
This is really just a small beginning, as there are many other icons to be revised and cleaned up. Our current set is a bit of a mess in terms of dimension, spacing, stroke width, and terminology. I'm sure there are more non-used icons I'm not covering here, too. We'll hopefully tackle it all soon leading up to 1.0. Closes https://github.com/zed-industries/zed/issues/35576 Release Notes: - N/A
758 lines
28 KiB
Rust
758 lines
28 KiB
Rust
use anyhow::{Result, anyhow};
|
|
use collections::HashMap;
|
|
use futures::Stream;
|
|
use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
|
|
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
|
|
use http_client::HttpClient;
|
|
use language_model::{
|
|
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
|
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
|
|
StopReason, TokenUsage,
|
|
};
|
|
use language_model::{
|
|
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
|
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
|
|
LanguageModelRequest, RateLimiter, Role,
|
|
};
|
|
use lmstudio::{ModelType, get_models};
|
|
use schemars::JsonSchema;
|
|
use serde::{Deserialize, Serialize};
|
|
use settings::{Settings, SettingsStore};
|
|
use std::pin::Pin;
|
|
use std::str::FromStr;
|
|
use std::{collections::BTreeMap, sync::Arc};
|
|
use ui::{ButtonLike, Indicator, List, prelude::*};
|
|
use util::ResultExt;
|
|
|
|
use crate::AllLanguageModelSettings;
|
|
use crate::ui::InstructionListItem;
|
|
|
|
const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
|
|
const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
|
|
const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
|
|
|
|
const PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("lmstudio");
|
|
const PROVIDER_NAME: LanguageModelProviderName = LanguageModelProviderName::new("LM Studio");
|
|
|
|
#[derive(Default, Debug, Clone, PartialEq)]
|
|
pub struct LmStudioSettings {
|
|
pub api_url: String,
|
|
pub available_models: Vec<AvailableModel>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
pub struct AvailableModel {
|
|
pub name: String,
|
|
pub display_name: Option<String>,
|
|
pub max_tokens: u64,
|
|
pub supports_tool_calls: bool,
|
|
pub supports_images: bool,
|
|
}
|
|
|
|
pub struct LmStudioLanguageModelProvider {
|
|
http_client: Arc<dyn HttpClient>,
|
|
state: gpui::Entity<State>,
|
|
}
|
|
|
|
pub struct State {
|
|
http_client: Arc<dyn HttpClient>,
|
|
available_models: Vec<lmstudio::Model>,
|
|
fetch_model_task: Option<Task<Result<()>>>,
|
|
_subscription: Subscription,
|
|
}
|
|
|
|
impl State {
|
|
fn is_authenticated(&self) -> bool {
|
|
!self.available_models.is_empty()
|
|
}
|
|
|
|
fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
|
let http_client = self.http_client.clone();
|
|
let api_url = settings.api_url.clone();
|
|
|
|
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
|
|
cx.spawn(async move |this, cx| {
|
|
let models = get_models(http_client.as_ref(), &api_url, None).await?;
|
|
|
|
let mut models: Vec<lmstudio::Model> = models
|
|
.into_iter()
|
|
.filter(|model| model.r#type != ModelType::Embeddings)
|
|
.map(|model| {
|
|
lmstudio::Model::new(
|
|
&model.id,
|
|
None,
|
|
model
|
|
.loaded_context_length
|
|
.or_else(|| model.max_context_length),
|
|
model.capabilities.supports_tool_calls(),
|
|
model.capabilities.supports_images() || model.r#type == ModelType::Vlm,
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
models.sort_by(|a, b| a.name.cmp(&b.name));
|
|
|
|
this.update(cx, |this, cx| {
|
|
this.available_models = models;
|
|
cx.notify();
|
|
})
|
|
})
|
|
}
|
|
|
|
fn restart_fetch_models_task(&mut self, cx: &mut Context<Self>) {
|
|
let task = self.fetch_models(cx);
|
|
self.fetch_model_task.replace(task);
|
|
}
|
|
|
|
fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
|
|
if self.is_authenticated() {
|
|
return Task::ready(Ok(()));
|
|
}
|
|
|
|
let fetch_models_task = self.fetch_models(cx);
|
|
cx.spawn(async move |_this, _cx| Ok(fetch_models_task.await?))
