[cfg(any(test, feature = "test-support"))] pub fn build_snapshot_sync( text: Rope, language: Option>, language_registry: Option>, cx: &mut App, ) -> BufferSnapshot { let entity_id = cx.reserve_entity::().entity_id(); let buffer_id = entity_id.as_non_zero_u64().into(); let text = TextBuffer::new_normalized(0, buffer_id, Default::default(), text).snapshot(); let mut syntax = SyntaxMap::new(&text).snapshot(); if let Some(language) = language.clone() { let text = text.clone(); let language = language.clone(); let language_registry = language_registry.clone(); syntax.reparse(&text, language_registry, language); } BufferSnapshot { text, syntax, file: None, diagnostics: Default::default(), remote_selections: Default::default(), language, non_text_state_update_count: 0, } } /// Retrieve a snapshot of the buffer's current state. This is computationally /// cheap, and allows reading from the buffer on a background thread. pub fn snapshot(&self) -> BufferSnapshot { let text = self.text.snapshot(); let mut syntax_map = self.syntax_map.lock(); syntax_map.interpolate(&text); let syntax = syntax_map.snapshot(); BufferSnapshot { text, syntax, file: self.file.clone(), remote_selections: self.remote_selections.clone(), diagnostics: self.diagnostics.clone(), language: self.language.clone(), non_text_state_update_count: self.non_text_state_update_count, } } pub fn branch(&mut self, cx: &mut Context) -> Entity { let this = cx.entity(); cx.new(|cx| { let mut branch = Self { branch_state: Some(BufferBranchState { base_buffer: this.clone(), merged_operations: Default::default(), }), language: self.language.clone(), has_conflict: self.has_conflict, has_unsaved_edits: Cell::new(self.has_unsaved_edits.get_mut().clone()), _subscriptions: vec![cx.subscribe(&this, Self::on_base_buffer_event)], ..Self::build(self.text.branch(), self.file.clone(), self.capability()) }; if let Some(language_registry) = self.language_registry() { branch.set_language_registry(language_registry); } // Reparse the branch buffer so that we get syntax highlighting immediately. branch.reparse(cx); branch }) } pub fn preview_edits( &self, edits: Arc<[(Range, String)]>, cx: &App, ) -> Task { let registry = self.language_registry(); let language = self.language().cloned(); let old_snapshot = self.text.snapshot(); let mut branch_buffer = self.text.branch(); let mut syntax_snapshot = self.syntax_map.lock().snapshot(); cx.background_spawn(async move { if !edits.is_empty() { if let Some(language) = language.clone() { syntax_snapshot.reparse(&old_snapshot, registry.clone(), language); } branch_buffer.edit(edits.iter().cloned()); let snapshot = branch_buffer.snapshot(); syntax_snapshot.interpolate(&snapshot); if let Some(language) = language { syntax_snapshot.reparse(&snapshot, registry, language); } } EditPreview { old_snapshot, applied_edits_snapshot: branch_buffer.snapshot(), syntax_snapshot, } }) } /// Applies all of the changes in this buffer that intersect any of the /// given `ranges` to its base buffer. /// /// If `ranges` is empty, then all changes will be applied. This buffer must /// be a branch buffer to call this method. pub fn merge_into_base(&mut self, ranges: Vec>, cx: &mut Context) { let Some(base_buffer) = self.base_buffer() else { debug_panic!("not a branch buffer"); return; }; let mut ranges = if ranges.is_empty() { &[0..usize::MAX] } else { ranges.as_slice() } .into_iter() .peekable(); let mut edits = Vec::new(); for edit in self.edits_since::(&base_buffer.read(cx).version()) { let mut is_included = false; while let Some(range) = ranges.peek() { if range.end < edit.new.start { ranges.next().unwrap(); } else { if range.start <= edit.new.end { is_included = true; } break; } } if is_included { edits.push(( edit.old.clone(), self.text_for_range(edit.new.clone()).collect::(), )); } } let operation = base_buffer.update(cx, |base_buffer, cx| { // cx.emit(BufferEvent::DiffBaseChanged); base_buffer.edit(edits, None, cx) }); if let Some(operation) = operation { if let Some(BufferBranchState { merged_operations, .. }) = &mut self.branch_state { merged_operations.push(operation); } } } fn on_base_buffer_event( &mut self, _: Entity, event: &BufferEvent, cx: &mut Context, ) { let BufferEvent::Operation { operation, .. } = event else { return; }; let Some(BufferBranchState { merged_operations, .. }) = &mut self.branch_state else { return; }; let mut operation_to_undo = None; if let Operation::Buffer(text::Operation::Edit(operation)) = &operation { if let Ok(ix) = merged_operations.binary_search(&operation.timestamp) { merged_operations.remove(ix); operation_to_undo = Some(operation.timestamp); } } self.apply_ops([operation.clone()], cx); if let Some(timestamp) = operation_to_undo { let counts = [(timestamp, u32::MAX)].into_iter().collect(); self.undo_operations(counts, cx); } } #[cfg(test)] pub(crate) fn as_text_snapshot(&self) -> &text::BufferSnapshot { &self.text } /// Retrieve a snapshot of the buffer's raw text, without any /// language-related state like the syntax tree or diagnostics. pub fn text_snapshot(&self) -> text::BufferSnapshot { self.text.snapshot() } /// The file associated with the buffer, if any. pub fn file(&self) -> Option<&Arc> { self.file.as_ref() } /// The version of the buffer that was last saved or reloaded from disk. pub fn saved_version(&self) -> &clock::Global { &self.saved_version } /// The mtime of the buffer's file when the buffer was last saved or reloaded from disk. pub fn saved_mtime(&self) -> Option { self.saved_mtime } /// Assign a language to the buffer. pub fn set_language(&mut self, language: Option>, cx: &mut Context) { self.non_text_state_update_count += 1; self.syntax_map.lock().clear(&self.text); self.language = language; self.was_changed(); self.reparse(cx); cx.emit(BufferEvent::LanguageChanged); } /// Assign a language registry to the buffer. This allows the buffer to retrieve /// other languages if parts of the buffer are written in different languages. pub fn set_language_registry(&self, language_registry: Arc) { self.syntax_map .lock() .set_language_registry(language_registry); } pub fn language_registry(&self) -> Option> { self.syntax_map.lock().language_registry() } /// Assign the buffer a new [`Capability`]. pub fn set_capability(&mut self, capability: Capability, cx: &mut Context) { self.capability = capability; cx.emit(BufferEvent::CapabilityChanged) } /// This method is called to signal that the buffer has been saved. pub fn did_save( &mut self, version: clock::Global, mtime: Option, cx: &mut Context, ) { self.saved_version = version; self.has_unsaved_edits .set((self.saved_version().clone(), false)); self.has_conflict = false; self.saved_mtime = mtime; self.was_changed(); cx.emit(BufferEvent::Saved); cx.notify(); } /// This method is called to signal that the buffer has been discarded. pub fn discarded(&self, cx: &mut Context) { cx.emit(BufferEvent::Discarded); cx.notify(); } /// Reloads the contents of the buffer from disk. pub fn reload(&mut self, cx: &Context) -> oneshot::Receiver> { let (tx, rx) = futures::channel::oneshot::channel(); let prev_version = self.text.version(); self.reload_task = Some(cx.spawn(async move |this, cx| { let Some((new_mtime, new_text)) = this.update(cx, |this, cx| { let file = this.file.as_ref()?.as_local()?; Some((file.disk_state().mtime(), file.load(cx))) })? else { return Ok(()); }; let new_text = new_text.await?; let diff = this .update(cx, |this, cx| this.diff(new_text.clone(), cx))? .await; this.update(cx, |this, cx| { if this.version() == diff.base_version { this.finalize_last_transaction(); this.apply_diff(diff, cx); tx.send(this.finalize_last_transaction().cloned()).ok(); this.has_conflict = false; this.did_reload(this.version(), this.line_ending(), new_mtime, cx); } else { if !diff.edits.is_empty() || this .edits_since::(&diff.base_version) .next() .is_some() { this.has_conflict = true; } this.did_reload(prev_version, this.line_ending(), this.saved_mtime, cx); } this.reload_task.take(); }) })); rx } /// This method is called to signal that the buffer has been reloaded. pub fn did_reload( &mut self, version: clock::Global, line_ending: LineEnding, mtime: Option, cx: &mut Context, ) { self.saved_version = version; self.has_unsaved_edits .set((self.saved_version.clone(), false)); self.text.set_line_ending(line_ending); self.saved_mtime = mtime; cx.emit(BufferEvent::Reloaded); cx.notify(); } /// Updates the [`File`] backing this buffer. This should be called when /// the file has changed or has been deleted. pub fn file_updated(&mut self, new_file: Arc, cx: &mut Context) { let was_dirty = self.is_dirty(); let mut file_changed = false; if let Some(old_file) = self.file.as_ref() { if new_file.path() != old_file.path() { file_changed = true; } let old_state = old_file.disk_state(); let new_state = new_file.disk_state(); if old_state != new_state { file_changed = true; if !was_dirty && matches!(new_state, DiskState::Present { .. }) { cx.emit(BufferEvent::ReloadNeeded) } } } else { file_changed = true; }; self.file = Some(new_file); if file_changed { self.was_changed(); self.non_text_state_update_count += 1; if was_dirty != self.is_dirty() { cx.emit(BufferEvent::DirtyChanged); } cx.emit(BufferEvent::FileHandleChanged); cx.notify(); } } pub fn base_buffer(&self) -> Option> { Some(self.branch_state.as_ref()?.base_buffer.clone()) } /// Returns the primary [`Language`] assigned to this [`Buffer`]. pub fn language(&self) -> Option<&Arc> { self.language.as_ref() } /// Returns the [`Language`] at the given location. pub fn language_at(&self, position: D) -> Option> { let offset = position.to_offset(self); self.syntax_map .lock() .layers_for_range(offset..offset, &self.text, false) .last() .map(|info| info.language.clone()) .or_else(|| self.language.clone()) } /// An integer version number that accounts for all updates besides /// the buffer's text itself (which is versioned via a version vector). pub fn non_text_state_update_count(&self) -> usize { self.non_text_state_update_count } /// Whether the buffer is being parsed in the background. #[cfg(any(test, feature = "test-support"))] pub fn is_parsing(&self) -> bool { self.reparse.is_some() } /// Indicates whether the buffer contains any regions that may be /// written in a language that hasn't been loaded yet. pub fn contains_unknown_injections(&self) -> bool { self.syntax_map.lock().contains_unknown_injections() } #[cfg(test)] pub fn set_sync_parse_timeout(&mut self, timeout: Duration) { self.sync_parse_timeout = timeout; } /// Called after an edit to synchronize the buffer's main parse tree with /// the buffer's new underlying state. /// /// Locks the syntax map and interpolates the edits since the last reparse /// into the foreground syntax tree. /// /// Then takes a stable snapshot of the syntax map before unlocking it. /// The snapshot with the interpolated edits is sent to a background thread, /// where we ask Tree-sitter to perform an incremental parse. /// /// Meanwhile, in the foreground, we block the main thread for up to 1ms /// waiting on the parse to complete. As soon as it completes, we proceed /// synchronously, unless a 1ms timeout elapses. /// /// If we time out waiting on the parse, we spawn a second task waiting /// until the parse does complete and return with the interpolated tree still /// in the foreground. When the background parse completes, call back into /// the main thread and assign the foreground parse state. /// /// If the buffer or grammar changed since the start of the background parse, /// initiate an additional reparse recursively. To avoid concurrent parses /// for the same buffer, we only initiate a new parse if we are not already /// parsing in the background. pub fn reparse(&mut self, cx: &mut Context) { if self.reparse.is_some() { return; } let language = if let Some(language) = self.language.clone() { language } else { return; }; let text = self.text_snapshot(); let parsed_version = self.version(); let mut syntax_map = self.syntax_map.lock(); syntax_map.interpolate(&text); let language_registry = syntax_map.language_registry(); let mut syntax_snapshot = syntax_map.snapshot(); drop(syntax_map); let parse_task = cx.background_spawn({ let language = language.clone(); let language_registry = language_registry.clone(); async move { syntax_snapshot.reparse(&text, language_registry, language); syntax_snapshot } }); self.parse_status.0.send(ParseStatus::Parsing).unwrap(); match cx .background_executor() .block_with_timeout(self.sync_parse_timeout, parse_task) { Ok(new_syntax_snapshot) => { self.did_finish_parsing(new_syntax_snapshot, cx); self.reparse = None; } Err(parse_task) => { self.reparse = Some(cx.spawn(async move |this, cx| { let new_syntax_map = parse_task.await; this.update(cx, move |this, cx| { let grammar_changed = this.language.as_ref().map_or(true, |current_language| { !Arc::ptr_eq(&language, current_language) }); let language_registry_changed = new_syntax_map .contains_unknown_injections() && language_registry.map_or(false, |registry| { registry.version() != new_syntax_map.language_registry_version() }); let parse_again = language_registry_changed || grammar_changed || this.version.changed_since(&parsed_version); this.did_finish_parsing(new_syntax_map, cx); this.reparse = None; if parse_again { this.reparse(cx); } }) .ok(); })); } } } fn did_finish_parsing(&mut self, syntax_snapshot: SyntaxSnapshot, cx: &mut Context) { self.was_changed(); self.non_text_state_update_count += 1; self.syntax_map.lock().did_parse(syntax_snapshot); self.request_autoindent(cx); self.parse_status.0.send(ParseStatus::Idle).unwrap(); cx.emit(BufferEvent::Reparsed); cx.notify(); } pub fn parse_status(&self) -> watch::Receiver { self.parse_status.1.clone() } /// Assign to the buffer a set of diagnostics created by a given language server. pub fn update_diagnostics( &mut self, server_id: LanguageServerId, diagnostics: DiagnosticSet, cx: &mut Context, ) { let lamport_timestamp = self.text.lamport_clock.tick(); let op = Operation::UpdateDiagnostics { server_id, diagnostics: diagnostics.iter().cloned().collect(), lamport_timestamp, }; self.apply_diagnostic_update(server_id, diagnostics, lamport_timestamp, cx); self.send_operation(op, true, cx); } pub fn get_diagnostics(&self, server_id: LanguageServerId) -> Option<&DiagnosticSet> { let Ok(idx) = self.diagnostics.binary_search_by_key(&server_id, |v| v.0) else { return None; }; Some(&self.diagnostics[idx].1) } fn request_autoindent(&mut self, cx: &mut Context) { if let Some(indent_sizes) = self.compute_autoindents() { let indent_sizes = cx.background_spawn(indent_sizes); match cx .background_executor() .block_with_timeout(Duration::from_micros(500), indent_sizes) { Ok(indent_sizes) => self.apply_autoindents(indent_sizes, cx), Err(indent_sizes) => { self.pending_autoindent = Some(cx.spawn(async move |this, cx| { let indent_sizes = indent_sizes.await; this.update(cx, |this, cx| { this.apply_autoindents(indent_sizes, cx); }) .ok(); })); } } } else { self.autoindent_requests.clear(); } } fn compute_autoindents(&self) -> Option>> { let max_rows_between_yields = 100; let snapshot = self.snapshot(); if snapshot.syntax.is_empty() || self.autoindent_requests.is_empty() { return None; } let autoindent_requests = self.autoindent_requests.clone(); Some(async move { let mut indent_sizes = BTreeMap::::new(); for request in autoindent_requests { // Resolve each edited range to its row in the current buffer and in the // buffer before this batch of edits. let mut row_ranges = Vec::new(); let mut old_to_new_rows = BTreeMap::new(); let mut language_indent_sizes_by_new_row = Vec::new(); for entry in &request.entries { let position = entry.range.start; let new_row = position.to_point(&snapshot).row; let new_end_row = entry.range.end.to_point(&snapshot).row + 1; language_indent_sizes_by_new_row.push((new_row, entry.indent_size)); if !entry.first_line_is_new { let old_row = position.to_point(&request.before_edit).row; old_to_new_rows.insert(old_row, new_row); } row_ranges.push((new_row..new_end_row, entry.original_indent_column)); } // Build a map containing the suggested indentation for each of the edited lines // with respect to the state of the buffer before these edits. This map is keyed // by the rows for these lines in the current state of the buffer. let mut old_suggestions = BTreeMap::::default(); let old_edited_ranges = contiguous_ranges(old_to_new_rows.keys().copied(), max_rows_between_yields); let mut language_indent_sizes = language_indent_sizes_by_new_row.iter().peekable(); let mut language_indent_size = IndentSize::default(); for old_edited_range in old_edited_ranges { let suggestions = request .before_edit .suggest_autoindents(old_edited_range.clone()) .into_iter() .flatten(); for (old_row, suggestion) in old_edited_range.zip(suggestions) { if let Some(suggestion) = suggestion { let new_row = *old_to_new_rows.get(&old_row).unwrap(); // Find the indent size based on the language for this row. while let Some((row, size)) = language_indent_sizes.peek() { if *row > new_row { break; } language_indent_size = *size; language_indent_sizes.next(); } let suggested_indent = old_to_new_rows .get(&suggestion.basis_row) .and_then(|from_row| { Some(old_suggestions.get(from_row).copied()?.0) }) .unwrap_or_else(|| { request .before_edit .indent_size_for_line(suggestion.basis_row) }) .with_delta(suggestion.delta, language_indent_size); old_suggestions .insert(new_row, (suggested_indent, suggestion.within_error)); } } yield_now().await; } // Compute new suggestions for each line, but only include them in the result // if they differ from the old suggestion for that line. let mut language_indent_sizes = language_indent_sizes_by_new_row.iter().peekable(); let mut language_indent_size = IndentSize::default(); for (row_range, original_indent_column) in row_ranges { let new_edited_row_range = if request.is_block_mode { row_range.start..row_range.start + 1 } else { row_range.clone() }; let suggestions = snapshot .suggest_autoindents(new_edited_row_range.clone()) .into_iter() .flatten(); for (new_row, suggestion) in new_edited_row_range.zip(suggestions) { if let Some(suggestion) = suggestion { // Find the indent size based on the language for this row. while let Some((row, size)) = language_indent_sizes.peek() { if *row > new_row { break; } language_indent_size = *size; language_indent_sizes.next(); } let suggested_indent = indent_sizes .get(&suggestion.basis_row) .copied() .map(|e| e.0) .unwrap_or_else(|| { snapshot.indent_size_for_line(suggestion.basis_row) }) .with_delta(suggestion.delta, language_indent_size); if old_suggestions.get(&new_row).map_or( true, |(old_indentation, was_within_error)| { suggested_indent != *old_indentation && (!suggestion.within_error || *was_within_error) }, ) { indent_sizes.insert( new_row, (suggested_indent, request.ignore_empty_lines), ); } } } if let (true, Some(original_indent_column)) = (request.is_block_mode, original_indent_column) { let new_indent = if let Some((indent, _)) = indent_sizes.get(&row_range.start) { *indent } else { snapshot.indent_size_for_line(row_range.start) }; let delta = new_indent.len as i64 - original_indent_column as i64; if delta != 0 { for row in row_range.skip(1) { indent_sizes.entry(row).or_insert_with(|| { let mut size = snapshot.indent_size_for_line(row); if size.kind == new_indent.kind { match delta.cmp(&0) { Ordering::Greater => size.len += delta as u32, Ordering::Less => { size.len = size.len.saturating_sub(-delta as u32) } Ordering::Equal => {} } } (size, request.ignore_empty_lines) }); } } } yield_now().await; } } indent_sizes .into_iter() .filter_map(|(row, (indent, ignore_empty_lines))| { if ignore_empty_lines && snapshot.line_len(row) == 0 { None } else { Some((row, indent)) } }) .collect() }) } fn apply_autoindents( &mut self, indent_sizes: BTreeMap, cx: &mut Context, ) { self.autoindent_requests.clear(); let edits: Vec<_> = indent_sizes .into_iter() .filter_map(|(row, indent_size)| { let current_size = indent_size_for_line(self, row); Self::edit_for_indent_size_adjustment(row, current_size, indent_size) }) .collect(); let preserve_preview = self.preserve_preview(); self.edit(edits, None, cx); if preserve_preview { self.refresh_preview(); } } /// Create a minimal edit that will cause the given row to be indented /// with the given size. After applying this edit, the length of the line /// will always be at least `new_size.len`. pub fn edit_for_indent_size_adjustment( row: u32, current_size: IndentSize, new_size: IndentSize, ) -> Option<(Range, String)> { if new_size.kind == current_size.kind { match new_size.len.cmp(¤t_size.len) { Ordering::Greater => { let point = Point::new(row, 0); Some(( point..point, iter::repeat(new_size.char()) .take((new_size.len - current_size.len) as usize) .collect::(), )) } Ordering::Less => Some(( Point::new(row, 0)..Point::new(row, current_size.len - new_size.len), String::new(), )), Ordering::Equal => None, } } else { Some(( Point::new(row, 0)..Point::new(row, current_size.len), iter::repeat(new_size.char()) .take(new_size.len as usize) .collect::(), )) } } /// Spawns a background task that asynchronously computes a `Diff` between the buffer's text /// and the given new text. pub fn diff(&self, mut new_text: String, cx: &App) -> Task { let old_text = self.as_rope().clone(); let base_version = self.version(); cx.background_executor() .spawn_labeled(*BUFFER_DIFF_TASK, async move { let old_text = old_text.to_string(); let line_ending = LineEnding::detect(&new_text); LineEnding::normalize(&mut new_text); let edits = text_diff(&old_text, &new_text); Diff { base_version, line_ending, edits, } }) } /// Spawns a background task that searches the buffer for any whitespace /// at the ends of a lines, and returns a `Diff` that removes that whitespace. pub fn remove_trailing_whitespace(&self, cx: &App) -> Task { let old_text = self.as_rope().clone(); let line_ending = self.line_ending(); let base_version = self.version(); cx.background_spawn(async move { let ranges = trailing_whitespace_ranges(&old_text); let empty = Arc::::from(""); Diff { base_version, line_ending, edits: ranges .into_iter() .map(|range| (range, empty.clone())) .collect(), } }) } /// Ensures that the buffer ends with a single newline character, and /// no other whitespace. pub fn ensure_final_newline(&mut self, cx: &mut Context) { let len = self.len(); let mut offset = len; for chunk in self.as_rope().reversed_chunks_in_range(0..len) { let non_whitespace_len = chunk .trim_end_matches(|c: char| c.is_ascii_whitespace()) .len(); offset -= chunk.len(); offset += non_whitespace_len; if non_whitespace_len != 0 { if offset == len - 1 && chunk.get(non_whitespace_len..) == Some("\n") { return; } break; } } self.edit([(offset..len, "\n")], None, cx); } /// Applies a diff to the buffer. If the buffer has changed since the given diff was /// calculated, then adjust the diff to account for those changes, and discard any /// parts of the diff that conflict with those changes. pub fn apply_diff(&mut self, diff: Diff, cx: &mut Context) -> Option { // Check for any edits to the buffer that have occurred since this diff // was computed. let snapshot = self.snapshot(); let mut edits_since = snapshot.edits_since::(&diff.base_version).peekable(); let mut delta = 0; let adjusted_edits = diff.edits.into_iter().filter_map(|(range, new_text)| { while let Some(edit_since) = edits_since.peek() { // If the edit occurs after a diff hunk, then it does not // affect that hunk. if edit_since.old.start > range.end { break; } // If the edit precedes the diff hunk, then adjust the hunk // to reflect the edit. else if edit_since.old.end < range.start { delta += edit_since.new_len() as i64 - edit_since.old_len() as i64; edits_since.next(); } // If the edit intersects a diff hunk, then discard that hunk. else { return None; } } let start = (range.start as i64 + delta) as usize; let end = (range.end as i64 + delta) as usize; Some((start..end, new_text)) }); self.start_transaction(); self.text.set_line_ending(diff.line_ending); self.edit(adjusted_edits, None, cx); self.end_transaction(cx) } fn