ZIm/crates/language_models/src/provider/lmstudio.rs
Danilo Leal 0609c8b953
Revise and clean up some icons (#35582)
This is really just a small beginning, as there are many other icons to
be revised and cleaned up. Our current set is a bit of a mess in terms
of dimension, spacing, stroke width, and terminology. I'm sure there are
more non-used icons I'm not covering here, too. We'll hopefully tackle
it all soon leading up to 1.0.

Closes https://github.com/zed-industries/zed/issues/35576

Release Notes:

- N/A
2025-08-04 11:58:31 -03:00

758 lines
28 KiB
Rust

use anyhow::{Result, anyhow};
use collections::HashMap;
use futures::Stream;
use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
StopReason, TokenUsage,
};
use language_model::{
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
LanguageModelRequest, RateLimiter, Role,
};
use lmstudio::{ModelType, get_models};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::pin::Pin;
use std::str::FromStr;
use std::{collections::BTreeMap, sync::Arc};
use ui::{ButtonLike, Indicator, List, prelude::*};
use util::ResultExt;
use crate::AllLanguageModelSettings;
use crate::ui::InstructionListItem;
const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
const PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("lmstudio");
const PROVIDER_NAME: LanguageModelProviderName = LanguageModelProviderName::new("LM Studio");
#[derive(Default, Debug, Clone, PartialEq)]
pub struct LmStudioSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
pub name: String,
pub display_name: Option<String>,
pub max_tokens: u64,
pub supports_tool_calls: bool,
pub supports_images: bool,
}
pub struct LmStudioLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
http_client: Arc<dyn HttpClient>,
available_models: Vec<lmstudio::Model>,
fetch_model_task: Option<Task<Result<()>>>,
_subscription: Subscription,
}
impl State {
fn is_authenticated(&self) -> bool {
!self.available_models.is_empty()
}
fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
let http_client = self.http_client.clone();
let api_url = settings.api_url.clone();
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
cx.spawn(async move |this, cx| {
let models = get_models(http_client.as_ref(), &api_url, None).await?;
let mut models: Vec<lmstudio::Model> = models
.into_iter()
.filter(|model| model.r#type != ModelType::Embeddings)
.map(|model| {
lmstudio::Model::new(
&model.id,
None,
model
.loaded_context_length
.or_else(|| model.max_context_length),
model.capabilities.supports_tool_calls(),
model.capabilities.supports_images() || model.r#type == ModelType::Vlm,
)
})
.collect();
models.sort_by(|a, b| a.name.cmp(&b.name));
this.update(cx, |this, cx| {
this.available_models = models;
cx.notify();
})
})
}
fn restart_fetch_models_task(&mut self, cx: &mut Context<Self>) {
let task = self.fetch_models(cx);
self.fetch_model_task.replace(task);
}
fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
if self.is_authenticated() {
return Task::ready(Ok(()));
}
let fetch_models_task = self.fetch_models(cx);
cx.spawn(async move |_this, _cx| Ok(fetch_models_task.await?))
}
}
impl LmStudioLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let this = Self {
http_client: http_client.clone(),
state: cx.new(|cx| {
let subscription = cx.observe_global::<SettingsStore>({
let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
move |this: &mut State, cx| {
let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
if &settings != new_settings {
settings = new_settings.clone();
this.restart_fetch_models_task(cx);
cx.notify();
}
}
});
State {
http_client,
available_models: Default::default(),
fetch_model_task: None,
_subscription: subscription,
}
}),
};
this.state
.update(cx, |state, cx| state.restart_fetch_models_task(cx));
this
}
}
impl LanguageModelProviderState for LmStudioLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for LmStudioLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
PROVIDER_ID
}
fn name(&self) -> LanguageModelProviderName {
PROVIDER_NAME
}
fn icon(&self) -> IconName {
IconName::AiLmStudio
}
fn default_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
// We shouldn't try to select default model, because it might lead to a load call for an unloaded model.
// In a constrained environment where user might not have enough resources it'll be a bad UX to select something
// to load by default.
None
}
fn default_fast_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
// See explanation for default_model.