|
|
}
|
|
}
|
|
|
|
impl LmStudioLanguageModelProvider {
|
|
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
|
|
let this = Self {
|
|
http_client: http_client.clone(),
|
|
state: cx.new(|cx| {
|
|
let subscription = cx.observe_global::<SettingsStore>({
|
|
let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
|
|
move |this: &mut State, cx| {
|
|
let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
|
if &settings != new_settings {
|
|
settings = new_settings.clone();
|
|
this.restart_fetch_models_task(cx);
|
|
cx.notify();
|
|
}
|
|
}
|
|
});
|
|
|
|
State {
|
|
http_client,
|
|
available_models: Default::default(),
|
|
fetch_model_task: None,
|
|
_subscription: subscription,
|
|
}
|
|
}),
|
|
};
|
|
this.state
|
|
.update(cx, |state, cx| state.restart_fetch_models_task(cx));
|
|
this
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProviderState for LmStudioLanguageModelProvider {
|
|
type ObservableEntity = State;
|
|
|
|
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
|
|
Some(self.state.clone())
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProvider for LmStudioLanguageModelProvider {
|
|
fn id(&self) -> LanguageModelProviderId {
|
|
PROVIDER_ID
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelProviderName {
|
|
PROVIDER_NAME
|
|
}
|
|
|
|
fn icon(&self) -> IconName {
|
|
IconName::AiLmStudio
|
|
}
|
|
|
|
fn default_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
// We shouldn't try to select default model, because it might lead to a load call for an unloaded model.
|
|
// In a constrained environment where user might not have enough resources it'll be a bad UX to select something
|
|
// to load by default.
|
|
None
|
|
}
|
|
|
|
fn default_fast_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
// See explanation for default_model.
|
|
None
|
|
}
|
|
|
|
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
|
|
let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
|
|
|
|
// Add models from the LM Studio API
|
|
for model in self.state.read(cx).available_models.iter() {
|
|
models.insert(model.name.clone(), model.clone());
|
|
}
|
|
|
|
// Override with available models from settings
|
|
for model in AllLanguageModelSettings::get_global(cx)
|
|
.lmstudio
|
|
.available_models
|
|
.iter()
|
|
{
|
|
models.insert(
|
|
model.name.clone(),
|
|
lmstudio::Model {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
supports_tool_calls: model.supports_tool_calls,
|
|
supports_images: model.supports_images,
|
|
},
|
|
);
|
|
}
|
|
|
|
models
|
|
.into_values()
|
|
.map(|model| {
|
|
Arc::new(LmStudioLanguageModel {
|
|
id: LanguageModelId::from(model.name.clone()),
|
|
model: model.clone(),
|
|
http_client: self.http_client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
}) as Arc<dyn LanguageModel>
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn is_authenticated(&self, cx: &App) -> bool {
|
|
self.state.read(cx).is_authenticated()
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
|
|