has_unsaved_edits(&self) -> bool { let (last_version, has_unsaved_edits) = self.has_unsaved_edits.take(); if last_version == self.version { self.has_unsaved_edits .set((last_version, has_unsaved_edits)); return has_unsaved_edits; } let has_edits = self.has_edits_since(&self.saved_version); self.has_unsaved_edits .set((self.version.clone(), has_edits)); has_edits } /// Checks if the buffer has unsaved changes. pub fn is_dirty(&self) -> bool { if self.capability == Capability::ReadOnly { return false; } if self.has_conflict || self.has_unsaved_edits() { return true; } match self.file.as_ref().map(|f| f.disk_state()) { Some(DiskState::New) => !self.is_empty(), Some(DiskState::Deleted) => true, _ => false, } } /// Checks if the buffer and its file have both changed since the buffer /// was last saved or reloaded. pub fn has_conflict(&self) -> bool { if self.has_conflict { return true; } let Some(file) = self.file.as_ref() else { return false; }; match file.disk_state() { DiskState::New => false, DiskState::Present { mtime } => match self.saved_mtime { Some(saved_mtime) => { mtime.bad_is_greater_than(saved_mtime) && self.has_unsaved_edits() } None => true, }, DiskState::Deleted => true, } } /// Gets a [`Subscription`] that tracks all of the changes to the buffer's text. pub fn subscribe(&mut self) -> Subscription { self.text.subscribe() } /// Adds a bit to the list of bits that are set when the buffer's text changes. /// /// This allows downstream code to check if the buffer's text has changed without /// waiting for an effect cycle, which would be required if using eents. pub fn record_changes(&mut self, bit: rc::Weak>) { if let Err(ix) = self .change_bits .binary_search_by_key(&rc::Weak::as_ptr(&bit), rc::Weak::as_ptr) { self.change_bits.insert(ix, bit); } } fn was_changed(&mut self) { self.change_bits.retain(|change_bit| { change_bit.upgrade().map_or(false, |bit| { bit.replace(true); true }) }); } /// Starts a transaction, if one is not already in-progress. When undoing or /// redoing edits, all of the edits performed within a transaction are undone /// or redone together. pub fn start_transaction(&mut self) -> Option { self.start_transaction_at(Instant::now()) } /// Starts a transaction, providing the current time. Subsequent transactions /// that occur within a short period of time will be grouped together. This /// is controlled by the buffer's undo grouping duration. pub fn start_transaction_at(&mut self, now: Instant) -> Option { self.transaction_depth += 1; if self.was_dirty_before_starting_transaction.is_none() { self.was_dirty_before_starting_transaction = Some(self.is_dirty()); } self.text.start_transaction_at(now) } /// Terminates the current transaction, if this is the outermost transaction. pub fn end_transaction(&mut self, cx: &mut Context) -> Option { self.end_transaction_at(Instant::now(), cx) } /// Terminates the current transaction, providing the current time. Subsequent transactions /// that occur within a short period of time will be grouped together. This /// is controlled by the buffer's undo grouping duration. pub fn end_transaction_at( &mut self, now: Instant, cx: &mut Context, ) -> Option { assert!(self.transaction_depth > 0); self.transaction_depth -= 1; let was_dirty = if self.transaction_depth == 0 { self.was_dirty_before_starting_transaction.take().unwrap() } else { false }; if let Some((transaction_id, start_version)) = self.text.end_transaction_at(now) { self.did_edit(&start_version, was_dirty, cx); Some(transaction_id) } else { None } } /// Manually add a transaction to the buffer's undo history. pub fn push_transaction(&mut self, transaction: Transaction, now: Instant) { self.text.push_transaction(transaction, now); } /// Prevent the last transaction from being grouped with any subsequent transactions, /// even if they occur with the buffer's undo grouping duration. pub fn finalize_last_transaction(&mut self) -> Option<&Transaction> { self.text.finalize_last_transaction() } /// Manually group all changes since a given transaction. pub fn group_until_transaction(&mut self, transaction_id: TransactionId) { self.text.group_until_transaction(transaction_id); } /// Manually remove a transaction from the buffer's undo history pub fn forget_transaction(&mut self, transaction_id: TransactionId) { self.text.forget_transaction(transaction_id); } /// Manually merge two adjacent transactions in the buffer's undo history. pub fn merge_transactions(&mut self, transaction: TransactionId, destination: TransactionId) { self.text.merge_transactions(transaction, destination); } /// Waits for the buffer to receive operations with the given timestamps. pub fn wait_for_edits( &mut self, edit_ids: impl IntoIterator, ) -> impl Future> { self.text.wait_for_edits(edit_ids) } /// Waits for the buffer to receive the operations necessary for resolving the given anchors. pub fn wait_for_anchors( &mut self, anchors: impl IntoIterator, ) -> impl 'static + Future> { self.text.wait_for_anchors(anchors) } /// Waits for the buffer to receive operations up to the given version. pub fn wait_for_version(&mut self, version: clock::Global) -> impl Future> { self.text.wait_for_version(version) } /// Forces all futures returned by [`Buffer::wait_for_version`], [`Buffer::wait_for_edits`], or /// [`Buffer::wait_for_version`] to resolve with an error. pub fn give_up_waiting(&mut self) { self.text.give_up_waiting(); } /// Stores a set of selections that should be broadcasted to all of the buffer's replicas. pub fn set_active_selections( &mut self, selections: Arc<[Selection]>, line_mode: bool, cursor_shape: CursorShape, cx: &mut Context, ) { let lamport_timestamp = self.text.lamport_clock.tick(); self.remote_selections.insert( self.text.replica_id(), SelectionSet { selections: selections.clone(), lamport_timestamp, line_mode, cursor_shape, }, ); self.send_operation( Operation::UpdateSelections { selections, line_mode, lamport_timestamp, cursor_shape, }, true, cx, ); self.non_text_state_update_count += 1; cx.notify(); } /// Clears the selections, so that other replicas of the buffer do not see any selections for /// this replica. pub fn remove_active_selections(&mut self, cx: &mut Context) { if self .remote_selections .get(&self.text.replica_id()) .map_or(true, |set| !set.selections.is_empty()) { self.set_active_selections(Arc::default(), false, Default::default(), cx); } } /// Replaces the buffer's entire text. pub fn set_text(&mut self, text: T, cx: &mut Context) -> Option where T: Into>, { self.autoindent_requests.clear(); self.edit([(0..self.len(), text)], None, cx) } /// Applies the given edits to the buffer. Each edit is specified as a range of text to /// delete, and a string of text to insert at that location. /// /// If an [`AutoindentMode`] is provided, then the buffer will enqueue an auto-indent /// request for the edited ranges, which will be processed when the buffer finishes /// parsing. /// /// Parsing takes place at the end of a transaction, and may compute synchronously /// or asynchronously, depending on the changes. pub fn edit( &mut self, edits_iter: I, autoindent_mode: Option, cx: &mut Context, ) -> Option where I: IntoIterator, T)>, S: ToOffset, T: Into>, { // Skip invalid edits and coalesce contiguous ones. let mut edits: Vec<(Range, Arc)> = Vec::new(); for (range, new_text) in edits_iter { let mut range = range.start.to_offset(self)..range.end.to_offset(self); if range.start > range.end { mem::swap(&mut range.start, &mut range.end); } let new_text = new_text.into(); if !new_text.is_empty() || !range.is_empty() { if let Some((prev_range, prev_text)) = edits.last_mut() { if prev_range.end >= range.start { prev_range.end = cmp::max(prev_range.end, range.end); *prev_text = format!("{prev_text}{new_text}").into(); } else { edits.push((range, new_text)); } } else { edits.push((range, new_text)); } } } if edits.is_empty() { return None; } self.start_transaction(); self.pending_autoindent.take(); let autoindent_request = autoindent_mode .and_then(|mode| self.language.as_ref().map(|_| (self.snapshot(), mode))); let edit_operation = self.text.edit(edits.iter().cloned()); let edit_id = edit_operation.timestamp(); if let Some((before_edit, mode)) = autoindent_request { let mut delta = 0isize; let entries = edits .into_iter() .enumerate() .zip(&edit_operation.as_edit().unwrap().new_text) .map(|((ix, (range, _)), new_text)| { let new_text_length = new_text.len(); let old_start = range.start.to_point(&before_edit); let new_start = (delta + range.start as isize) as usize; let range_len = range.end - range.start; delta += new_text_length as isize - range_len as isize; // Decide what range of the insertion to auto-indent, and whether // the first line of the insertion should be considered a newly-inserted line // or an edit to an existing line. let mut range_of_insertion_to_indent = 0..new_text_length; let mut first_line_is_new = true; let old_line_start = before_edit.indent_size_for_line(old_start.row).len; let old_line_end = before_edit.line_len(old_start.row); if old_start.column > old_line_start { first_line_is_new = false; } if !new_text.contains('\n') && (old_start.column + (range_len as u32) < old_line_end || old_line_end == old_line_start) { first_line_is_new = false; } // When inserting text starting with a newline, avoid auto-indenting the // previous line. if new_text.starts_with('\n') { range_of_insertion_to_indent.start += 1; first_line_is_new = true; } let mut original_indent_column = None; if let AutoindentMode::Block { original_indent_columns, } = &mode { original_indent_column = Some( original_indent_columns .get(ix) .copied() .flatten() .unwrap_or_else(|| { indent_size_for_text( new_text[range_of_insertion_to_indent.clone()].chars(), ) .len }), ); // Avoid auto-indenting the line after the edit. if new_text[range_of_insertion_to_indent.clone()].ends_with('\n') { range_of_insertion_to_indent.end -= 1; } } AutoindentRequestEntry { first_line_is_new, original_indent_column, indent_size: before_edit.language_indent_size_at(range.start, cx), range: self.anchor_before(new_start + range_of_insertion_to_indent.start) ..self.anchor_after(new_start + range_of_insertion_to_indent.end), } }) .collect(); self.autoindent_requests.push(Arc::new(AutoindentRequest { before_edit, entries, is_block_mode: matches!