/* Functions useful for debugging: // A heat map color for debugging (blue -> cyan -> green -> yellow -> red). fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2) -> vec4 { // Normalize value to 0-1 range let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0); // Heat map color calculation let r = t * t; let g = 4.0 * t * (1.0 - t); let b = (1.0 - t) * (1.0 - t); let heat_color = vec3(r, g, b); // Create a checkerboard pattern (black and white) let sum = floor(position.x / 3) + floor(position.y / 3); let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd let checker_color = vec3(checker_value); // Determine if value is in range (1.0 if in range, 0.0 if out of range) let in_range = step(minValue, value) * step(value, maxValue); // Mix checkerboard and heat map based on whether value is in range let final_color = mix(checker_color, heat_color, in_range); return vec4(final_color, 1.0); } */ struct GlobalParams { viewport_size: vec2, premultiplied_alpha: u32, pad: u32, } var globals: GlobalParams; var t_sprite: texture_2d; var s_sprite: sampler; const M_PI_F: f32 = 3.1415926; const GRAYSCALE_FACTORS: vec3 = vec3(0.2126, 0.7152, 0.0722); struct Bounds { origin: vec2, size: vec2, } struct Corners { top_left: f32, top_right: f32, bottom_right: f32, bottom_left: f32, } struct Edges { top: f32, right: f32, bottom: f32, left: f32, } struct Hsla { h: f32, s: f32, l: f32, a: f32, } struct LinearColorStop { color: Hsla, percentage: f32, } struct Background { // 0u is Solid // 1u is LinearGradient // 2u is PatternSlash tag: u32, // 0u is sRGB linear color // 1u is Oklab color color_space: u32, solid: Hsla, gradient_angle_or_pattern_height: f32, colors: array, pad: u32, } struct AtlasTextureId { index: u32, kind: u32, } struct AtlasBounds { origin: vec2, size: vec2, } struct AtlasTile { texture_id: AtlasTextureId, tile_id: u32, padding: u32, bounds: AtlasBounds, } struct TransformationMatrix { rotation_scale: mat2x2, translation: vec2, } fn to_device_position_impl(position: vec2) -> vec4 { let device_position = position / globals.viewport_size * vec2(2.0, -2.0) + vec2(-1.0, 1.0); return vec4(device_position, 0.0, 1.0); } fn to_device_position(unit_vertex: vec2, bounds: Bounds) -> vec4 { let position = unit_vertex * vec2(bounds.size) + bounds.origin; return to_device_position_impl(position); } fn to_device_position_transformed(unit_vertex: vec2, bounds: Bounds, transform: TransformationMatrix) -> vec4 { let position = unit_vertex * vec2(bounds.size) + bounds.origin; //Note: Rust side stores it as row-major, so transposing here let transformed = transpose(transform.rotation_scale) * position + transform.translation; return to_device_position_impl(transformed); } fn to_tile_position(unit_vertex: vec2, tile: AtlasTile) -> vec2 { let atlas_size = vec2(textureDimensions(t_sprite, 0)); return (vec2(tile.bounds.origin) + unit_vertex * vec2(tile.bounds.size)) / atlas_size; } fn distance_from_clip_rect_impl(position: vec2, clip_bounds: Bounds) -> vec4 { let tl = position - clip_bounds.origin; let br = clip_bounds.origin + clip_bounds.size - position; return vec4(tl.x, br.x, tl.y, br.y); } fn distance_from_clip_rect(unit_vertex: vec2, bounds: Bounds, clip_bounds: Bounds) -> vec4 { let position = unit_vertex * vec2(bounds.size) + bounds.origin; return distance_from_clip_rect_impl(position, clip_bounds); } // https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl fn srgb_to_linear(srgb: vec3) -> vec3 { let cutoff = srgb < vec3(0.04045); let higher = pow((srgb + vec3(0.055)) / vec3(1.055), vec3(2.4)); let lower = srgb / vec3(12.92); return select(higher, lower, cutoff); } fn linear_to_srgb(linear: vec3) -> vec3 { let cutoff = linear < vec3(0.0031308); let higher = vec3(1.055) * pow(linear, vec3(1.0 / 2.4)) - vec3(0.055); let lower = linear * vec3(12.92); return select(higher, lower, cutoff); } /// Convert a linear color to sRGBA space. fn linear_to_srgba(color: vec4) -> vec4 { return vec4(linear_to_srgb(color.rgb), color.a); } /// Convert a sRGBA color to linear space. fn srgba_to_linear(color: vec4) -> vec4 { return vec4(srgb_to_linear(color.rgb), color.a); } /// Hsla to linear RGBA conversion. fn hsla_to_rgba(hsla: Hsla) -> vec4 { let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range let s = hsla.s; let l = hsla.l; let a = hsla.a; let c = (1.0 - abs(2.0 * l - 1.0)) * s; let x = c * (1.0 - abs(h % 2.0 - 1.0)); let m = l - c / 2.0; var color = vec3(m); if (h >= 0.0 && h < 1.0) { color.r += c; color.g += x; } else if (h >= 1.0 && h < 