self.state.update(cx, |state, cx| state.authenticate(cx))
|
|
}
|
|
|
|
fn configuration_view(&self, _window: &mut Window, cx: &mut App) -> AnyView {
|
|
let state = self.state.clone();
|
|
cx.new(|cx| ConfigurationView::new(state, cx)).into()
|
|
}
|
|
|
|
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
|
|
self.state.update(cx, |state, cx| state.fetch_models(cx))
|
|
}
|
|
}
|
|
|
|
pub struct LmStudioLanguageModel {
|
|
id: LanguageModelId,
|
|
model: lmstudio::Model,
|
|
http_client: Arc<dyn HttpClient>,
|
|
request_limiter: RateLimiter,
|
|
}
|
|
|
|
impl LmStudioLanguageModel {
|
|
fn to_lmstudio_request(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
) -> lmstudio::ChatCompletionRequest {
|
|
let mut messages = Vec::new();
|
|
|
|
for message in request.messages {
|
|
for content in message.content {
|
|
match content {
|
|
MessageContent::Text(text) => add_message_content_part(
|
|
lmstudio::MessagePart::Text { text },
|
|
message.role,
|
|
&mut messages,
|
|
),
|
|
MessageContent::Thinking { .. } => {}
|
|
MessageContent::RedactedThinking(_) => {}
|
|
MessageContent::Image(image) => {
|
|
add_message_content_part(
|
|
lmstudio::MessagePart::Image {
|
|
image_url: lmstudio::ImageUrl {
|
|
url: image.to_base64_url(),
|
|
detail: None,
|
|
},
|
|
},
|
|
message.role,
|
|
&mut messages,
|
|
);
|
|
}
|
|
MessageContent::ToolUse(tool_use) => {
|
|
let tool_call = lmstudio::ToolCall {
|
|
id: tool_use.id.to_string(),
|
|
content: lmstudio::ToolCallContent::Function {
|
|
function: lmstudio::FunctionContent {
|
|
name: tool_use.name.to_string(),
|
|
arguments: serde_json::to_string(&tool_use.input)
|
|
.unwrap_or_default(),
|
|
},
|
|
},
|
|
};
|
|
|
|
if let Some(lmstudio::ChatMessage::Assistant { tool_calls, .. }) =
|
|
messages.last_mut()
|
|
{
|
|
tool_calls.push(tool_call);
|
|
} else {
|
|
messages.push(lmstudio::ChatMessage::Assistant {
|
|
content: None,
|
|
tool_calls: vec![tool_call],
|
|
});
|
|
}
|
|
}
|
|
MessageContent::ToolResult(tool_result) => {
|
|
let content = match &tool_result.content {
|
|
LanguageModelToolResultContent::Text(text) => {
|
|
vec![lmstudio::MessagePart::Text {
|
|
text: text.to_string(),
|
|
}]
|
|
}
|
|
LanguageModelToolResultContent::Image(image) => {
|
|
vec![lmstudio::MessagePart::Image {
|
|
image_url: lmstudio::ImageUrl {
|
|
url: image.to_base64_url(),
|
|
detail: None,
|
|
},
|
|
}]
|
|
}
|
|
};
|
|
|
|
messages.push(lmstudio::ChatMessage::Tool {
|
|
content: content.into(),
|
|
tool_call_id: tool_result.tool_use_id.to_string(),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
lmstudio::ChatCompletionRequest {
|
|
model: self.model.name.clone(),
|
|
messages,
|
|
stream: true,
|
|
max_tokens: Some(-1),
|
|
stop: Some(request.stop),
|
|
// In LM Studio you can configure specific settings you'd like to use for your model.
|
|
// For example Qwen3 is recommended to be used with 0.7 temperature.
|
|
// It would be a bad UX to silently override these settings from Zed, so we pass no temperature as a default.