(mode, AutoindentMode::Block { .. }), ignore_empty_lines: false, })); } self.end_transaction(cx); self.send_operation(Operation::Buffer(edit_operation), true, cx); Some(edit_id) } fn did_edit(&mut self, old_version: &clock::Global, was_dirty: bool, cx: &mut Context) { self.was_changed(); if self.edits_since::(old_version).next().is_none() { return; } self.reparse(cx); cx.emit(BufferEvent::Edited); if was_dirty != self.is_dirty() { cx.emit(BufferEvent::DirtyChanged); } cx.notify(); } pub fn autoindent_ranges(&mut self, ranges: I, cx: &mut Context) where I: IntoIterator>, T: ToOffset + Copy, { let before_edit = self.snapshot(); let entries = ranges .into_iter() .map(|range| AutoindentRequestEntry { range: before_edit.anchor_before(range.start)..before_edit.anchor_after(range.end), first_line_is_new: true, indent_size: before_edit.language_indent_size_at(range.start, cx), original_indent_column: None, }) .collect(); self.autoindent_requests.push(Arc::new(AutoindentRequest { before_edit, entries, is_block_mode: false, ignore_empty_lines: true, })); self.request_autoindent(cx); } // Inserts newlines at the given position to create an empty line, returning the start of the new line. // You can also request the insertion of empty lines above and below the line starting at the returned point. pub fn insert_empty_line( &mut self, position: impl ToPoint, space_above: bool, space_below: bool, cx: &mut Context, ) -> Point { let mut position = position.to_point(self); self.start_transaction(); self.edit( [(position..position, "\n")], Some(AutoindentMode::EachLine), cx, ); if position.column > 0 { position += Point::new(1, 0); } if !self.is_line_blank(position.row) { self.edit( [(position..position, "\n")], Some(AutoindentMode::EachLine), cx, ); } if space_above && position.row > 0 && !self.is_line_blank(position.row - 1) { self.edit( [(position..position, "\n")], Some(AutoindentMode::EachLine), cx, ); position.row += 1; } if space_below && (position.row == self.max_point().row || !self.is_line_blank(position.row + 1)) { self.edit( [(position..position, "\n")], Some(AutoindentMode::EachLine), cx, ); } self.end_transaction(cx); position } /// Applies the given remote operations to the buffer. pub fn apply_ops>(&mut self, ops: I, cx: &mut Context) { self.pending_autoindent.take(); let was_dirty = self.is_dirty(); let old_version = self.version.clone(); let mut deferred_ops = Vec::new(); let buffer_ops = ops .into_iter() .filter_map(|op| match op { Operation::Buffer(op) => Some(op), _ => { if self.can_apply_op(&op) { self.apply_op(op, cx); } else { deferred_ops.push(op); } None } }) .collect::>(); for operation in buffer_ops.iter() { self.send_operation(Operation::Buffer(operation.clone()), false, cx); } self.text.apply_ops(buffer_ops); self.deferred_ops.insert(deferred_ops); self.flush_deferred_ops(cx); self.did_edit(&old_version, was_dirty, cx); // Notify independently of whether the buffer was edited as the operations could include a // selection update. cx.notify(); } fn flush_deferred_ops(&mut self, cx: &mut Context) { let mut deferred_ops = Vec::new(); for op in self.deferred_ops.drain().iter().cloned() { if self.can_apply_op(&op) { self.apply_op(op, cx); } else { deferred_ops.push(op); } } self.deferred_ops.insert(deferred_ops); } pub fn has_deferred_ops(&self) -> bool { !self.deferred_ops.is_empty() || self.text.has_deferred_ops() } fn can_apply_op(&self, operation: &Operation) -> bool { match operation { Operation::Buffer(_) => { unreachable!("buffer operations should never be applied at this layer") } Operation::UpdateDiagnostics { diagnostics: diagnostic_set, .. } => diagnostic_set.iter().all(|diagnostic| { self.text.can_resolve(&diagnostic.range.start) && self.text.can_resolve(&diagnostic.range.end) }), Operation::UpdateSelections { selections, .. } => selections .iter() .all(|s| self.can_resolve(&s.start) && self.can_resolve(&s.end)), Operation::UpdateCompletionTriggers { .. } => true, } } fn apply_op(&mut self, operation: Operation, cx: &mut Context) { match operation { Operation::Buffer(_) => { unreachable!("buffer operations should never be applied at this layer") } Operation::UpdateDiagnostics { server_id, diagnostics: diagnostic_set, lamport_timestamp, } => { let snapshot = self.snapshot(); self.apply_diagnostic_update( server_id, DiagnosticSet::from_sorted_entries(diagnostic_set.iter().cloned(), &snapshot), lamport_timestamp, cx, ); } Operation::UpdateSelections { selections, lamport_timestamp, line_mode, cursor_shape, } => { if let Some(set) = self.remote_selections.get(&lamport_timestamp.replica_id) { if set.lamport_timestamp > lamport_timestamp { return; } } self.remote_selections.insert( lamport_timestamp.replica_id, SelectionSet { selections, lamport_timestamp, line_mode, cursor_shape, }, ); self.text.lamport_clock.observe(lamport_timestamp); self.non_text_state_update_count += 1; } Operation::UpdateCompletionTriggers { triggers, lamport_timestamp, server_id, } => { if triggers.is_empty() { self.completion_triggers_per_language_server .remove(&server_id); self.completion_triggers = self .completion_triggers_per_language_server .values() .flat_map(|triggers| triggers.into_iter().cloned()) .collect(); } else { self.completion_triggers_per_language_server .insert(server_id, triggers.iter().cloned().collect()); self.completion_triggers.extend(triggers); } self.text.lamport_clock.observe(lamport_timestamp); } } } fn apply_diagnostic_update( &mut self, server_id: LanguageServerId, diagnostics: DiagnosticSet, lamport_timestamp: clock::Lamport, cx: &mut Context, ) { if lamport_timestamp > self.diagnostics_timestamp { let ix = self.diagnostics.binary_search_by_key(&server_id, |e| e.0); if diagnostics.is_empty() { if let Ok(ix) = ix { self.diagnostics.remove(ix); } } else { match ix { Err(ix) => self.diagnostics.insert(ix, (server_id, diagnostics)), Ok(ix) => self.diagnostics[ix].1 = diagnostics, }; } self.diagnostics_timestamp = lamport_timestamp; self.non_text_state_update_count += 1; self.text.lamport_clock.observe(lamport_timestamp); cx.notify(); cx.emit(BufferEvent::DiagnosticsUpdated); } } fn send_operation(&mut self, operation: Operation, is_local: bool, cx: &mut Context) { self.was_changed(); cx.emit(BufferEvent::Operation { operation, is_local, }); } /// Removes the selections for a given peer. pub fn remove_peer(&mut self, replica_id: ReplicaId, cx: &mut Context) { self.remote_selections.remove(&replica_id); cx.notify(); } /// Undoes the most recent transaction. pub fn undo(&mut self, cx: &mut Context) -> Option { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); if let Some((transaction_id, operation)) = self.text.undo() { self.send_operation(Operation::Buffer(operation), true, cx); self.did_edit(&old_version, was_dirty, cx); Some(transaction_id) } else { None } } /// Manually undoes a specific transaction in the buffer's undo history. pub fn undo_transaction( &mut self, transaction_id: TransactionId, cx: &mut Context, ) -> bool { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); if let Some(operation) = self.text.undo_transaction(transaction_id) { self.send_operation(Operation::Buffer(operation), true, cx); self.did_edit(&old_version, was_dirty, cx); true } else { false } } /// Manually undoes all changes after a given transaction in the buffer's undo history. pub fn undo_to_transaction( &mut self, transaction_id: TransactionId, cx: &mut Context, ) -> bool { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); let operations = self.text.undo_to_transaction(transaction_id); let undone = !operations.is_empty(); for operation in operations { self.send_operation(Operation::Buffer(operation), true, cx); } if undone { self.did_edit(&old_version, was_dirty, cx) } undone } pub fn undo_operations(&mut self, counts: HashMap, cx: &mut Context) { let was_dirty = self.is_dirty(); let operation = self.text.undo_operations(counts); let old_version = self.version.clone(); self.send_operation(Operation::Buffer(operation), true, cx); self.did_edit(&old_version, was_dirty, cx); } /// Manually redoes a specific transaction in the buffer's redo history. pub fn redo(&mut self, cx: &mut Context) -> Option { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); if let Some((transaction_id, operation)) = self.text.redo() { self.send_operation(Operation::Buffer(operation), true, cx); self.did_edit(&old_version, was_dirty, cx); Some(transaction_id) } else { None } } /// Manually undoes all changes until a given transaction in the buffer's redo history. pub fn redo_to_transaction( &mut self, transaction_id: TransactionId, cx: &mut Context, ) -> bool { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); let operations = self.text.redo_to_transaction(transaction_id); let redone = !operations.is_empty(); for operation in operations { self.send_operation(Operation::Buffer(operation), true, cx); } if redone { self.did_edit(&old_version, was_dirty, cx) } redone } /// Override current completion triggers with the user-provided completion triggers. pub fn set_completion_triggers( &mut self, server_id: LanguageServerId, triggers: BTreeSet, cx: &mut Context, ) { self.completion_triggers_timestamp = self.text.lamport_clock.tick(); if triggers.is_empty() { self.completion_triggers_per_language_server .remove(&server_id); self.completion_triggers = self .completion_triggers_per_language_server .values() .flat_map(|triggers| triggers.into_iter().cloned()) .collect(); } else { self.completion_triggers_per_language_server .insert(server_id, triggers.clone()); self.completion_triggers.extend(triggers.iter().cloned()); } self.send_operation( Operation::UpdateCompletionTriggers { triggers: triggers.iter().cloned().collect(), lamport_timestamp: self.completion_triggers_timestamp, server_id, }, true, cx, ); cx.notify(); } /// Returns a list of strings which trigger a completion menu for this language. /// Usually this is driven by LSP server which returns a list of trigger characters for completions. pub fn completion_triggers(&self) -> &BTreeSet { &self.completion_triggers } /// Call this directly after performing edits to prevent the preview tab /// from being dismissed by those edits. It causes `should_dismiss_preview` /// to return false until there are additional edits. pub fn refresh_preview(&mut self) { self.preview_version = self.version.clone(); } /// Whether we should preserve the preview status of a tab containing this buffer. pub fn preserve_preview(&self) -> bool { !self.has_edits_since(&self.preview_version) } } #[doc(hidden)] #[cfg(any(test, feature = "test-support"))] impl Buffer { pub fn edit_via_marked_text( &mut self, marked_string: &str, autoindent_mode: Option, cx: &mut Context, ) { let edits = self.edits_for_marked_text(marked_string); self.edit(edits, autoindent_mode, cx); } pub fn set_group_interval(&mut self, group_interval: Duration) { self.text.set_group_interval(group_interval); } pub fn randomly_edit(&mut self, rng: &mut T, old_range_count: usize, cx: &mut Context) where T: rand::Rng, { let mut edits: Vec<(Range, String)> = Vec::new(); let mut last_end = None; for _ in 0..old_range_count { if last_end.map_or(false, |last_end| last_end >= self.len()) { break; } let new_start = last_end.map_or(0, |last_end| last_end + 1); let mut range = self.random_byte_range(new_start, rng); if rng.gen_bool(0.2) { mem::swap(&mut range.start, &mut range.end); } last_end = Some(range.end); let new_text_len = rng.gen_range(0..10); let mut new_text: String = RandomCharIter::new(&mut *rng).take(new_text_len).collect(); new_text = new_text.to_uppercase(); edits.push((range, new_text)); } log::info!("mutating buffer {} with {:?}", self.replica_id(), edits); self.edit(edits, None, cx); } pub fn randomly_undo_redo(&mut self, rng: &mut impl rand::Rng, cx: &mut Context) { let was_dirty = self.is_dirty(); let old_version = self.version.clone(); let ops = self.text.randomly_undo_redo(rng); if !ops.is_empty() { for op in ops { self.send_operation(Operation::Buffer(op), true, cx); self.did_edit(&old_version, was_dirty, cx); } } } } impl EventEmitter for Buffer {} impl Deref for Buffer { type Target = TextBuffer; fn deref(&self) -> &Self::Target { &self.text } } impl BufferSnapshot { /// Returns [`IndentSize`] for a given line that respects user settings and /// language preferences. pub fn indent_size_for_line(&self, row: u32) -> IndentSize { indent_size_for_line(self, row) } /// Returns [`IndentSize`] for a given position that respects user settings /// and language preferences. pub fn language_indent_size_at(&self, position: T, cx: &App) -> IndentSize { let settings = language_settings( self.language_at(position).map(|l| l.name()), self.file(), cx, ); if settings.hard_tabs { IndentSize::tab() } else { IndentSize::spaces(settings.tab_size.get()) } } /// Retrieve the suggested indent size for all of the given rows. The unit of indentation /// is passed in as `single_indent_size`. pub fn suggested_indents( &self, rows: impl Iterator, single_indent_size: IndentSize, ) -> BTreeMap { let mut result = BTreeMap::new(); for row_range in contiguous_ranges(rows, 10) { let suggestions = match self.suggest_autoindents(row_range.clone()) { Some(suggestions) => suggestions, _ => break, }; for (row, suggestion) in row_range.zip(suggestions) { let indent_size = if let Some(suggestion) = suggestion { result .get(&suggestion.basis_row) .copied() .unwrap_or_else(|| self.indent_size_for_line(suggestion.basis_row)) .with_delta(suggestion.delta, single_indent_size) } else { self.indent_size_for_line(row) }; result.insert(row, indent_size); } } result } fn suggest_autoindents( &self, row_range: Range, ) -> Option> + '_> { let config = &self.language.as_ref()?.config; let prev_non_blank_row = self.prev_non_blank_row(row_range.start); // Find