None
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
// Add models from the LM Studio API
for model in self.state.read(cx).available_models.iter() {
models.insert(model.name.clone(), model.clone());
}
// Override with available models from settings
for model in AllLanguageModelSettings::get_global(cx)
.lmstudio
.available_models
.iter()
{
models.insert(
model.name.clone(),
lmstudio::Model {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
supports_tool_calls: model.supports_tool_calls,
supports_images: model.supports_images,
},
);
}
models
.into_values()
.map(|model| {
Arc::new(LmStudioLanguageModel {
id: LanguageModelId::from(model.name.clone()),
model: model.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, _window: &mut Window, cx: &mut App) -> AnyView {
let state = self.state.clone();
cx.new(|cx| ConfigurationView::new(state, cx)).into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.fetch_models(cx))
}
}
pub struct LmStudioLanguageModel {
id: LanguageModelId,
model: lmstudio::Model,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl LmStudioLanguageModel {
fn to_lmstudio_request(
&self,
request: LanguageModelRequest,
) -> lmstudio::ChatCompletionRequest {
let mut messages = Vec::new();
for message in request.messages {
for content in message.content {
match content {
MessageContent::Text(text) => add_message_content_part(
lmstudio::MessagePart::Text { text },
message.role,
&mut messages,
),
MessageContent::Thinking { .. } => {}
MessageContent::RedactedThinking(_) => {}
MessageContent::Image(image) => {
add_message_content_part(
lmstudio::MessagePart::Image {
image_url: lmstudio::ImageUrl {
url: image.to_base64_url(),
detail: None,
},
},
message.role,
&mut messages,
);
}
MessageContent::ToolUse(tool_use) => {
let tool_call = lmstudio::ToolCall {
id: tool_use.id.to_string(),
content: lmstudio::ToolCallContent::Function {
function: lmstudio::FunctionContent {
name: tool_use.name.to_string(),
arguments: serde_json::to_string(&tool_use.input)
.unwrap_or_default(),
},
},
};
if let Some(lmstudio::ChatMessage::Assistant { tool_calls, .. }) =
messages.last_mut()
{
tool_calls.push(tool_call);
} else {
messages.push(lmstudio::ChatMessage::Assistant {
content: None,
tool_calls: vec![tool_call],
});
}
}
MessageContent::ToolResult(tool_result) => {
let content = match &tool_result.content {
LanguageModelToolResultContent::Text(text) => {
vec![lmstudio::MessagePart::Text {
text: text.to_string(),
}]
}
LanguageModelToolResultContent::Image(image) => {
vec![lmstudio::MessagePart::Image {
image_url: lmstudio::ImageUrl {
url: image.to_base64_url(),
detail: None,
},
}]
}
};
messages.push(lmstudio::ChatMessage::Tool {
content: content.into(),
tool_call_id: tool_result.tool_use_id.to_string(),
});
}
}
}
}
lmstudio::ChatCompletionRequest {
model: self.model.name.clone(),
messages,
stream: true,
max_tokens: Some(-1),
stop: Some(request.stop),
// In LM Studio you can configure specific settings you'd like to use for your model.
// For example Qwen3 is recommended to be used with 0.7 temperature.
// It would be a bad UX to silently override these settings from Zed, so we pass no temperature as a default.