|
|
temperature: request.temperature.or(None),
|
|
tools: request
|
|
.tools
|
|
.into_iter()
|
|
.map(|tool| lmstudio::ToolDefinition::Function {
|
|
function: lmstudio::FunctionDefinition {
|
|
name: tool.name,
|
|
description: Some(tool.description),
|
|
parameters: Some(tool.input_schema),
|
|
},
|
|
})
|
|
.collect(),
|
|
tool_choice: request.tool_choice.map(|choice| match choice {
|
|
LanguageModelToolChoice::Auto => lmstudio::ToolChoice::Auto,
|
|
LanguageModelToolChoice::Any => lmstudio::ToolChoice::Required,
|
|
LanguageModelToolChoice::None => lmstudio::ToolChoice::None,
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: lmstudio::ChatCompletionRequest,
|
|
cx: &AsyncApp,
|
|
) -> BoxFuture<
|
|
'static,
|
|
Result<futures::stream::BoxStream<'static, Result<lmstudio::ResponseStreamEvent>>>,
|
|
> {
|
|
let http_client = self.http_client.clone();
|
|
let Ok(api_url) = cx.update(|cx| {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
|
|
settings.api_url.clone()
|
|
}) else {
|
|
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
|
|
};
|
|
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = lmstudio::stream_chat_completion(http_client.as_ref(), &api_url, request);
|
|
let response = request.await?;
|
|
Ok(response)
|
|
});
|
|
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
}
|
|
|
|
impl LanguageModel for LmStudioLanguageModel {
|
|
fn id(&self) -> LanguageModelId {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelName {
|
|
LanguageModelName::from(self.model.display_name().to_string())
|
|
}
|
|
|
|
fn provider_id(&self) -> LanguageModelProviderId {
|
|
PROVIDER_ID
|
|
}
|
|
|
|
fn provider_name(&self) -> LanguageModelProviderName {
|
|
PROVIDER_NAME
|
|
}
|
|
|
|
fn supports_tools(&self) -> bool {
|
|
self.model.supports_tool_calls()
|
|
}
|
|
|
|
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
|
|
self.supports_tools()
|
|
&& match choice {
|
|
LanguageModelToolChoice::Auto => true,
|
|
LanguageModelToolChoice::Any => true,
|
|
LanguageModelToolChoice::None => true,
|
|
}
|
|
}
|
|
|
|
fn supports_images(&self) -> bool {
|
|
self.model.supports_images
|
|
}
|
|
|
|
fn telemetry_id(&self) -> String {
|
|
format!("lmstudio/{}", self.model.id())
|
|
}
|
|
|
|
fn max_token_count(&self) -> u64 {
|
|
self.model.max_token_count()
|
|
}
|
|
|
|
fn count_tokens(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
_cx: &App,
|
|
) -> BoxFuture<'static, Result<u64>> {
|
|
// Endpoint for this is coming soon. In the meantime, hacky estimation
|
|
let token_count = request
|
|
.messages
|
|
.iter()
|
|
.map(|msg| msg.string_contents().split_whitespace().count())
|
|
.sum::<usize>();
|
|
|
|
let estimated_tokens = (token_count as f64 * 0.75) as u64;
|
|
async move { Ok(estimated_tokens) }.boxed()
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AsyncApp,
|
|
) -> BoxFuture<
|
|
'static,
|
|
Result<
|
|
BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
|
|
LanguageModelCompletionError,
|
|
>,
|
|
> {
|
|
let request = self.to_lmstudio_request(request);
|
|
let completions = self.stream_completion(request, cx);
|
|
async move {
|
|
let mapper = LmStudioEventMapper::new();
|
|
Ok(mapper.map_stream(completions.await?).boxed())
|
|
}
|
|
.boxed()
|
|
}
|
|
}
|
|
|
|
struct LmStudioEventMapper {
|
|
tool_calls_by_index: HashMap<usize, RawToolCall>,
|
|
}
|
|
|
|
impl LmStudioEventMapper {
|
|
fn new() -> Self {
|
|
Self {
|
|
tool_calls_by_index: HashMap::default(),
|
|
}
|
|
}
|
|
|
|
pub fn map_stream(
|
|
mut self,
|
|
events: Pin<Box<dyn Send + Stream<Item = Result<lmstudio::ResponseStreamEvent>>>>,
|
|
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
|
|
{
|
|
events.flat_map(move |event| {
|
|
futures::stream::iter(match event {
|
|
Ok(event) => self.map_event(event),
|
|
Err(error) => vec![Err(LanguageModelCompletionError::from(error))],
|
|
})
|
|
})
|
|
}
|
|
|
|
pub fn map_event(
|
|
&mut self,
|
|
event: lmstudio::ResponseStreamEvent,
|
|
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
|
let Some(choice) = event.choices.into_iter().next() else {
|
|
return vec![Err(LanguageModelCompletionError::from(anyhow!(
|
|
"Response contained no choices"
|
|
)))];
|
|
};
|
|
|
|
let mut events = Vec::new();
|
|
if let Some(content) = choice.delta.content {
|
|
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
|
}
|
|
|
|
if let Some(reasoning_content) = choice.delta.reasoning_content {
|
|
events.push(Ok(LanguageModelCompletionEvent::Thinking {
|
|
text: reasoning_content,
|
|
signature: None,
|
|
}));
|
|
}
|
|
|
|
if let Some(tool_calls) = choice.delta.tool_calls {
|
|
for tool_call in tool_calls {
|
|
let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
|
|
|
|
if let Some(tool_id) = tool_call.id {
|
|
entry.id = tool_id;
|
|
}
|
|
|
|
if let Some(function) = tool_call.function {
|
|
if let Some(name) = function.name {
|
|
// At the time of writing this code LM Studio (0.3.15) is incompatible with the OpenAI API:
|
|
// 1. It sends function name in the first chunk
|
|
// 2. It sends empty string in the function name field in all subsequent chunks for arguments
|
|
// According to https://platform.openai.com/docs/guides/function-calling?api-mode=responses#streaming
|
|
// function name field should be sent only inside the first chunk.