the suggested indentation ranges based on the syntax tree. let start = Point::new(prev_non_blank_row.unwrap_or(row_range.start), 0); let end = Point::new(row_range.end, 0); let range = (start..end).to_offset(&self.text); let mut matches = self.syntax.matches(range.clone(), &self.text, |grammar| { Some(&grammar.indents_config.as_ref()?.query) }); let indent_configs = matches .grammars() .iter() .map(|grammar| grammar.indents_config.as_ref().unwrap()) .collect::>(); let mut indent_ranges = Vec::>::new(); let mut outdent_positions = Vec::::new(); while let Some(mat) = matches.peek() { let mut start: Option = None; let mut end: Option = None; let config = &indent_configs[mat.grammar_index]; for capture in mat.captures { if capture.index == config.indent_capture_ix { start.get_or_insert(Point::from_ts_point(capture.node.start_position())); end.get_or_insert(Point::from_ts_point(capture.node.end_position())); } else if Some(capture.index) == config.start_capture_ix { start = Some(Point::from_ts_point(capture.node.end_position())); } else if Some(capture.index) == config.end_capture_ix { end = Some(Point::from_ts_point(capture.node.start_position())); } else if Some(capture.index) == config.outdent_capture_ix { outdent_positions.push(Point::from_ts_point(capture.node.start_position())); } } matches.advance(); if let Some((start, end)) = start.zip(end) { if start.row == end.row { continue; } let range = start..end; match indent_ranges.binary_search_by_key(&range.start, |r| r.start) { Err(ix) => indent_ranges.insert(ix, range), Ok(ix) => { let prev_range = &mut indent_ranges[ix]; prev_range.end = prev_range.end.max(range.end); } } } } let mut error_ranges = Vec::>::new(); let mut matches = self.syntax.matches(range.clone(), &self.text, |grammar| { grammar.error_query.as_ref() }); while let Some(mat) = matches.peek() { let node = mat.captures[0].node; let start = Point::from_ts_point(node.start_position()); let end = Point::from_ts_point(node.end_position()); let range = start..end; let ix = match error_ranges.binary_search_by_key(&range.start, |r| r.start) { Ok(ix) | Err(ix) => ix, }; let mut end_ix = ix; while let Some(existing_range) = error_ranges.get(end_ix) { if existing_range.end < end { end_ix += 1; } else { break; } } error_ranges.splice(ix..end_ix, [range]); matches.advance(); } outdent_positions.sort(); for outdent_position in outdent_positions { // find the innermost indent range containing this outdent_position // set its end to the outdent position if let Some(range_to_truncate) = indent_ranges .iter_mut() .filter(|indent_range| indent_range.contains(&outdent_position)) .last() { range_to_truncate.end = outdent_position; } } // Find the suggested indentation increases and decreased based on regexes. let mut indent_change_rows = Vec::<(u32, Ordering)>::new(); self.for_each_line( Point::new(prev_non_blank_row.unwrap_or(row_range.start), 0) ..Point::new(row_range.end, 0), |row, line| { if config .decrease_indent_pattern .as_ref() .map_or(false, |regex| regex.is_match(line)) { indent_change_rows.push((row, Ordering::Less)); } if config .increase_indent_pattern .as_ref() .map_or(false, |regex| regex.is_match(line)) { indent_change_rows.push((row + 1, Ordering::Greater)); } }, ); let mut indent_changes = indent_change_rows.into_iter().peekable(); let mut prev_row = if config.auto_indent_using_last_non_empty_line { prev_non_blank_row.unwrap_or(0) } else { row_range.start.saturating_sub(1) }; let mut prev_row_start = Point::new(prev_row, self.indent_size_for_line(prev_row).len); Some(row_range.map(move |row| { let row_start = Point::new(row, self.indent_size_for_line(row).len); let mut indent_from_prev_row = false; let mut outdent_from_prev_row = false; let mut outdent_to_row = u32::MAX; let mut from_regex = false; while let Some((indent_row, delta)) = indent_changes.peek() { match indent_row.cmp(&row) { Ordering::Equal => match delta { Ordering::Less => { from_regex = true; outdent_from_prev_row = true } Ordering::Greater => { indent_from_prev_row = true; from_regex = true } _ => {} }, Ordering::Greater => break, Ordering::Less => {} } indent_changes.next(); } for range in &indent_ranges { if range.start.row >= row { break; } if range.start.row == prev_row && range.end > row_start { indent_from_prev_row = true; } if range.end > prev_row_start && range.end <= row_start { outdent_to_row = outdent_to_row.min(range.start.row); } } let within_error = error_ranges .iter() .any(|e| e.start.row < row && e.end > row_start); let suggestion = if outdent_to_row == prev_row || (outdent_from_prev_row && indent_from_prev_row) { Some(IndentSuggestion { basis_row: prev_row, delta: Ordering::Equal, within_error: within_error && !from_regex, }) } else if indent_from_prev_row { Some(IndentSuggestion { basis_row: prev_row, delta: Ordering::Greater, within_error: within_error && !from_regex, }) } else if outdent_to_row < prev_row { Some(IndentSuggestion { basis_row: outdent_to_row, delta: Ordering::Equal, within_error: within_error && !from_regex, }) } else if outdent_from_prev_row { Some(IndentSuggestion { basis_row: prev_row, delta: Ordering::Less, within_error: within_error && !from_regex, }) } else if config.auto_indent_using_last_non_empty_line || !self.is_line_blank(prev_row) { Some(IndentSuggestion { basis_row: prev_row, delta: Ordering::Equal, within_error: within_error && !from_regex, }) } else { None }; prev_row = row; prev_row_start = row_start; suggestion })) } fn prev_non_blank_row(&self, mut row: u32) -> Option { while row > 0 { row -= 1; if !self.is_line_blank(row) { return Some(row); } } None } fn get_highlights(&self, range: Range) -> (SyntaxMapCaptures, Vec) { let captures = self.syntax.captures(range, &self.text, |grammar| { grammar.highlights_query.as_ref() }); let highlight_maps = captures .grammars() .iter() .map(|grammar| grammar.highlight_map()) .collect(); (captures, highlight_maps) } /// Iterates over chunks of text in the given range of the buffer. Text is chunked /// in an arbitrary way due to being stored in a [`Rope`](text::Rope). The text is also /// returned in chunks where each chunk has a single syntax highlighting style and /// diagnostic status. pub fn chunks(&self, range: Range, language_aware: bool) -> BufferChunks { let range = range.start.to_offset(self)..range.end.to_offset(self); let mut syntax = None; if language_aware { syntax = Some(self.get_highlights(range.clone())); } // We want to look at diagnostic spans only when iterating over language-annotated chunks. let diagnostics = language_aware; BufferChunks::new(self.text.as_rope(), range, syntax, diagnostics, Some(self)) } pub fn highlighted_text_for_range( &self, range: Range, override_style: Option, syntax_theme: &SyntaxTheme, ) -> HighlightedText { HighlightedText::from_buffer_range( range, &self.text, &self.syntax, override_style, syntax_theme, ) } /// Invokes the given callback for each line of text in the given range of the buffer. /// Uses callback to avoid allocating a string for each line. fn for_each_line(&self, range: Range, mut callback: impl FnMut(u32, &str)) { let mut line = String::new(); let mut row = range.start.row; for chunk in self .as_rope() .chunks_in_range(range.to_offset(self)) .chain(["\n"]) { for (newline_ix, text) in chunk.split('\n').enumerate() { if newline_ix > 0 { callback(row, &line); row += 1; line.clear(); } line.push_str(text); } } } /// Iterates over every [`SyntaxLayer`] in the buffer. pub fn syntax_layers(&self) -> impl Iterator + '_ { self.syntax .layers_for_range(0..self.len(), &self.text, true) } pub fn syntax_layer_at(&self, position: D) -> Option { let offset = position.to_offset(self); self.syntax .layers_for_range(offset..offset, &self.text, false) .filter(|l| l.node().end_byte() > offset) .last() } pub fn smallest_syntax_layer_containing( &self, range: Range, ) -> Option { let range = range.to_offset(self); return self .syntax .layers_for_range(range, &self.text, false) .max_by(|a, b| { if a.depth != b.depth { a.depth.cmp(&b.depth) } else if a.offset.0 != b.offset.0 { a.offset.0.cmp(&b.offset.0) } else { a.node().end_byte().cmp(&b.node().end_byte()).reverse() } }); } /// Returns the main [`Language`]. pub fn language(&self) -> Option<&Arc> { self.language.as_ref() } /// Returns the [`Language`] at the given location. pub fn language_at(&self, position: D) -> Option<&Arc> { self.syntax_layer_at(position) .map(|info| info.language) .or(self.language.as_ref()) } /// Returns the settings for the language at the given location. pub fn settings_at<'a, D: ToOffset>( &'a self, position: D, cx: &'a App, ) -> Cow<'a, LanguageSettings> { language_settings( self.language_at(position).map(|l| l.name()), self.file.as_ref(), cx, ) } pub fn char_classifier_at(&self, point: T) -> CharClassifier { CharClassifier::new(self.language_scope_at(point)) } /// Returns the [`LanguageScope`] at the given location. pub fn language_scope_at(&self, position: D) -> Option { let offset = position.to_offset(self); let mut scope = None; let mut smallest_range: Option> = None; // Use the layer that has the smallest node intersecting the given point. for layer in self .syntax .layers_for_range(offset..offset, &self.text, false) { let mut cursor = layer.node().walk(); let mut range = None; loop { let child_range = cursor.node().byte_range(); if !child_range.to_inclusive().contains(&offset) { break; } range = Some(child_range); if cursor.goto_first_child_for_byte(offset).is_none() { break; } } if let Some(range) = range { if smallest_range .as_ref() .map_or(true, |smallest_range| range.len() < smallest_range.len()) { smallest_range = Some(range); scope = Some(LanguageScope { language: layer.language.clone(), override_id: layer.override_id(offset, &self.text), }); } } } scope.or_else(|| { self.language.clone().map(|language| LanguageScope { language, override_id: None, }) }) } /// Returns a tuple of the range and character kind of the word /// surrounding the given position. pub fn surrounding_word(&self, start: T) -> (Range, Option) { let mut start = start.to_offset(self); let mut end = start; let mut next_chars = self.chars_at(start).peekable(); let mut prev_chars = self.reversed_chars_at(start).peekable(); let classifier = self.char_classifier_at(start); let word_kind = cmp::max( prev_chars.peek().copied().map(|c| classifier.kind(c)), next_chars.peek().copied().map(|c| classifier.kind(c)), ); for ch in prev_chars { if Some(classifier.kind(ch)) == word_kind && ch != '\n' { start -= ch.len_utf8(); } else { break; } } for ch in next_chars { if Some(classifier.kind(ch)) == word_kind && ch != '\n' { end += ch.len_utf8(); } else { break; } } (start..end, word_kind) } /// Returns the closest syntax node enclosing the given range. pub fn syntax_ancestor<'a, T: ToOffset>( &'a self, range: Range, ) -> Option> { let range = range.start.to_offset(self)..range.end.to_offset(self); let mut result: Option> = None; 'outer: for layer in self .syntax .layers_for_range(range.clone(), &self.text, true) { let mut cursor = layer.node().walk(); // Descend to the first leaf that touches the start of the range, // and if the range is non-empty, extends beyond the start. while cursor.goto_first_child_for_byte(range.start).is_some() { if !range.is_empty() && cursor.node().end_byte() == range.start { cursor.goto_next_sibling(); } } // Ascend to the smallest ancestor that strictly contains the range. loop { let node_range = cursor.node().byte_range(); if node_range.start <= range.start && node_range.end >= range.end && node_range.len() > range.len() { break; } if !cursor.goto_parent() { continue 'outer; } } let left_node = cursor.node(); let mut layer_result = left_node; // For an empty range, try to find another node immediately to the right of the range. if left_node.end_byte() == range.start { let mut right_node = None; while !cursor.goto_next_sibling() { if !cursor.goto_parent() { break; } } while cursor.node().start_byte() == range.start { right_node = Some(cursor.node()); if !cursor.goto_first_child() { break; } } // If there is a