#![allow(dead_code)] use anyhow::bail; use serde::de::{self, Deserialize, Deserializer, Visitor}; use std::fmt; pub fn rgb>(hex: u32) -> C { let r = ((hex >> 16) & 0xFF) as f32 / 255.0; let g = ((hex >> 8) & 0xFF) as f32 / 255.0; let b = (hex & 0xFF) as f32 / 255.0; Rgba { r, g, b, a: 1.0 }.into() } pub fn rgba(hex: u32) -> Rgba { let r = ((hex >> 24) & 0xFF) as f32 / 255.0; let g = ((hex >> 16) & 0xFF) as f32 / 255.0; let b = ((hex >> 8) & 0xFF) as f32 / 255.0; let a = (hex & 0xFF) as f32 / 255.0; Rgba { r, g, b, a } } #[derive(PartialEq, Clone, Copy, Default)] pub struct Rgba { pub r: f32, pub g: f32, pub b: f32, pub a: f32, } impl fmt::Debug for Rgba { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "rgba({:#010x})", u32::from(*self)) } } impl Rgba { pub fn blend(&self, other: Rgba) -> Self { if other.a >= 1.0 { return other; } else if other.a <= 0.0 { return *self; } else { return Rgba { r: (self.r * (1.0 - other.a)) + (other.r * other.a), g: (self.g * (1.0 - other.a)) + (other.g * other.a), b: (self.b * (1.0 - other.a)) + (other.b * other.a), a: self.a, }; } } } impl From for u32 { fn from(rgba: Rgba) -> Self { let r = (rgba.r * 255.0) as u32; let g = (rgba.g * 255.0) as u32; let b = (rgba.b * 255.0) as u32; let a = (rgba.a * 255.0) as u32; (r << 24) | (g << 16) | (b << 8) | a } } struct RgbaVisitor; impl<'de> Visitor<'de> for RgbaVisitor { type Value = Rgba; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a string in the format #rrggbb or #rrggbbaa") } fn visit_str(self, value: &str) -> Result { Rgba::try_from(value).map_err(E::custom) } } impl<'de> Deserialize<'de> for Rgba { fn deserialize>(deserializer: D) -> Result { deserializer.deserialize_str(RgbaVisitor) } } impl From for Rgba { fn from(color: Hsla) -> Self { let h = color.h; let s = color.s; let l = color.l; let c = (1.0 - (2.0 * l - 1.0).abs()) * s; let x = c * (1.0 - ((h * 6.0) % 2.0 - 1.0).abs()); let m = l - c / 2.0; let cm = c + m; let xm = x + m; let (r, g, b) = match (h * 6.0).floor() as i32 { 0 | 6 => (cm, xm, m), 1 => (xm, cm, m), 2 => (m, cm, xm), 3 => (m, xm, cm), 4 => (xm, m, cm), _ => (cm, m, xm), }; Rgba { r, g, b, a: color.a, } } } impl TryFrom<&'_ str> for Rgba { type Error = anyhow::Error; fn try_from(value: &'_ str) -> Result { const RGB: usize = "rgb".len(); const RGBA: usize = "rgba".len(); const RRGGBB: usize = "rrggbb".len(); const RRGGBBAA: usize = "rrggbbaa".len(); const EXPECTED_FORMATS: &'static str = "Expected #rgb, #rgba, #rrggbb, or #rrggbbaa"; let Some(("", hex)) = value.trim().split_once('#') else { bail!("invalid RGBA hex color: '{value}'. {EXPECTED_FORMATS}"); }; let (r, g, b, a) = match hex.len() { RGB | RGBA => { let r = u8::from_str_radix(&hex[0..1], 16)?; let g = u8::from_str_radix(&hex[1..2], 16)?; let b = u8::from_str_radix(&hex[2..3], 16)?; let a = if hex.len() == RGBA { u8::from_str_radix(&hex[3..4], 16)? } else { 0xf }; /// Duplicates a given hex digit. /// E.g., `0xf` -> `0xff`. const fn duplicate(value: u8) -> u8 { value << 4 | value } (duplicate(r), duplicate(g), duplicate(b), duplicate(a)) } RRGGBB | RRGGBBAA => { let r = u8::from_str_radix(&hex[0..2], 16)?; let g = u8::from_str_radix(&hex[2..4], 16)?; let b = u8::from_str_radix(&hex[4..6], 16)?; let a = if hex.len() == RRGGBBAA { u8::from_str_radix(&hex[6..8], 16)? } else { 0xff }; (r, g, b, a) } _ => bail!("invalid RGBA hex color: '{value}'. {EXPECTED_FORMATS}"), }; Ok(Rgba { r: r as f32 / 255., g: g as f32 / 255., b: b as f32 / 255., a: a as f32 / 255., }) } } #[derive(Default, Copy, Clone, Debug)] #[repr(C)] pub struct Hsla { pub h: f32, pub s: f32, pub l: f32, pub a: f32, } impl PartialEq for Hsla { fn eq(&self, other: &Self) -> bool { self.h .total_cmp(&other.h) .then(self.s.total_cmp(&other.s)) .then(self.l.total_cmp(&other.l).then(self.a.total_cmp(&other.a))) .is_eq() } } impl PartialOrd for Hsla { fn partial_cmp(&self, other: &Self) -> Option { // SAFETY: The total ordering relies on this always being Some() Some( self.h .total_cmp(&other.h) .then(self.s.total_cmp(&other.s)) .then(self.l.total_cmp(&other.l).then(self.a.total_cmp(&other.a))), ) } } impl Ord for Hsla { fn cmp(&self, other: &Self) -> std::cmp::Ordering { // SAFETY: The partial comparison is a total comparison unsafe { self.partial_cmp(other).unwrap_unchecked() } } } impl Hsla { pub fn to_rgb(self) -> Rgba { self.into() } pub fn red() -> Self { red() } pub fn green() -> Self { green() } pub fn blue() -> Self { blue() } pub fn black() -> Self { black() } pub fn white() -> Self { white() } pub fn transparent_black() -> Self { transparent_black() } } impl Eq for Hsla {} pub fn hsla(h: f32, s: f32, l: f32, a: f32) -> Hsla { Hsla { h: h.clamp(0., 1.), s: s.clamp(0., 1.), l: l.clamp(0., 1.), a: a.clamp(0., 1.), } } pub fn black() -> Hsla { Hsla { h: 0., s: 0., l: 0., a: 1., } } pub fn transparent_black() -> Hsla { Hsla { h: 0., s: 0., l: 0., a: 0., } } pub fn white() -> Hsla { Hsla { h: 0., s: 0., l: 1., a: 1., } } pub fn red() -> Hsla { Hsla { h: 0., s: 1., l: 0.5, a: 1., } } pub fn blue() -> Hsla { Hsla { h: 0.6, s: 1., l: 0.5, a: 1., } } pub fn green() -> Hsla { Hsla { h: 0.33, s: 1., l: 0.5, a: 1., } } pub fn yellow() -> Hsla { Hsla { h: 0.16, s: 1., l: 0.5, a: 1., } } impl Hsla { /// Returns true if the HSLA color is fully transparent, false otherwise. pub fn is_transparent(&self) -> bool { self.a == 0.0 } /// Blends `other` on top of `self` based on `other`'s alpha value. The resulting color is a combination of `self`'s and `other`'s colors. /// /// If `other`'s alpha value is 1.0 or greater, `other` color is fully opaque, thus `other` is returned as the output color. /// If `other`'s alpha value is 0.0 or less, `other` color is fully transparent, thus `self` is returned as the output color. /// Else, the output color is calculated as a blend of `self` and `other` based on their weighted alpha values. /// /// Assumptions: /// - Alpha values are contained in the range [0, 1], with 1 as fully opaque and 0 as fully transparent. /// - The relative contributions of `self` and `other` is based on `self`'s alpha value (`self.a`) and `other`'s alpha value (`other.a`), `self` contributing `self.a * (1.0 - other.a)` and `other` contributing it's own alpha value. /// - RGB color components are contained in the range [0, 1]. /// - If `self` and `other` colors are out of the valid range, the blend operation's output and behavior is undefined. pub fn blend(self, other: Hsla) -> Hsla { let alpha = other.a; if alpha >= 1.0 { return other; } else if alpha <= 0.0 { return self; } else { let converted_self = Rgba::from(self); let converted_other = Rgba::from(other); let blended_rgb = converted_self.blend(converted_other); return Hsla::from(blended_rgb); } } /// Fade out the color by a given factor. This factor should be between 0.0 and 1.0. /// Where 0.0 will leave the color unchanged, and 1.0 will completely fade out the color. pub fn fade_out(&mut self, factor: f32) { self.a *= 1.0 - factor.clamp(0., 1.); } } // impl From for Rgba { // fn from(value: Hsla) -> Self { // let h = value.h; // let s = value.s; // let l = value.l; // let c = (1 - |2L - 1|) X s // } // } impl From for Hsla { fn from(color: Rgba) -> Self { let r = color.r; let g = color.g; let b = color.b; let max = r.max(g.max(b)); let min = r.min(g.min(b)); let delta = max - min; let l = (max + min) / 2.0; let s = if l == 0.0 || l == 1.0 { 0.0 } else if l < 0.5 { delta / (2.0 * l) } else { delta / (2.0 - 2.0 * l) }; let h = if delta == 0.0 { 0.0 } else if max == r { ((g - b) / delta).rem_euclid(6.0) / 6.0 } else if max == g { ((b - r) / delta + 2.0) / 6.0 } else { ((r - g) / delta + 4.0) / 6.0 }; Hsla { h, s, l, a: color.a, } } } impl<'de> Deserialize<'de> for Hsla { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { // First, deserialize it into Rgba let rgba = Rgba::deserialize(deserializer)?; // Then, use the From for Hsla implementation to convert it Ok(Hsla::from(rgba)) } } #[cfg(test)] mod tests { use serde_json::json; use super::*; #[test] fn test_deserialize_three_value_hex_to_rgba() { let actual: Rgba = serde_json::from_value(json!("#f09")).unwrap(); assert_eq!(actual, rgba(0xff0099ff)) } #[test] fn test_deserialize_four_value_hex_to_rgba() { let actual: Rgba = serde_json::from_value(json!("#f09f")).unwrap(); assert_eq!(actual, rgba(0xff0099ff)) } #[test] fn test_deserialize_six_value_hex_to_rgba() { let actual: Rgba = serde_json::from_value(json!("#ff0099")).unwrap(); assert_eq!(actual, rgba(0xff0099ff)) } #[test] fn test_deserialize_eight_value_hex_to_rgba() { let actual: Rgba = serde_json::from_value(json!("#ff0099ff")).unwrap(); assert_eq!(actual, rgba(0xff0099ff)) } #[test] fn test_deserialize_eight_value_hex_with_padding_to_rgba() { let actual: Rgba = serde_json::from_value(json!(" #f5f5f5ff ")).unwrap(); assert_eq!(actual, rgba(0xf5f5f5ff)) } #[test] fn test_deserialize_eight_value_hex_with_mixed_case_to_rgba() { let actual: Rgba = serde_json::from_value(json!("#DeAdbEeF")).unwrap(); assert_eq!(actual, rgba(0xdeadbeef)) } }