|
|
if !name.is_empty() {
|
|
entry.name = name;
|
|
}
|
|
}
|
|
|
|
if let Some(arguments) = function.arguments {
|
|
entry.arguments.push_str(&arguments);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some(usage) = event.usage {
|
|
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
|
|
input_tokens: usage.prompt_tokens,
|
|
output_tokens: usage.completion_tokens,
|
|
cache_creation_input_tokens: 0,
|
|
cache_read_input_tokens: 0,
|
|
})));
|
|
}
|
|
|
|
match choice.finish_reason.as_deref() {
|
|
Some("stop") => {
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
|
}
|
|
Some("tool_calls") => {
|
|
events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
|
|
match serde_json::Value::from_str(&tool_call.arguments) {
|
|
Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
|
|
LanguageModelToolUse {
|
|
id: tool_call.id.into(),
|
|
name: tool_call.name.into(),
|
|
is_input_complete: true,
|
|
input,
|
|
raw_input: tool_call.arguments,
|
|
},
|
|
)),
|
|
Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
|
|
id: tool_call.id.into(),
|
|
tool_name: tool_call.name.into(),
|
|
raw_input: tool_call.arguments.into(),
|
|
json_parse_error: error.to_string(),
|
|
}),
|
|
}
|
|
}));
|
|
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
|
}
|
|
Some(stop_reason) => {
|
|
log::error!("Unexpected LMStudio stop_reason: {stop_reason:?}",);
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
|
}
|
|
None => {}
|
|
}
|
|
|
|
events
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
struct RawToolCall {
|
|
id: String,
|
|
name: String,
|
|
arguments: String,
|
|
}
|
|
|
|
fn add_message_content_part(
|
|
new_part: lmstudio::MessagePart,
|
|
role: Role,
|
|
messages: &mut Vec<lmstudio::ChatMessage>,
|
|
) {
|
|
match (role, messages.last_mut()) {
|
|
(Role::User, Some(lmstudio::ChatMessage::User { content }))
|
|
| (
|
|
Role::Assistant,
|
|
Some(lmstudio::ChatMessage::Assistant {
|
|
content: Some(content),
|
|
..