candidate node on both sides of the (empty) range, then // decide between the two by favoring a named node over an anonymous token. // If both nodes are the same in that regard, favor the right one. if let Some(right_node) = right_node { if right_node.is_named() || !left_node.is_named() { layer_result = right_node; } } } if let Some(previous_result) = &result { if previous_result.byte_range().len() < layer_result.byte_range().len() { continue; } } result = Some(layer_result); } result } /// Returns the outline for the buffer. /// /// This method allows passing an optional [`SyntaxTheme`] to /// syntax-highlight the returned symbols. pub fn outline(&self, theme: Option<&SyntaxTheme>) -> Option> { self.outline_items_containing(0..self.len(), true, theme) .map(Outline::new) } /// Returns all the symbols that contain the given position. /// /// This method allows passing an optional [`SyntaxTheme`] to /// syntax-highlight the returned symbols. pub fn symbols_containing( &self, position: T, theme: Option<&SyntaxTheme>, ) -> Option>> { let position = position.to_offset(self); let mut items = self.outline_items_containing( position.saturating_sub(1)..self.len().min(position + 1), false, theme, )?; let mut prev_depth = None; items.retain(|item| { let result = prev_depth.map_or(true, |prev_depth| item.depth > prev_depth); prev_depth = Some(item.depth); result }); Some(items) } pub fn outline_range_containing(&self, range: Range) -> Option> { let range = range.to_offset(self); let mut matches = self.syntax.matches(range.clone(), &self.text, |grammar| { grammar.outline_config.as_ref().map(|c| &c.query) }); let configs = matches .grammars() .iter() .map(|g| g.outline_config.as_ref().unwrap()) .collect::>(); while let Some(mat) = matches.peek() { let config = &configs[mat.grammar_index]; let containing_item_node = maybe!({ let item_node = mat.captures.iter().find_map(|cap| { if cap.index == config.item_capture_ix { Some(cap.node) } else { None } })?; let item_byte_range = item_node.byte_range(); if item_byte_range.end < range.start || item_byte_range.start > range.end { None } else { Some(item_node) } }); if let Some(item_node) = containing_item_node { return Some( Point::from_ts_point(item_node.start_position()) ..Point::from_ts_point(item_node.end_position()), ); } matches.advance(); } None } pub fn outline_items_containing( &self, range: Range, include_extra_context: bool, theme: Option<&SyntaxTheme>, ) -> Option>> { let range = range.to_offset(self); let mut matches = self.syntax.matches(range.clone(), &self.text, |grammar| { grammar.outline_config.as_ref().map(|c| &c.query) }); let configs = matches .grammars() .iter() .map(|g| g.outline_config.as_ref().unwrap()) .collect::>(); let mut items = Vec::new(); let mut annotation_row_ranges: Vec> = Vec::new(); while let Some(mat) = matches.peek() { let config = &configs[mat.grammar_index]; if let Some(item) = self.next_outline_item(config, &mat, &range, include_extra_context, theme) { items.push(item); } else if let Some(capture) = mat .captures .iter() .find(|capture| Some(capture.index) == config.annotation_capture_ix) { let capture_range = capture.node.start_position()..capture.node.end_position(); let mut capture_row_range = capture_range.start.row as u32..capture_range.end.row as u32; if capture_range.end.row > capture_range.start.row && capture_range.end.column == 0 { capture_row_range.end -= 1; } if let Some(last_row_range) = annotation_row_ranges.last_mut() { if last_row_range.end >= capture_row_range.start.saturating_sub(1) { last_row_range.end = capture_row_range.end; } else { annotation_row_ranges.push(capture_row_range); } } else { annotation_row_ranges.push(capture_row_range); } } matches.advance(); } items.sort_by_key(|item| (item.range.start, Reverse(item.range.end))); // Assign depths based on containment relationships and convert to anchors. let mut item_ends_stack = Vec::::new(); let mut anchor_items = Vec::new(); let mut annotation_row_ranges = annotation_row_ranges.into_iter().peekable(); for item in items { while let Some(last_end) = item_ends_stack.last().copied() { if last_end < item.range.end { item_ends_stack.pop(); } else { break; } } let mut annotation_row_range = None; while let Some(next_annotation_row_range) = annotation_row_ranges.peek() { let row_preceding_item = item.range.start.row.saturating_sub(1); if next_annotation_row_range.end < row_preceding_item { annotation_row_ranges.next(); } else { if next_annotation_row_range.end == row_preceding_item { annotation_row_range = Some(next_annotation_row_range.clone()); annotation_row_ranges.next(); } break; } } anchor_items.push(OutlineItem { depth: item_ends_stack.len(), range: self.anchor_after(item.range.start)..self.anchor_before(item.range.end), text: item.text, highlight_ranges: item.highlight_ranges, name_ranges: item.name_ranges, body_range: item.body_range.map(|body_range| { self.anchor_after(body_range.start)..self.anchor_before(body_range.end) }), annotation_range: annotation_row_range.map(|annotation_range| { self.anchor_after(Point::new(annotation_range.start, 0)) ..self.anchor_before(Point::new( annotation_range.end, self.line_len(annotation_range.end), )) }), }); item_ends_stack.push(item.range.end); } Some(anchor_items) } fn next_outline_item( &self, config: &OutlineConfig, mat: &SyntaxMapMatch, range: &Range, include_extra_context: bool, theme: Option<&SyntaxTheme>, ) -> Option> { let item_node = mat.captures.iter().find_map(|cap| { if cap.index == config.item_capture_ix { Some(cap.node) } else { None } })?; let item_byte_range = item_node.byte_range(); if item_byte_range.end < range.start || item_byte_range.start > range.end { return None; } let item_point_range = Point::from_ts_point(item_node.start_position()) ..Point::from_ts_point(item_node.end_position()); let mut open_point = None; let mut close_point = None; let mut buffer_ranges = Vec::new(); for capture in mat.captures { let node_is_name; if capture.index == config.name_capture_ix { node_is_name = true; } else if Some(capture.index) == config.context_capture_ix || (Some(capture.index) == config.extra_context_capture_ix && include_extra_context) { node_is_name = false; } else { if Some(capture.index) == config.open_capture_ix { open_point = Some(Point::from_ts_point(capture.node.end_position())); } else if Some(capture.index) == config.close_capture_ix { close_point = Some(Point::from_ts_point(capture.node.start_position())); } continue; } let mut range = capture.node.start_byte()..capture.node.end_byte(); let start = capture.node.start_position(); if capture.node.end_position().row > start.row { range.end = range.start + self.line_len(start.row as u32) as usize - start.column; } if !range.is_empty() { buffer_ranges.push((range, node_is_name)); } } if buffer_ranges.is_empty() { return None; } let mut text = String::new(); let mut highlight_ranges = Vec::new(); let mut name_ranges = Vec::new(); let mut chunks = self.chunks( buffer_ranges.first().unwrap().0.start..buffer_ranges.last().unwrap().0.end, true, ); let mut last_buffer_range_end = 0; for (buffer_range, is_name) in buffer_ranges { let space_added = !text.is_empty() && buffer_range.start > last_buffer_range_end; if space_added { text.push(' '); } let before_append_len = text.len(); let mut offset = buffer_range.start; chunks.seek(buffer_range.clone()); for mut chunk in chunks.by_ref() { if chunk.text.len() > buffer_range.end - offset { chunk.text = &chunk.text[0..(buffer_range.end - offset)]; offset = buffer_range.end; } else { offset += chunk.text.len(); } let style = chunk .syntax_highlight_id .zip(theme) .and_then(|(highlight, theme)| highlight.style(theme)); if let Some(style) = style { let start = text.len(); let end = start + chunk.text.len(); highlight_ranges.push((start..end, style)); } text.push_str(chunk.text); if offset >= buffer_range.end { break; } } if is_name { let after_append_len = text.len(); let start = if space_added && !name_ranges.is_empty() { before_append_len - 1 } else { before_append_len }; name_ranges.push(start..after_append_len); } last_buffer_range_end = buffer_range.end; } Some(OutlineItem { depth: 0, // We'll calculate the depth later range: item_point_range, text, highlight_ranges, name_ranges, body_range: open_point.zip(close_point).map(|(start, end)| start..end), annotation_range: None, }) } pub fn function_body_fold_ranges( &self, within: Range, ) -> impl Iterator> + '_ { self.text_object_ranges(within, TreeSitterOptions::default()) .filter_map(|(range, obj)| (obj == TextObject::InsideFunction).then_some(range)) } /// For each grammar in the language, runs the provided /// [`tree_sitter::Query`] against the given range. pub fn matches( &self, range: Range, query: fn(&Grammar) -> Option<&tree_sitter::Query>, ) -> SyntaxMapMatches { self.syntax.matches(range, self, query) } pub fn all_bracket_ranges( &self, range: Range, ) -> impl Iterator + '_ { let mut matches = self.syntax.matches(range.clone(), &self.text, |grammar| { grammar.brackets_config.as_ref().map(|c| &c.query) }); let configs = matches .grammars() .iter() .map(|grammar| grammar.brackets_config.as_ref().unwrap()) .collect::>(); iter::from_fn(move || { while let Some(mat) = matches.peek() { let mut open = None; let mut close = None; let config = &configs[mat.grammar_index]; let pattern = &config.patterns[mat.pattern_index]; for capture in mat.captures { if capture.index == config.open_capture_ix { open = Some(capture.node.byte_range()); } else if capture.index == config.close_capture_ix { close = Some(capture.node.byte_range()); } } matches.advance(); let Some((open_range, close_range)) = open.zip(close) else { continue; }; let bracket_range = open_range.start..=close_range.end; if !bracket_range.overlaps(&range) { continue; } return Some(BracketMatch { open_range, close_range, newline_only: pattern.newline_only, }); } None }) } /// Returns bracket range pairs overlapping or adjacent to `range` pub fn bracket_ranges( &self, range: Range, ) -> impl Iterator + '_ { // Find bracket pairs that *inclusively* contain the given range. let range = range.start.to_offset(self).saturating_sub(1) ..self.len().min(range.end.to_offset(self) + 1); self.all_bracket_ranges(range) .filter(|pair| !pair.newline_only) } pub fn text_object_ranges( &self, range: Range, options: TreeSitterOptions, ) -> impl Iterator, TextObject)> + '_ { let range = range.start.to_offset(self).saturating_sub(1) ..self.len().min(range.end.to_offset(self) + 1); let mut matches = self.syntax .matches_with_options(range.clone(), &self.text, options, |grammar| { grammar.text_object_config.as_ref().map(|c| &c.query) }); let configs = matches .grammars() .iter() .map(|grammar| grammar.text_object_config.as_ref()) .collect::>(); let mut captures = Vec::<(Range, TextObject)>::new(); iter::from_fn(move || loop { while let Some(capture) = captures.pop() { if capture.0.overlaps(&range) { return Some(capture); } } let mat = matches.peek()?; let Some(config) = configs[mat.grammar_index].as_ref() else { matches.advance(); continue; }; for capture in mat.captures { let Some(ix) = config .text_objects_by_capture_ix .binary_search_by_key(&capture.index, |e| e.0) .ok() else { continue; }; let text_object = config.text_objects_by_capture_ix[ix].1; let byte_range = capture.node.byte_range(); let mut found = false; for (range, existing) in captures.iter_mut() { if existing == &text_object { range.start = range.start.min(byte_range.start); range.end = range.end.max(byte_range.end); found = true; break; } } if !found { captures.push((byte_range, text_object)); } } matches.advance(); }) } /// Returns enclosing bracket ranges containing the given range pub fn enclosing_bracket_ranges( &self, range: Range, ) -> impl Iterator + '_ { let range = range.start.to_offset(self)..range.end.to_offset(self); self.bracket_ranges(range.clone()).filter(move |pair| { pair.open_range.start <= range.start && pair.close_range.end >= range.end }) } /// Returns the smallest enclosing bracket ranges containing the given range or None if no brackets contain