2.0) { color.r += x; color.g += c; } else if (h >= 2.0 && h < 3.0) { color.g += c; color.b += x; } else if (h >= 3.0 && h < 4.0) { color.g += x; color.b += c; } else if (h >= 4.0 && h < 5.0) { color.r += x; color.b += c; } else { color.r += c; color.b += x; } // Input colors are assumed to be in sRGB space, // but blending and rendering needs to happen in linear space. // The output will be converted to sRGB by either the target // texture format or the swapchain color space. let linear = srgb_to_linear(color); return vec4(linear, a); } /// Convert a linear sRGB to Oklab space. /// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab fn linear_srgb_to_oklab(color: vec4) -> vec4 { let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b; let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b; let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b; let l_ = pow(l, 1.0 / 3.0); let m_ = pow(m, 1.0 / 3.0); let s_ = pow(s, 1.0 / 3.0); return vec4( 0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_, 1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_, 0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_, color.a ); } /// Convert an Oklab color to linear sRGB space. fn oklab_to_linear_srgb(color: vec4) -> vec4 { let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b; let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b; let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b; let l = l_ * l_ * l_; let m = m_ * m_ * m_; let s = s_ * s_ * s_; return vec4( 4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s, -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s, -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s, color.a ); } fn over(below: vec4, above: vec4) -> vec4 { let alpha = above.a + below.a * (1.0 - above.a); let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha; return vec4(color, alpha); } // A standard gaussian function, used for weighting samples fn gaussian(x: f32, sigma: f32) -> f32{ return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma); } // This approximates the error function, needed for the gaussian integral fn erf(v: vec2) -> vec2 { let s = sign(v); let a = abs(v); let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a; let r2 = r1 * r1; return s - s / (r2 * r2); } fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2) -> f32 { let delta = min(half_size.y - corner - abs(y), 0.0); let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta)); let integral = 0.5 + 0.5 * erf((x + vec2(-curved, curved)) * (sqrt(0.5) / sigma)); return integral.y - integral.x; } // Selects corner radius based on quadrant. fn pick_corner_radius(center_to_point: vec2, radii: Corners) -> f32 { if (center_to_point.x < 0.0) { if (center_to_point.y < 0.0) { return radii.top_left; } else { return radii.bottom_left; } } else { if (center_to_point.y < 0.0) { return radii.top_right; } else { return radii.bottom_right; } } } // Signed distance of the point to the quad's border - positive outside the // border, and negative inside. // // See comments on similar code using `quad_sdf_impl` in `fs_quad` for // explanation. fn quad_sdf(point: vec2, bounds: Bounds, corner_radii: Corners) -> f32 { let half_size = bounds.size / 2.0; let center = bounds.origin + half_size; let center_to_point = point - center; let corner_radius = pick_corner_radius(center_to_point, corner_radii); let corner_to_point = abs(center_to_point) - half_size; let corner_center_to_point = corner_to_point + corner_radius; return quad_sdf_impl(corner_center_to_point, corner_radius); } fn quad_sdf_impl(corner_center_to_point: vec2, corner_radius: f32) -> f32 { if (corner_radius == 0.0) { // Fast path for unrounded corners. return max(corner_center_to_point.x, corner_center_to_point.y); } else { // Signed distance of the point from a quad that is inset by corner_radius. // It is negative inside this quad, and positive outside. let signed_distance_to_inset_quad = // 0 inside the inset quad, and positive outside. length(max(vec2(0.0), corner_center_to_point)) + // 0 outside the inset quad, and negative inside. min(0.0, max(corner_center_to_point.x, corner_center_to_point.y)); return signed_distance_to_inset_quad - corner_radius; } } // Abstract away the final color transformation based on the // target alpha compositing mode. fn blend_color(color: vec4, alpha_factor: f32) -> vec4 { let alpha = color.a * alpha_factor; let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u); return vec4(color.rgb * multiplier, alpha); } struct GradientColor { solid: vec4, color0: vec4, color1: vec4, } fn prepare_gradient_color(tag: u32, color_space: u32, solid: Hsla, colors: array) -> GradientColor { var result = GradientColor(); if (tag == 0u || tag == 2u) { result.solid = hsla_to_rgba(solid); } else if (tag == 1u) { // The hsla_to_rgba is returns a linear sRGB color result.color0 = hsla_to_rgba(colors[0].color); result.color1 = hsla_to_rgba(colors[1].color); // Prepare color space in vertex for avoid conversion // in fragment shader for performance reasons if (color_space == 0u) { // sRGB result.color0 = linear_to_srgba(result.color0); result.color1 = linear_to_srgba(result.color1); } else if (color_space == 1u) { // Oklab result.color0 = linear_srgb_to_oklab(result.color0); result.color1 = linear_srgb_to_oklab(result.color1); } } return result; } fn gradient_color(background: Background, position: vec2, bounds: Bounds, solid_color: vec4, color0: vec4, color1: vec4) -> vec4 { var background_color = vec4(0.0); switch (background.tag) { default: { return solid_color; } case 1u: { // Linear gradient background. // -90 degrees to match the CSS gradient angle. let angle = background.gradient_angle_or_pattern_height; let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0; var direction = vec2(cos(radians), sin(radians)); let stop0_percentage = background.colors[0].percentage; let stop1_percentage = background.colors[1].percentage; // Expand the short side to be the same as the long side if (bounds.size.x > bounds.size.y) { direction.y *= bounds.size.y / bounds.size.x; } else { direction.x *= bounds.size.x / bounds.size.y; } // Get the t value for the linear gradient with the color stop percentages. let half_size = bounds.size / 2.0; let center = bounds.origin + half_size; let center_to_point = position - center; var t = dot(center_to_point, direction) / length(direction); // Check the direct to determine the use x or y if (abs(direction.x) > abs(direction.y)) { t = (t + half_size.x) / bounds.size.x; } else { t = (t + half_size.y) / bounds.size.y; } // Adjust t based on the stop percentages t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage); t = clamp(t, 0.0, 1.0); switch (background.color_space) { default: { background_color = srgba_to_linear(mix(color0, color1, t)); } case 1u: { let oklab_color = mix(color0, color1, t); background_color = oklab_to_linear_srgb(oklab_color); } } } case 2u: { let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height; let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f; let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f; let pattern_height = pattern_width + pattern_interval; let stripe_angle = M_PI_F / 4.0; let pattern_period = pattern_height * sin(stripe_angle); let rotation = mat2x2( cos(stripe_angle), -sin(stripe_angle), sin(stripe_angle), cos(stripe_angle) ); let relative_position = position - bounds.origin; let rotated_point = rotation * relative_position; let pattern = rotated_point.x % pattern_period; let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) / 2.0f; background_color = solid_color; background_color.a *= saturate(0.5 - distance); } } return background_color; } // --- quads --- // struct Quad { order: u32, border_style: u32, bounds: Bounds, content_mask: Bounds, background: Background, border_color: Hsla, corner_radii: Corners, border_widths: Edges, } var b_quads: array; struct QuadVarying { @builtin(position) position: vec4, @location(0) @interpolate(flat) border_color: vec4, @location(1) @interpolate(flat) quad_id: u32, // TODO: use `clip_distance` once Naga supports it @location(2) clip_distances: vec4, @location(3) @interpolate(flat) background_solid: vec4, @location(4) @interpolate(flat) background_color0: vec4, @location(5) @interpolate(flat) background_color1: vec4, } @vertex fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); let quad = b_quads[instance_id]; var out = QuadVarying(); out.position = to_device_position(unit_vertex, quad.bounds); let gradient = prepare_gradient_color( quad.background.tag, quad.background.color_space, quad.background.solid, quad.background.colors ); out.background_solid = gradient.solid; out.background_color0 = gradient.color0; out.background_color1 = gradient.color1; out.border_color = hsla_to_rgba(quad.border_color); out.quad_id = instance_id; out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask); return out; } @fragment fn fs_quad(input: QuadVarying) -> @location(0) vec4 { // Alpha clip first, since we don't have `clip_distance`. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } let quad = b_quads[input.quad_id]; let background_color = gradient_color(quad.background, input.position.xy, quad.bounds, input.background_solid, input.background_color0, input.background_color1); let unrounded = quad.corner_radii.top_left == 0.0 && quad.corner_radii.bottom_left == 0.0 && quad.corner_radii.top_right == 0.0 && quad.corner_radii.bottom_right == 0.0; // Fast path when the quad is not rounded and doesn't have any border if (quad.border_widths.top == 0.0 && quad.border_widths.left == 0.0 && quad.border_widths.right == 0.0 && quad.border_widths.bottom == 0.0 && unrounded) { return blend_color(background_color, 1.0); } let size = quad.bounds.size; let half_size = size / 2.0; let point = input.position.xy - quad.bounds.origin; let center_to_point = point - half_size; // Signed distance field threshold for inclusion of pixels. 0.5 is the // minimum distance between the center of the pixel and the edge. let antialias_threshold = 0.5; // Radius of the nearest corner let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii); // Width of the nearest borders let border = vec2( select( quad.border_widths.right, quad.border_widths.left, center_to_point.x < 0.0), select( quad.border_widths.bottom, quad.border_widths.top, center_to_point.y < 0.0)); // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`. // The purpose of this is to not draw antialiasing pixels in this case. let reduced_border = vec2(select(border.x, -antialias_threshold, border.x == 0.0), select(border.y, -antialias_threshold, border.y == 0.0)); // Vector from the corner of the quad bounds to the point, after mirroring // the point into the bottom right quadrant. Both components are <= 0. let corner_to_point = abs(center_to_point) - half_size; // Vector from the point to the center of the rounded corner's circle, also // mirrored into bottom right quadrant. let corner_center_to_point = corner_to_point + corner_radius; // Whether the nearest point on the border is rounded let is_near_rounded_corner = corner_center_to_point.x >= 0 && corner_center_to_point.y >= 0; // Vector from straight border inner corner to point. let straight_border_inner_corner_to_point = corner_to_point + reduced_border; // Whether the point is beyond the inner edge of the straight border. let is_beyond_inner_straight_border = straight_border_inner_corner_to_point.x > 0 || straight_border_inner_corner_to_point.y > 0; // Whether the point is far enough inside the quad, such that the pixels are // not affected by the straight border. let is_within_inner_straight_border = straight_border_inner_corner_to_point.x < -antialias_threshold && straight_border_inner_corner_to_point.y < -antialias_threshold; // Fast path for points that must be part of the background. // // This could be optimized further for large rounded corners by including // points in an inscribed rectangle, or some other quick linear check. // However, that might negatively impact performance in the case of // reasonable sizes for rounded corners. if (is_within_inner_straight_border && !is_near_rounded_corner) { return blend_color(background_color, 1.0); } // Signed distance of the point to the outside edge of the quad's border. It // is positive outside this edge, and negative inside. let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius); // Approximate signed distance of the point to the inside edge of the quad's // border. It is negative outside this edge (within the border), and // positive inside. // // This is not always an accurate signed distance: // * The rounded portions with varying border width use an approximation of // nearest-point-on-ellipse. // * When it is quickly known to be outside the edge, -1.0 is used. var inner_sdf = 0.0; if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) { // Fast paths for straight borders. inner_sdf = -max(straight_border_inner_corner_to_point.x, straight_border_inner_corner_to_point.y); } else if (is_beyond_inner_straight_border) { // Fast path for points that must be outside the inner edge. inner_sdf = -1.0; } else if (reduced_border.x == reduced_border.y) { // Fast path for circular inner edge. inner_sdf = -(outer_sdf + reduced_border.x); } else { let ellipse_radii = max(vec2(0.0), corner_radius - reduced_border); inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii); } // Negative when inside the border let border_sdf = max(inner_sdf, outer_sdf); var color = background_color; if (border_sdf < antialias_threshold) { var border_color = input.border_color; // Dashed border logic when border_style == 1 if (quad.border_style == 1) { // Position along the perimeter in "dash space", where each dash // period has length 1 var t = 0.0; // Total number of dash periods, so that the dash spacing can be // adjusted to evenly divide it var max_t = 0.0; // Border width is proportional to dash size. This is the behavior // used by browsers, but also avoids dashes from different segments // overlapping when dash size is smaller than the border width. // // Dash pattern: (2 * border width) dash, (1 * border width) gap let dash_length_per_width = 2.0; let dash_gap_per_width = 1.0; let dash_period_per_width = dash_length_per_width + dash_gap_per_width; // Since the dash size is determined by border width, the density of // dashes varies. Multiplying a pixel distance by this returns a // position in dash space - it has units (dash period / pixels). So // a dash velocity of (1 / 10) is 1 dash every 10 pixels. var dash_velocity = 0.0; // Dividing this by the border width gives the dash velocity let dv_numerator = 1.0 / dash_period_per_width; if (unrounded) { // When corners aren't rounded, the dashes are separately laid // out on each straight line, rather than around the whole // perimeter. This way each line starts and ends with a dash. let is_horizontal = corner_center_to_point.x < corner_center_to_point.y; let border_width = select(border.y, border.x, is_horizontal); dash_velocity = dv_numerator / border_width; t = select(point.y, point.x, is_horizontal) * dash_velocity; max_t = select(size.y, size.x, is_horizontal) * dash_velocity; } else { // When corners are rounded, the dashes are laid out clockwise // around the whole perimeter. let r_tr = quad.corner_radii.top_right; let r_br = quad.corner_radii.bottom_right; let r_bl = quad.corner_radii.bottom_left; let r_tl = quad.corner_radii.top_left; let w_t = quad.border_widths.top; let w_r = quad.border_widths.right; let w_b = quad.border_widths.bottom; let w_l = quad.border_widths.left; // Straight side dash velocities let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0); let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0); let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0); let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0); // Straight side lengths in dash space let s_t = (size.x - r_tl - r_tr) * dv_t; let s_r = (size.y - r_tr - r_br) * dv_r; let s_b = (size.x - r_br - r_bl) * dv_b; let s_l = (size.y - r_bl - r_tl) * dv_l; let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r); let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r); let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l); let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l); // Corner lengths in dash space let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr; let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br; let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl; let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl; // Cumulative dash space upto each segment let upto_tr = s_t; let upto_r = upto_tr + c_tr; let upto_br = upto_r + s_r; let upto_b = upto_br + c_br; let upto_bl = upto_b + s_b; let upto_l = upto_bl + c_bl; let upto_tl = upto_l + s_l; max_t = upto_tl + c_tl; if (is_near_rounded_corner) { let radians = atan2(corner_center_to_point.y, corner_center_to_point.x); let corner_t = radians * corner_radius * dash_velocity; if (center_to_point.x >= 0.0) { if (center_to_point.y < 0.0) { dash_velocity = corner_dash_velocity_tr; // Subtracted because radians is pi/2 to 0 when // going clockwise around the top right corner, // since the y axis has been flipped t = upto_r - corner_t; } else { dash_velocity = corner_dash_velocity_br; // Added because radians is 0 to pi/2 when going // clockwise around the bottom-right corner t = upto_br + corner_t; } } else { if (center_to_point.y >= 0.0) { dash_velocity = corner_dash_velocity_bl; // Subtracted because radians is pi/2 to 0 when // going clockwise around the bottom-left corner, // since the x axis has been flipped t = upto_l - corner_t; } else { dash_velocity = corner_dash_velocity_tl; // Added because radians is 0 to pi/2 when going // clockwise around the top-left corner, since both // axis were flipped t = upto_tl + corner_t; } } } else { // Straight borders let is_horizontal = corner_center_to_point.x < corner_center_to_point.y; if (is_horizontal) { if (center_to_point.y < 0.0) { dash_velocity = dv_t; t = (point.x - r_tl) * dash_velocity; } else { dash_velocity = dv_b; t = upto_bl - (point.x - r_bl) * dash_velocity; } } else { if (center_to_point.x < 0.0) { dash_velocity = dv_l; t = upto_tl - (point.y - r_tl) * dash_velocity; } else { dash_velocity = dv_r; t = upto_r + (point.y - r_tr) * dash_velocity; } } } } let dash_length = dash_length_per_width / dash_period_per_width; let desired_dash_gap = dash_gap_per_width / dash_period_per_width; // Straight borders should start and end with a dash, so max_t is // reduced to cause this. max_t -= select(0.0, dash_length, unrounded); if (max_t >= 1.0) { // Adjust dash gap to evenly divide max_t. let dash_count = floor(max_t); let dash_period = max_t / dash_count; border_color.a *= dash_alpha( t, dash_period, dash_length, dash_velocity, antialias_threshold); } else if (unrounded) { // When there isn't enough space for the full gap between the // two start / end dashes of a straight border, reduce gap to // make them fit. let dash_gap = max_t - dash_length; if (dash_gap > 0.0) { let dash_period = dash_length + dash_gap; border_color.a *= dash_alpha( t, dash_period, dash_length, dash_velocity, antialias_threshold); } } } // Blend the border on top of the background and then linearly interpolate // between the two as we slide inside the background. let blended_border = over(background_color, border_color); color = mix(background_color, blended_border, saturate(antialias_threshold - inner_sdf)); } return blend_color(color, saturate(antialias_threshold - outer_sdf)); } // Returns the dash velocity of a corner given the dash velocity of the two // sides, by returning the slower velocity (larger dashes). // // Since 0 is used for dash velocity when the border width is 0 (instead of // +inf), this returns the other dash velocity in that case. // // An alternative to this might be to appropriately interpolate the dash // velocity around the corner, but that seems overcomplicated. fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 { if (dv1 == 0.0) { return dv2; } else if (dv2 == 0.0) { return dv1; } else { return min(dv1, dv2); } } // Returns alpha used to render antialiased dashes. // `t` is within the dash when `fmod(t, period) < length`. fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 { let half_period = period / 2; let half_length = length / 2; // Value in [-half_period, half_period]. // The dash is in [-half_length, half_length]. let centered = fmod(t + half_period - half_length, period) - half_period; // Signed distance for the dash, negative values are inside the dash. let signed_distance = abs(centered) - half_length; // Antialiased alpha based on the signed distance. return saturate(antialias_threshold - signed_distance / dash_velocity); } // This approximates distance to the nearest point to a quarter ellipse in a way // that is sufficient for anti-aliasing when the ellipse is not very eccentric. // The components of `point` are expected to be positive. // // Negative on the outside and positive on the inside. fn quarter_ellipse_sdf(point: vec2, radii: vec2) -> f32 { // Scale the space to treat the ellipse like a unit circle. let circle_vec = point / radii; let unit_circle_sdf = length(circle_vec) - 1.0; // Approximate up-scaling of the length by using the average of the radii. // // TODO: A better solution would be to use the gradient of the implicit // function for an ellipse to approximate a scaling factor. return unit_circle_sdf * (radii.x + radii.y) * -0.5; } // Modulus that has the same sign as `a`. fn fmod(a: f32, b: f32) -> f32 { return a - b * trunc(a / b); } // --- shadows --- // struct Shadow { order: u32, blur_radius: f32, bounds: Bounds, corner_radii: Corners, content_mask: Bounds, color: Hsla, } var b_shadows: array; struct ShadowVarying { @builtin(position) position: vec4, @location(0) @interpolate(flat) color: vec4, @location(1) @interpolate(flat) shadow_id: u32, //TODO: use `clip_distance` once Naga supports it @location(3) clip_distances: vec4, } @vertex fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); var shadow = b_shadows[instance_id]; let margin = 3.0 * shadow.blur_radius; // Set the bounds of the shadow and adjust its size based on the shadow's // spread radius to achieve the spreading effect shadow.bounds.origin -= vec2(margin); shadow.bounds.size += 2.0 * vec2(margin); var out = ShadowVarying(); out.position = to_device_position(unit_vertex, shadow.bounds); out.color = hsla_to_rgba(shadow.color); out.shadow_id = instance_id; out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask); return out; } @fragment fn fs_shadow(input: ShadowVarying) -> @location(0) vec4 { // Alpha clip first, since we don't have `clip_distance`. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } let shadow = b_shadows[input.shadow_id]; let half_size = shadow.bounds.size / 2.0; let center = shadow.bounds.origin + half_size; let center_to_point = input.position.xy - center; let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii); // The signal is only non-zero in a limited range, so don't waste samples let low = center_to_point.y - half_size.y; let high = center_to_point.y + half_size.y; let start = clamp(-3.0 * shadow.blur_radius, low, high); let end = clamp(3.0 * shadow.blur_radius, low, high); // Accumulate samples (we can get away with surprisingly few samples) let step = (end - start) / 4.0; var y = start + step * 0.5; var alpha = 0.0; for (var i = 0; i < 4; i += 1) { let blur = blur_along_x(center_to_point.x, center_to_point.y - y, shadow.blur_radius, corner_radius, half_size); alpha += blur * gaussian(y, shadow.blur_radius) * step; y += step; } return blend_color(input.color, alpha); } // --- path rasterization --- // struct PathVertex { xy_position: vec2, st_position: vec2, content_mask: Bounds, } var b_path_vertices: array; struct PathRasterizationVarying { @builtin(position) position: vec4, @location(0) st_position: vec2, //TODO: use `clip_distance` once Naga supports it @location(3) clip_distances: vec4, } @vertex fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying { let v = b_path_vertices[vertex_id]; var out = PathRasterizationVarying(); out.position = to_device_position_impl(v.xy_position); out.st_position = v.st_position; out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.content_mask); return out; } @fragment fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) f32 { let dx = dpdx(input.st_position); let dy = dpdy(input.st_position); if (any(input.clip_distances < vec4(0.0))) { return 0.0; } let gradient = 2.0 * input.st_position.xx * vec2(dx.x, dy.x) - vec2(dx.y, dy.y); let f = input.st_position.x * input.st_position.x - input.st_position.y; let distance = f / length(gradient); return saturate(0.5 - distance); } // --- paths --- // struct PathSprite { bounds: Bounds, color: Background, tile: AtlasTile, } var b_path_sprites: array; struct PathVarying { @builtin(position) position: vec4, @location(0) tile_position: vec2, @location(1) @interpolate(flat) instance_id: u32, @location(2) @interpolate(flat) color_solid: vec4, @location(3) @interpolate(flat) color0: vec4, @location(4) @interpolate(flat) color1: vec4, } @vertex fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); let sprite = b_path_sprites[instance_id]; // Don't apply content mask because it was already accounted for when rasterizing the path. var out = PathVarying(); out.position = to_device_position(unit_vertex, sprite.bounds); out.tile_position = to_tile_position(unit_vertex, sprite.tile); out.instance_id = instance_id; let gradient = prepare_gradient_color( sprite.color.tag, sprite.color.color_space, sprite.color.solid, sprite.color.colors ); out.color_solid = gradient.solid; out.color0 = gradient.color0; out.color1 = gradient.color1; return out; } @fragment fn fs_path(input: PathVarying) -> @location(0) vec4 { let sample = textureSample(t_sprite, s_sprite, input.tile_position).r; let mask = 1.0 - abs(1.0 - sample % 2.0); let sprite = b_path_sprites[input.instance_id]; let background = sprite.color; let color = gradient_color(background, input.position.xy, sprite.bounds, input.color_solid, input.color0, input.color1); return blend_color(color, mask); } // --- underlines --- // struct Underline { order: u32, pad: u32, bounds: Bounds, content_mask: Bounds, color: Hsla, thickness: f32, wavy: u32, } var b_underlines: array; struct UnderlineVarying { @builtin(position) position: vec4, @location(0) @interpolate(flat) color: vec4, @location(1) @interpolate(flat) underline_id: u32, //TODO: use `clip_distance` once Naga supports it @location(3) clip_distances: vec4, } @vertex fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); let underline = b_underlines[instance_id]; var out = UnderlineVarying(); out.position = to_device_position(unit_vertex, underline.bounds); out.color = hsla_to_rgba(underline.color); out.underline_id = instance_id; out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask); return out; } @fragment fn fs_underline(input: UnderlineVarying) -> @location(0) vec4 { // Alpha clip first, since we don't have `clip_distance`. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } let underline = b_underlines[input.underline_id]; if ((underline.wavy & 0xFFu) == 0u) { return blend_color(input.color, input.color.a); } let half_thickness = underline.thickness * 0.5; let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2(0.0, 0.5); let frequency = M_PI_F * 3.0 * underline.thickness / 3.0; let amplitude = 1.0 / (4.0 * underline.thickness); let sine = sin(st.x * frequency) * amplitude; let dSine = cos(st.x * frequency) * amplitude * frequency; let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine); let distance_in_pixels = distance * underline.bounds.size.y; let distance_from_top_border = distance_in_pixels - half_thickness; let distance_from_bottom_border = distance_in_pixels + half_thickness; let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border)); return blend_color(input.color, alpha * input.color.a); } // --- monochrome sprites --- // struct MonochromeSprite { order: u32, pad: u32, bounds: Bounds, content_mask: Bounds, color: Hsla, tile: AtlasTile, transformation: TransformationMatrix, } var b_mono_sprites: array; struct MonoSpriteVarying { @builtin(position) position: vec4, @location(0) tile_position: vec2, @location(1) @interpolate(flat) color: vec4, @location(3) clip_distances: vec4, } @vertex fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); let sprite = b_mono_sprites[instance_id]; var out = MonoSpriteVarying(); out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation); out.tile_position = to_tile_position(unit_vertex, sprite.tile); out.color = hsla_to_rgba(sprite.color); out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask); return out; } @fragment fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4 { let sample = textureSample(t_sprite, s_sprite, input.tile_position).r; // Alpha clip after using the derivatives. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } return blend_color(input.color, sample); } // --- polychrome sprites --- // struct PolychromeSprite { order: u32, pad: u32, grayscale: u32, opacity: f32, bounds: Bounds, content_mask: Bounds, corner_radii: Corners, tile: AtlasTile, } var b_poly_sprites: array; struct PolySpriteVarying { @builtin(position) position: vec4, @location(0) tile_position: vec2, @location(1) @interpolate(flat) sprite_id: u32, @location(3) clip_distances: vec4, } @vertex fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); let sprite = b_poly_sprites[instance_id]; var out = PolySpriteVarying(); out.position = to_device_position(unit_vertex, sprite.bounds); out.tile_position = to_tile_position(unit_vertex, sprite.tile); out.sprite_id = instance_id; out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask); return out; } @fragment fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4 { let sample = textureSample(t_sprite, s_sprite, input.tile_position); // Alpha clip after using the derivatives. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } let sprite = b_poly_sprites[input.sprite_id]; let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii); var color = sample; if ((sprite.grayscale & 0xFFu) != 0u) { let grayscale = dot(color.rgb, GRAYSCALE_FACTORS); color = vec4(vec3(grayscale), sample.a); } return blend_color(color, sprite.opacity * saturate(0.5 - distance)); } // --- surfaces --- // struct SurfaceParams { bounds: Bounds, content_mask: Bounds, } var surface_locals: SurfaceParams; var t_y: texture_2d; var t_cb_cr: texture_2d; var s_surface: sampler; const ycbcr_to_RGB = mat4x4( vec4( 1.0000f, 1.0000f, 1.0000f, 0.0), vec4( 0.0000f, -0.3441f, 1.7720f, 0.0), vec4( 1.4020f, -0.7141f, 0.0000f, 0.0), vec4(-0.7010f, 0.5291f, -0.8860f, 1.0), ); struct SurfaceVarying { @builtin(position) position: vec4, @location(0) texture_position: vec2, @location(3) clip_distances: vec4, } @vertex fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying { let unit_vertex = vec2(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u)); var out = SurfaceVarying(); out.position = to_device_position(unit_vertex, surface_locals.bounds); out.texture_position = unit_vertex; out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask); return out; } @fragment fn fs_surface(input: SurfaceVarying) -> @location(0) vec4 { // Alpha clip after using the derivatives. if (any(input.clip_distances < vec4(0.0))) { return vec4(0.0); } let y_cb_cr = vec4( textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r, textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg, 1.0); return ycbcr_to_RGB * y_cb_cr; }