|
|
}),
|
|
)
|
|
| (Role::System, Some(lmstudio::ChatMessage::System { content })) => {
|
|
content.push_part(new_part);
|
|
}
|
|
_ => {
|
|
messages.push(match role {
|
|
Role::User => lmstudio::ChatMessage::User {
|
|
content: lmstudio::MessageContent::from(vec![new_part]),
|
|
},
|
|
Role::Assistant => lmstudio::ChatMessage::Assistant {
|
|
content: Some(lmstudio::MessageContent::from(vec![new_part])),
|
|
tool_calls: Vec::new(),
|
|
},
|
|
Role::System => lmstudio::ChatMessage::System {
|
|
content: lmstudio::MessageContent::from(vec![new_part]),
|
|
},
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
struct ConfigurationView {
|
|
state: gpui::Entity<State>,
|
|
loading_models_task: Option<Task<()>>,
|
|
}
|
|
|
|
impl ConfigurationView {
|
|
pub fn new(state: gpui::Entity<State>, cx: &mut Context<Self>) -> Self {
|
|
let loading_models_task = Some(cx.spawn({
|
|
let state = state.clone();
|
|
async move |this, cx| {
|
|
if let Some(task) = state
|
|
.update(cx, |state, cx| state.authenticate(cx))
|
|
.log_err()
|
|
{
|
|
task.await.log_err();
|
|
}
|
|
this.update(cx, |this, cx| {
|
|
this.loading_models_task = None;
|
|
cx.notify();
|
|
})
|
|
.log_err();
|
|
}
|
|
}));
|
|
|
|
Self {
|
|
state,
|
|
loading_models_task,
|
|
}
|
|
}
|
|
|
|
fn retry_connection(&self, cx: &mut App) {
|
|
self.state
|
|
.update(cx, |state, cx| state.fetch_models(cx))
|
|
.detach_and_log_err(cx);
|
|
}
|
|
}
|
|
|
|
impl Render for ConfigurationView {
|
|
fn render(&mut self, _window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
|
|
let is_authenticated = self.state.read(cx).is_authenticated();
|
|
|
|
let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
|
|
|
|
if self.loading_models_task.is_some() {
|
|
div().child(Label::new("Loading models...")).into_any()
|
|
} else {
|
|
v_flex()
|
|
.gap_2()
|
|
.child(
|
|
v_flex().gap_1().child(Label::new(lmstudio_intro)).child(
|
|
List::new()
|
|
.child(InstructionListItem::text_only(
|
|
"LM Studio needs to be running with at least one model downloaded.",
|
|
))
|
|
.child(InstructionListItem::text_only(
|
|
"To get your first model, try running `lms get qwen2.5-coder-7b`",
|
|
)),
|
|
),
|
|
)
|
|
.child(
|
|
h_flex()
|
|
.w_full()
|
|
.justify_between()
|
|
.gap_2()
|
|
.child(
|
|
h_flex()
|
|
.w_full()
|
|
.gap_2()
|
|
.map(|this| {
|
|
if is_authenticated {
|
|
this.child(
|
|
Button::new("lmstudio-site", "LM Studio")
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _window, cx| {
|
|
cx.open_url(LMSTUDIO_SITE)
|
|
})
|
|
.into_any_element(),
|
|
)
|
|
} else {
|
|
this.child(
|
|
Button::new(
|
|
"download_lmstudio_button",
|
|
"Download LM Studio",
|
|
)
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _window, cx| {
|
|
cx.open_url(LMSTUDIO_DOWNLOAD_URL)
|
|
})
|
|
.into_any_element(),
|
|
)
|
|
}
|
|
})
|
|
.child(
|
|
Button::new("view-models", "Model Catalog")
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _window, cx| {
|
|
cx.open_url(LMSTUDIO_CATALOG_URL)
|
|
}),
|
|
),
|
|
)
|
|
.map(|this| {
|
|
if is_authenticated {
|
|
this.child(
|
|
ButtonLike::new("connected")
|
|
.disabled(true)
|
|
.cursor_style(gpui::CursorStyle::Arrow)
|
|
.child(
|
|
h_flex()
|
|
.gap_2()
|
|
.child(Indicator::dot().color(Color::Success))
|
|
.child(Label::new("Connected"))
|
|
.into_any_element(),
|
|
),
|
|
)
|
|
} else {
|
|
this.child(
|
|
Button::new("retry_lmstudio_models", "Connect")
|
|
.icon_position(IconPosition::Start)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon(IconName::PlayOutlined)
|
|
.on_click(cx.listener(move |this, _, _window, cx| {
|
|
this.retry_connection(cx)
|
|
})),
|
|
)
|
|
}
|
|
}),
|
|
)
|
|
.into_any()
|
|
}
|
|
}
|
|
}
|