range /// /// Can optionally pass a range_filter to filter the ranges of brackets to consider pub fn innermost_enclosing_bracket_ranges( &self, range: Range, range_filter: Option<&dyn Fn(Range, Range) -> bool>, ) -> Option<(Range, Range)> { let range = range.start.to_offset(self)..range.end.to_offset(self); // Get the ranges of the innermost pair of brackets. let mut result: Option<(Range, Range)> = None; for pair in self.enclosing_bracket_ranges(range.clone()) { if let Some(range_filter) = range_filter { if !range_filter(pair.open_range.clone(), pair.close_range.clone()) { continue; } } let len = pair.close_range.end - pair.open_range.start; if let Some((existing_open, existing_close)) = &result { let existing_len = existing_close.end - existing_open.start; if len > existing_len { continue; } } result = Some((pair.open_range, pair.close_range)); } result } /// Returns anchor ranges for any matches of the redaction query. /// The buffer can be associated with multiple languages, and the redaction query associated with each /// will be run on the relevant section of the buffer. pub fn redacted_ranges( &self, range: Range, ) -> impl Iterator> + '_ { let offset_range = range.start.to_offset(self)..range.end.to_offset(self); let mut syntax_matches = self.syntax.matches(offset_range, self, |grammar| { grammar .redactions_config .as_ref() .map(|config| &config.query) }); let configs = syntax_matches .grammars() .iter() .map(|grammar| grammar.redactions_config.as_ref()) .collect::>(); iter::from_fn(move || { let redacted_range = syntax_matches .peek() .and_then(|mat| { configs[mat.grammar_index].and_then(|config| { mat.captures .iter() .find(|capture| capture.index == config.redaction_capture_ix) }) }) .map(|mat| mat.node.byte_range()); syntax_matches.advance(); redacted_range }) } pub fn injections_intersecting_range( &self, range: Range, ) -> impl Iterator, &Arc)> + '_ { let offset_range = range.start.to_offset(self)..range.end.to_offset(self); let mut syntax_matches = self.syntax.matches(offset_range, self, |grammar| { grammar .injection_config .as_ref() .map(|config| &config.query) }); let configs = syntax_matches .grammars() .iter() .map(|grammar| grammar.injection_config.as_ref()) .collect::>(); iter::from_fn(move || { let ranges = syntax_matches.peek().and_then(|mat| { let config = &configs[mat.grammar_index]?; let content_capture_range = mat.captures.iter().find_map(|capture| { if capture.index == config.content_capture_ix { Some(capture.node.byte_range()) } else { None } })?; let language = self.language_at(content_capture_range.start)?; Some((content_capture_range, language)) }); syntax_matches.advance(); ranges }) } pub fn runnable_ranges( &self, offset_range: Range, ) -> impl Iterator + '_ { let mut syntax_matches = self.syntax.matches(offset_range, self, |grammar| { grammar.runnable_config.as_ref().map(|config| &config.query) }); let test_configs = syntax_matches .grammars() .iter() .map(|grammar| grammar.runnable_config.as_ref()) .collect::>(); iter::from_fn(move || loop { let mat = syntax_matches.peek()?; let test_range = test_configs[mat.grammar_index].and_then(|test_configs| { let mut run_range = None; let full_range = mat.captures.iter().fold( Range { start: usize::MAX, end: 0, }, |mut acc, next| { let byte_range = next.node.byte_range(); if acc.start > byte_range.start { acc.start = byte_range.start; } if acc.end < byte_range.end { acc.end = byte_range.end; } acc }, ); if full_range.start > full_range.end { // We did not find a full spanning range of this match. return None; } let extra_captures: SmallVec<[_; 1]> = SmallVec::from_iter(mat.captures.iter().filter_map(|capture| { test_configs .extra_captures .get(capture.index as usize) .cloned() .and_then(|tag_name| match tag_name { RunnableCapture::Named(name) => { Some((capture.node.byte_range(), name)) } RunnableCapture::Run => { let _ = run_range.insert(capture.node.byte_range()); None } }) })); let run_range = run_range?; let tags = test_configs .query .property_settings(mat.pattern_index) .iter() .filter_map(|property| { if *property.key == *"tag" { property .value .as_ref() .map(|value| RunnableTag(value.to_string().into())) } else { None } }) .collect(); let extra_captures = extra_captures .into_iter() .map(|(range, name)| { ( name.to_string(), self.text_for_range(range.clone()).collect::(), ) }) .collect(); // All tags should have the same range. Some(RunnableRange { run_range, full_range, runnable: Runnable { tags, language: mat.language, buffer: self.remote_id(), }, extra_captures, buffer_id: self.remote_id(), }) }); syntax_matches.advance(); if test_range.is_some() { // It's fine for us to short-circuit on .peek()? returning None. We don't want to return None from this iter if we // had a capture that did not contain a run marker, hence we'll just loop around for the next capture. return test_range; } }) } /// Returns selections for remote peers intersecting the given range. #[allow(clippy::type_complexity)] pub fn selections_in_range( &self, range: Range, include_local: bool, ) -> impl Iterator< Item = ( ReplicaId, bool, CursorShape, impl Iterator> + '_, ), > + '_ { self.remote_selections .iter() .filter(move |(replica_id, set)| { (include_local || **replica_id != self.text.replica_id()) && !set.selections.is_empty() }) .map(move |(replica_id, set)| { let start_ix = match set.selections.binary_search_by(|probe| { probe.end.cmp(&range.start, self).then(Ordering::Greater) }) { Ok(ix) | Err(ix) => ix, }; let end_ix = match set.selections.binary_search_by(|probe| { probe.start.cmp(&range.end, self).then(Ordering::Less) }) { Ok(ix) | Err(ix) => ix, }; ( *replica_id, set.line_mode, set.cursor_shape, set.selections[start_ix..end_ix].iter(), ) }) } /// Returns if the buffer contains any diagnostics. pub fn has_diagnostics(&self) -> bool { !self.diagnostics.is_empty() } /// Returns all the diagnostics intersecting the given range. pub fn diagnostics_in_range<'a, T, O>( &'a self, search_range: Range, reversed: bool, ) -> impl 'a + Iterator> where T: 'a + Clone + ToOffset, O: 'a + FromAnchor, { let mut iterators: Vec<_> = self .diagnostics .iter() .map(|(_, collection)| { collection .range::(search_range.clone(), self, true, reversed) .peekable() }) .collect(); std::iter::from_fn(move || { let (next_ix, _) = iterators .iter_mut() .enumerate() .flat_map(|(ix, iter)| Some((ix, iter.peek()?))) .min_by(|(_, a), (_, b)| { let cmp = a .range .start .cmp(&b.range.start, self) // when range is equal, sort by diagnostic severity .then(a.diagnostic.severity.cmp(&b.diagnostic.severity)) // and stabilize order with group_id .then(a.diagnostic.group_id.cmp(&b.diagnostic.group_id)); if reversed { cmp.reverse() } else { cmp } })?; iterators[next_ix] .next() .map(|DiagnosticEntry { range, diagnostic }| DiagnosticEntry { diagnostic, range: FromAnchor::from_anchor(&range.start, self) ..FromAnchor::from_anchor(&range.end, self), }) }) } /// Returns all the diagnostic groups associated with the given /// language server ID. If no language server ID is provided, /// all diagnostics groups are returned. pub fn diagnostic_groups( &self, language_server_id: Option, ) -> Vec<(LanguageServerId, DiagnosticGroup)> { let mut groups = Vec::new(); if let Some(language_server_id) = language_server_id { if let Ok(ix) = self .diagnostics .binary_search_by_key(&language_server_id, |e| e.0) { self.diagnostics[ix] .1 .groups(language_server_id, &mut groups, self); } } else { for (language_server_id, diagnostics) in self.diagnostics.iter() { diagnostics.groups(*language_server_id, &mut groups, self); } } groups.sort_by(|(id_a, group_a), (id_b, group_b)| { let a_start = &group_a.entries[group_a.primary_ix].range.start; let b_start = &group_b.entries[group_b.primary_ix].range.start; a_start.cmp(b_start, self).then_with(|| id_a.cmp(id_b)) }); groups } /// Returns an iterator over the diagnostics for the given group. pub fn diagnostic_group( &self, group_id: usize, ) -> impl Iterator> + '_ where O: FromAnchor + 'static, { self.diagnostics .iter() .flat_map(move |(_, set)| set.group(group_id, self)) } /// An integer version number that accounts for all updates besides /// the buffer's text itself (which is versioned via a version vector). pub fn non_text_state_update_count(&self) -> usize { self.non_text_state_update_count } /// Returns a snapshot of underlying file. pub fn file(&self) -> Option<&Arc> { self.file.as_ref() } /// Resolves the file path (relative to the worktree root) associated with the underlying file. pub fn resolve_file_path(&self, cx: &App, include_root: bool) -> Option { if let Some(file) = self.file() { if file.path().file_name().is_none() || include_root { Some(file.full_path(cx)) } else { Some(file.path().to_path_buf()) } } else { None } } pub fn words_in_range(&self, query: WordsQuery) -> HashMap> { let query_str = query.fuzzy_contents; if query_str.map_or(false, |query| query.is_empty()) { return HashMap::default(); } let classifier = CharClassifier::new(self.language.clone().map(|language| LanguageScope { language, override_id: None, })); let mut query_ix = 0; let query_chars = query_str.map(|query| query.chars().collect::>()); let query_len = query_chars.as_ref().map_or(0, |query| query.len()); let mut words = HashMap::default(); let mut current_word_start_ix = None; let mut chunk_ix = query.range.start; for chunk in self.chunks(query.range, false) { for (i, c) in chunk.text.char_indices() { let ix = chunk_ix + i; if classifier.is_word(c) { if current_word_start_ix.is_none() { current_word_start_ix = Some(ix); } if let Some(query_chars) = &query_chars { if query_ix < query_len { if c.to_lowercase().eq(query_chars[query_ix].to_lowercase()) { query_ix += 1; } } } continue; } else if let Some(word_start) = current_word_start_ix.take() { if query_ix == query_len { let word_range = self.anchor_before(word_start)..self.anchor_after(ix); let mut word_text = self.text_for_range(word_start..ix).peekable(); let first_char = word_text .peek() .and_then(|first_chunk| first_chunk.chars().next()); // Skip empty and "words" starting with digits as a heuristic to reduce useless completions if !query.skip_digits || first_char.map_or(true, |first_char| !first_char.is_digit(10)) { words.insert(word_text.collect(), word_range); } } } query_ix = 0; } chunk_ix += chunk.text.len(); } words } } pub struct WordsQuery<'a> { /// Only returns words with all chars from the fuzzy string in them. pub fuzzy_contents: Option<&'a str>, /// Skips words that start with a digit. pub skip_digits: bool, /// Buffer offset range, to look for words. pub range: Range, } fn indent_size_for_line(text: &text::BufferSnapshot, row: u32) -> IndentSize { indent_size_for_text(text.chars_at(Point::new(row, 0))) } fn indent_size_for_text(text: impl Iterator) -> IndentSize { let mut result = IndentSize::spaces(0); for c in text { let kind = match c { ' ' => IndentKind::Space, '\t' => IndentKind::Tab, _ => break, }; if result.len == 0 { result.kind = kind; } result.len += 1; } result } impl Clone for BufferSnapshot { fn clone(&self) -> Self { Self { text: self.text.clone(), syntax: self.syntax.clone(), file: self.file.clone(), remote_selections: self.remote_selections.clone(), diagnostics: self.diagnostics.clone(), language: self.language.clone(), non_text_state_update_count: self.non_text_state_update_count, } } } impl Deref for BufferSnapshot { type Target = text::BufferSnapshot; fn deref(&self) -> &Self::Target { &self.text } } unsafe impl Send for BufferChunks<'_> {} impl<'a> BufferChunks<'a> { pub(crate) fn new( text: &'a Rope, range: Range, syntax: Option<(SyntaxMapCaptures<'a>, Vec)>, diagnostics: bool, buffer_snapshot: Option<&'a BufferSnapshot>, ) -> Self { let mut highlights = None; if let Some((captures, highlight_maps)) = syntax { highlights = Some(BufferChunkHighlights { captures, next_capture: None, stack: Default::default(), highlight_maps, }) } let diagnostic_endpoints = diagnostics.then(|| Vec::new().into_iter().peekable()); let chunks = text.chunks_in_range(range.clone()); let mut this = BufferChunks { range, buffer_snapshot, chunks, diagnostic_endpoints, error_depth: 0, warning_depth: 0, information_depth: 0, hint_depth: 0, unnecessary_depth: 0, highlights, }; this.initialize_diagnostic_endpoints(); this } /// Seeks to the given byte offset in the buffer. pub fn seek(&mut self, range: Range) { let old_range = std::mem::replace(&mut self.range, range.clone()); self.chunks.set_range(self.range.clone()); if let Some(highlights) = self.highlights.as_mut() { if old_range.start <= self.range.start && old_range.end >= self.range.end { // Reuse existing highlights stack, as the new range is a subrange of the old one. highlights .stack .retain(|(end_offset, _)| *end_offset > range.start); if let Some(capture) = &highlights.next_capture { if range.start >= capture.node.start_byte() { let next_capture_end = capture.node.end_byte(); if range.start < next_capture_end { highlights.stack.push(( next_capture_end, highlights.highlight_maps[capture.grammar_index].get(capture.index), )); } highlights.next_capture.take(); } } } else if let Some(snapshot) = self.buffer_snapshot { let (captures, highlight_maps) = snapshot.get_highlights(self.range.clone()); *highlights = BufferChunkHighlights { captures, next_capture: None, stack: Default::default(), highlight_maps, }; } else { // We cannot obtain new highlights for a language-aware buffer iterator, as we don't have a buffer snapshot. // Seeking such BufferChunks is not supported. debug_assert!