temperature: request.temperature.or(None),
tools: request
.tools
.into_iter()
.map(|tool| lmstudio::ToolDefinition::Function {
function: lmstudio::FunctionDefinition {
name: tool.name,
description: Some(tool.description),
parameters: Some(tool.input_schema),
},
})
.collect(),
tool_choice: request.tool_choice.map(|choice| match choice {
LanguageModelToolChoice::Auto => lmstudio::ToolChoice::Auto,
LanguageModelToolChoice::Any => lmstudio::ToolChoice::Required,
LanguageModelToolChoice::None => lmstudio::ToolChoice::None,
}),
}
}
fn stream_completion(
&self,
request: lmstudio::ChatCompletionRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<futures::stream::BoxStream<'static, Result<lmstudio::ResponseStreamEvent>>>,
> {
let http_client = self.http_client.clone();
let Ok(api_url) = cx.update(|cx| {
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
settings.api_url.clone()
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
let future = self.request_limiter.stream(async move {
let request = lmstudio::stream_chat_completion(http_client.as_ref(), &api_url, request);
let response = request.await?;
Ok(response)
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
impl LanguageModel for LmStudioLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
PROVIDER_ID
}
fn provider_name(&self) -> LanguageModelProviderName {
PROVIDER_NAME
}
fn supports_tools(&self) -> bool {
self.model.supports_tool_calls()
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
self.supports_tools()
&& match choice {
LanguageModelToolChoice::Auto => true,
LanguageModelToolChoice::Any => true,
LanguageModelToolChoice::None => true,
}
}
fn supports_images(&self) -> bool {
self.model.supports_images
}
fn telemetry_id(&self) -> String {
format!("lmstudio/{}", self.model.id())
}
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
_cx: &App,
) -> BoxFuture<'static, Result<u64>> {
// Endpoint for this is coming soon. In the meantime, hacky estimation
let token_count = request
.messages
.iter()
.map(|msg| msg.string_contents().split_whitespace().count())
.sum::<usize>();
let estimated_tokens = (token_count as f64 * 0.75) as u64;
async move { Ok(estimated_tokens) }.boxed()
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
LanguageModelCompletionError,
>,
> {
let request = self.to_lmstudio_request(request);
let completions = self.stream_completion(request, cx);
async move {
let mapper = LmStudioEventMapper::new();
Ok(mapper.map_stream(completions.await?).boxed())
}
.boxed()
}
}
struct LmStudioEventMapper {
tool_calls_by_index: HashMap<usize, RawToolCall>,
}
impl LmStudioEventMapper {
fn new() -> Self {
Self {
tool_calls_by_index: HashMap::default(),
}
}
pub fn map_stream(
mut self,
events: Pin<Box<dyn Send + Stream<Item = Result<lmstudio::ResponseStreamEvent>>>>,
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
{
events.flat_map(move |event| {
futures::stream::iter(match event {
Ok(event) => self.map_event(event),
Err(error) => vec![Err(LanguageModelCompletionError::from(error))],
})
})
}
pub fn map_event(
&mut self,
event: lmstudio::ResponseStreamEvent,
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
let Some(choice) = event.choices.into_iter().next() else {
return vec![Err(LanguageModelCompletionError::from(anyhow!(
"Response contained no choices"
)))];
};
let mut events = Vec::new();
if let Some(content) = choice.delta.content {
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
}
if let Some(reasoning_content) = choice.delta.reasoning_content {
events.push(Ok(LanguageModelCompletionEvent::Thinking {
text: reasoning_content,
signature: None,
}));
}
if let Some(tool_calls) = choice.delta.tool_calls {
for tool_call in tool_calls {
let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
if let Some(tool_id) = tool_call.id {
entry.id = tool_id;
}
if let Some(function) = tool_call.function {
if let Some(name) = function.name {
// At the time of writing this code LM Studio (0.3.15) is incompatible with the OpenAI API:
// 1. It sends function name in the first chunk
// 2. It sends empty string in the function name field in all subsequent chunks for arguments
// According to https://platform.openai.com/docs/guides/function-calling?api-mode=responses#streaming
// function name field should be sent only inside the first chunk.
if !name.is_empty() {
entry.name = name;
}
}
if let Some(arguments) = function.arguments {
entry.arguments.push_str(&arguments);
}
}
}
}
if let Some(usage) = event.usage {
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
input_tokens: usage.prompt_tokens,
output_tokens: usage.completion_tokens,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 0,
})));
}
match choice.finish_reason.as_deref() {
Some("stop") => {
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
}
Some("tool_calls") => {
events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
match serde_json::Value::from_str(&tool_call.arguments) {
Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
LanguageModelToolUse {
id: tool_call.id.into(),
name: tool_call.name.into(),
is_input_complete: true,
input,
raw_input: tool_call.arguments,
},
)),
Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
id: tool_call.id.into(),
tool_name: tool_call.name.into(),
raw_input: tool_call.arguments.into(),
json_parse_error: error.to_string(),
}),
}
}));
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
}
Some(stop_reason) => {
log::error!("Unexpected LMStudio stop_reason: {stop_reason:?}",);
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
}
None => {}
}
events
}
}
#[derive(Default)]
struct RawToolCall {
id: String,
name: String,
arguments: String,
}
fn add_message_content_part(
new_part: lmstudio::MessagePart,
role: Role,
messages: &mut Vec<lmstudio::ChatMessage>,
) {
match (role, messages.last_mut()) {
(Role::User, Some(lmstudio::ChatMessage::User { content }))
| (
Role::Assistant,
Some(lmstudio::ChatMessage::Assistant {
content: Some(content),
..