(false, "Attempted to seek on a language-aware buffer iterator without associated buffer snapshot"); } highlights.captures.set_byte_range(self.range.clone()); self.initialize_diagnostic_endpoints(); } } fn initialize_diagnostic_endpoints(&mut self) { if let Some(diagnostics) = self.diagnostic_endpoints.as_mut() { if let Some(buffer) = self.buffer_snapshot { let mut diagnostic_endpoints = Vec::new(); for entry in buffer.diagnostics_in_range::<_, usize>(self.range.clone(), false) { diagnostic_endpoints.push(DiagnosticEndpoint { offset: entry.range.start, is_start: true, severity: entry.diagnostic.severity, is_unnecessary: entry.diagnostic.is_unnecessary, }); diagnostic_endpoints.push(DiagnosticEndpoint { offset: entry.range.end, is_start: false, severity: entry.diagnostic.severity, is_unnecessary: entry.diagnostic.is_unnecessary, }); } diagnostic_endpoints .sort_unstable_by_key(|endpoint| (endpoint.offset, !endpoint.is_start)); *diagnostics = diagnostic_endpoints.into_iter().peekable(); self.hint_depth = 0; self.error_depth = 0; self.warning_depth = 0; self.information_depth = 0; } } } /// The current byte offset in the buffer. pub fn offset(&self) -> usize { self.range.start } pub fn range(&self) -> Range { self.range.clone() } fn update_diagnostic_depths(&mut self, endpoint: DiagnosticEndpoint) { let depth = match endpoint.severity { DiagnosticSeverity::ERROR => &mut self.error_depth, DiagnosticSeverity::WARNING => &mut self.warning_depth, DiagnosticSeverity::INFORMATION => &mut self.information_depth, DiagnosticSeverity::HINT => &mut self.hint_depth, _ => return, }; if endpoint.is_start { *depth += 1; } else { *depth -= 1; } if endpoint.is_unnecessary { if endpoint.is_start { self.unnecessary_depth += 1; } else { self.unnecessary_depth -= 1; } } } fn current_diagnostic_severity(&self) -> Option { if self.error_depth > 0 { Some(DiagnosticSeverity::ERROR) } else if self.warning_depth > 0 { Some(DiagnosticSeverity::WARNING) } else if self.information_depth > 0 { Some(DiagnosticSeverity::INFORMATION) } else if self.hint_depth > 0 { Some(DiagnosticSeverity::HINT) } else { None } } fn current_code_is_unnecessary(&self) -> bool { self.unnecessary_depth > 0 } } impl<'a> Iterator for BufferChunks<'a> { type Item = Chunk<'a>; fn next(&mut self) -> Option { let mut next_capture_start = usize::MAX; let mut next_diagnostic_endpoint = usize::MAX; if let Some(highlights) = self.highlights.as_mut() { while let Some((parent_capture_end, _)) = highlights.stack.last() { if *parent_capture_end <= self.range.start { highlights.stack.pop(); } else { break; } } if highlights.next_capture.is_none() { highlights.next_capture = highlights.captures.next(); } while let Some(capture) = highlights.next_capture.as_ref() { if self.range.start < capture.node.start_byte() { next_capture_start = capture.node.start_byte(); break; } else { let highlight_id = highlights.highlight_maps[capture.grammar_index].get(capture.index); highlights .stack .push((capture.node.end_byte(), highlight_id)); highlights.next_capture = highlights.captures.next(); } } } let mut diagnostic_endpoints = std::mem::take(&mut self.diagnostic_endpoints); if let Some(diagnostic_endpoints) = diagnostic_endpoints.as_mut() { while let Some(endpoint) = diagnostic_endpoints.peek().copied() { if endpoint.offset <= self.range.start { self.update_diagnostic_depths(endpoint); diagnostic_endpoints.next(); } else { next_diagnostic_endpoint = endpoint.offset; break; } } } self.diagnostic_endpoints = diagnostic_endpoints; if let Some(chunk) = self.chunks.peek() { let chunk_start = self.range.start; let mut chunk_end = (self.chunks.offset() + chunk.len()) .min(next_capture_start) .min(next_diagnostic_endpoint); let mut highlight_id = None; if let Some(highlights) = self.highlights.as_ref() { if let Some((parent_capture_end, parent_highlight_id)) = highlights.stack.last() { chunk_end = chunk_end.min(*parent_capture_end); highlight_id = Some(*parent_highlight_id); } } let slice = &chunk[chunk_start - self.chunks.offset()..chunk_end - self.chunks.offset()]; self.range.start = chunk_end; if self.range.start == self.chunks.offset() + chunk.len() { self.chunks.next().unwrap(); } Some(Chunk { text: slice, syntax_highlight_id: highlight_id, diagnostic_severity: self.current_diagnostic_severity(), is_unnecessary: self.current_code_is_unnecessary(), ..Default::default() }) } else { None } } } impl operation_queue::Operation for Operation { fn lamport_timestamp(&self) -> clock::Lamport { match self { Operation::Buffer(_) => { unreachable!("buffer operations should never be deferred at this layer") } Operation::UpdateDiagnostics { lamport_timestamp, .. } | Operation::UpdateSelections { lamport_timestamp, .. } | Operation::UpdateCompletionTriggers { lamport_timestamp, .. } => *lamport_timestamp, } } } impl Default for Diagnostic { fn default() -> Self { Self { source: Default::default(), code: None, severity: DiagnosticSeverity::ERROR, message: Default::default(), group_id: 0, is_primary: false, is_disk_based: false, is_unnecessary: false, data: None, } } } impl IndentSize { /// Returns an [`IndentSize`] representing the given spaces. pub fn spaces(len: u32) -> Self { Self { len, kind: IndentKind::Space, } } /// Returns an [`IndentSize`] representing a tab. pub fn tab() -> Self { Self { len: 1, kind: IndentKind::Tab, } } /// An iterator over the characters represented by this [`IndentSize`]. pub fn chars(&self) -> impl Iterator { iter::repeat(self.char()).take(self.len as usize) } /// The character representation of this [`IndentSize`]. pub fn char(&self) -> char { match self.kind { IndentKind::Space => ' ', IndentKind::Tab => '\t', } } /// Consumes the current [`IndentSize`] and returns a new one that has /// been shrunk or enlarged by the given size along the given direction. pub fn with_delta(mut self, direction: Ordering, size: IndentSize) -> Self { match direction { Ordering::Less => { if self.kind == size.kind && self.len >= size.len { self.len -= size.len; } } Ordering::Equal => {} Ordering::Greater => { if self.len == 0 { self = size; } else if self.kind == size.kind { self.len += size.len; } } } self } pub fn len_with_expanded_tabs(&self, tab_size: NonZeroU32) -> usize { match self.kind { IndentKind::Space => self.len as usize, IndentKind::Tab => self.len as usize * tab_size.get() as usize, } } } #[cfg(any(test, feature = "test-support"))] pub struct TestFile { pub path: Arc, pub root_name: String, pub local_root: Option, } #[cfg(any(test, feature = "test-support"))] impl File for TestFile { fn path(&self) -> &Arc { &self.path } fn full_path(&self, _: &gpui::App) -> PathBuf { PathBuf::from(&self.root_name).join(self.path.as_ref()) } fn as_local(&self) -> Option<&dyn LocalFile> { if self.local_root.is_some() { Some(self) } else { None } } fn disk_state(&self) -> DiskState { unimplemented!() } fn file_name<'a>(&'a self, _: &'a gpui::App) -> &'a std::ffi::OsStr { self.path().file_name().unwrap_or(self.root_name.as_ref()) } fn worktree_id(&self, _: &App) -> WorktreeId { WorktreeId::from_usize(0) } fn as_any(&self) -> &dyn std::any::Any { unimplemented!() } fn to_proto(&self, _: &App) -> rpc::proto::File { unimplemented!() } fn is_private(&self) -> bool { false } } #[cfg(any(test, feature = "test-support"))] impl LocalFile for TestFile { fn abs_path(&self, _cx: &App) -> PathBuf { PathBuf::from(self.local_root.as_ref().unwrap()) .join(&self.root_name) .join(self.path.as_ref()) } fn load(&self, _cx: &App) -> Task> { unimplemented!() } fn load_bytes(&self, _cx: &App) -> Task>> { unimplemented!() } } pub(crate) fn contiguous_ranges( values: impl Iterator, max_len: usize, ) -> impl Iterator> { let mut values = values; let mut current_range: Option> = None; std::iter::from_fn(move || loop { if let Some(value) = values.next() { if let Some(range) = &mut current_range { if value == range.end && range.len() < max_len { range.end += 1; continue; } } let prev_range = current_range.clone(); current_range = Some(value..(value + 1)); if prev_range.is_some() { return prev_range; } } else { return current_range.take(); } }) } #[derive(Default, Debug)] pub struct CharClassifier { scope: Option, for_completion: bool, ignore_punctuation: bool, } impl CharClassifier { pub fn new(scope: Option) -> Self { Self { scope, for_completion: false, ignore_punctuation: false, } } pub fn for_completion(self, for_completion: bool) -> Self { Self { for_completion, ..self } } pub fn ignore_punctuation(self, ignore_punctuation: bool) -> Self { Self { ignore_punctuation, ..self } } pub fn is_whitespace(&self, c: char) -> bool { self.kind(c) == CharKind::Whitespace } pub fn is_word(&self, c: char) -> bool { self.kind(c) == CharKind::Word } pub fn is_punctuation(&self, c: char) -> bool { self.kind(c) == CharKind::Punctuation } pub fn kind_with(&self, c: char, ignore_punctuation: bool) -> CharKind { if c.is_alphanumeric() || c == '_' { return CharKind::Word; } if let Some(scope) = &self.scope { let characters = if self.for_completion { scope.completion_query_characters() } else { scope.word_characters() }; if let Some(characters) = characters { if characters.contains(&c) { return CharKind::Word; } } } if c.is_whitespace() { return CharKind::Whitespace; } if ignore_punctuation { CharKind::Word } else { CharKind::Punctuation } } pub fn kind(&self, c: char) -> CharKind { self.kind_with(c, self.ignore_punctuation) } } /// Find all of the ranges of whitespace that occur at the ends of lines /// in the given rope. /// /// This could also be done with a regex search, but this implementation /// avoids copying text. pub fn trailing_whitespace_ranges(rope: &Rope) -> Vec> { let mut ranges = Vec::new(); let mut offset = 0; let mut prev_chunk_trailing_whitespace_range = 0..0; for chunk in rope.chunks() { let mut prev_line_trailing_whitespace_range = 0..0; for (i, line) in chunk.split('\n').enumerate() { let line_end_offset = offset + line.len(); let trimmed_line_len = line.trim_end_matches([' ', '\t']).len(); let mut trailing_whitespace_range = (offset + trimmed_line_len)..line_end_offset; if i == 0 && trimmed_line_len == 0 { trailing_whitespace_range.start = prev_chunk_trailing_whitespace_range.start; } if !prev_line_trailing_whitespace_range.is_empty() { ranges.push(prev_line_trailing_whitespace_range); } offset = line_end_offset + 1; prev_line_trailing_whitespace_range = trailing_whitespace_range; } offset -= 1; prev_chunk_trailing_whitespace_range = prev_line_trailing_whitespace_range; } if !prev_chunk_trailing_whitespace_range.is_empty() { ranges.push(prev_chunk_trailing_whitespace_range); } ranges }