}),
)
| (Role::System, Some(lmstudio::ChatMessage::System { content })) => {
content.push_part(new_part);
}
_ => {
messages.push(match role {
Role::User => lmstudio::ChatMessage::User {
content: lmstudio::MessageContent::from(vec![new_part]),
},
Role::Assistant => lmstudio::ChatMessage::Assistant {
content: Some(lmstudio::MessageContent::from(vec![new_part])),
tool_calls: Vec::new(),
},
Role::System => lmstudio::ChatMessage::System {
content: lmstudio::MessageContent::from(vec![new_part]),
},
});
}
}
}
struct ConfigurationView {
state: gpui::Entity<State>,
loading_models_task: Option<Task<()>>,
}
impl ConfigurationView {
pub fn new(state: gpui::Entity<State>, cx: &mut Context<Self>) -> Self {
let loading_models_task = Some(cx.spawn({
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
task.await.log_err();
}
this.update(cx, |this, cx| {
this.loading_models_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
state,
loading_models_task,
}
}
fn retry_connection(&self, cx: &mut App) {
self.state
.update(cx, |state, cx| state.fetch_models(cx))
.detach_and_log_err(cx);
}
}
impl Render for ConfigurationView {
fn render(&mut self, _window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let is_authenticated = self.state.read(cx).is_authenticated();
let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
if self.loading_models_task.is_some() {
div().child(Label::new("Loading models...")).into_any()
} else {
v_flex()
.gap_2()
.child(
v_flex().gap_1().child(Label::new(lmstudio_intro)).child(
List::new()
.child(InstructionListItem::text_only(
"LM Studio needs to be running with at least one model downloaded.",
))
.child(InstructionListItem::text_only(
"To get your first model, try running `lms get qwen2.5-coder-7b`",
)),
),
)
.child(
h_flex()
.w_full()
.justify_between()
.gap_2()
.child(
h_flex()
.w_full()
.gap_2()
.map(|this| {
if is_authenticated {
this.child(
Button::new("lmstudio-site", "LM Studio")
.style(ButtonStyle::Subtle)
.icon(IconName::ArrowUpRight)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, _window, cx| {
cx.open_url(LMSTUDIO_SITE)
})
.into_any_element(),
)
} else {
this.child(
Button::new(
"download_lmstudio_button",
"Download LM Studio",
)
.style(ButtonStyle::Subtle)
.icon(IconName::ArrowUpRight)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, _window, cx| {
cx.open_url(LMSTUDIO_DOWNLOAD_URL)
})
.into_any_element(),
)
}
})
.child(
Button::new("view-models", "Model Catalog")
.style(ButtonStyle::Subtle)
.icon(IconName::ArrowUpRight)
.icon_size(IconSize::XSmall)
.icon_color(Color::Muted)
.on_click(move |_, _window, cx| {
cx.open_url(LMSTUDIO_CATALOG_URL)
}),
),
)
.map(|this| {
if is_authenticated {
this.child(
ButtonLike::new("connected")
.disabled(true)
.cursor_style(gpui::CursorStyle::Arrow)
.child(
h_flex()
.gap_2()
.child(Indicator::dot().color(Color::Success))
.child(Label::new("Connected"))
.into_any_element(),
),
)
} else {
this.child(
Button::new("retry_lmstudio_models", "Connect")
.icon_position(IconPosition::Start)
.icon_size(IconSize::XSmall)
.icon(IconName::PlayOutlined)
.on_click(cx.listener(move |this, _, _window, cx| {
this.retry_connection(cx)
})),
)
}
}),
)
.into_any()
}
}
}