ZIm/crates/server/src/rpc.rs
Antonio Scandurra 0e51365770 In a diagnostic group, mark the highest-severity diagnostic as primary
Co-Authored-By: Nathan Sobo <nathan@zed.dev>
2021-11-18 15:53:00 +01:00

2433 lines
83 KiB
Rust

mod store;
use super::{
auth::process_auth_header,
db::{ChannelId, MessageId, UserId},
AppState,
};
use anyhow::anyhow;
use async_std::{sync::RwLock, task};
use async_tungstenite::{tungstenite::protocol::Role, WebSocketStream};
use futures::{future::BoxFuture, FutureExt};
use postage::{mpsc, prelude::Sink as _, prelude::Stream as _};
use rpc::{
proto::{self, AnyTypedEnvelope, EnvelopedMessage},
Connection, ConnectionId, Peer, TypedEnvelope,
};
use sha1::{Digest as _, Sha1};
use std::{
any::TypeId,
collections::{HashMap, HashSet},
future::Future,
mem,
sync::Arc,
time::Instant,
};
use store::{JoinedWorktree, Store, Worktree};
use surf::StatusCode;
use tide::log;
use tide::{
http::headers::{HeaderName, CONNECTION, UPGRADE},
Request, Response,
};
use time::OffsetDateTime;
type MessageHandler = Box<
dyn Send
+ Sync
+ Fn(Arc<Server>, Box<dyn AnyTypedEnvelope>) -> BoxFuture<'static, tide::Result<()>>,
>;
pub struct Server {
peer: Arc<Peer>,
store: RwLock<Store>,
app_state: Arc<AppState>,
handlers: HashMap<TypeId, MessageHandler>,
notifications: Option<mpsc::Sender<()>>,
}
const MESSAGE_COUNT_PER_PAGE: usize = 100;
const MAX_MESSAGE_LEN: usize = 1024;
impl Server {
pub fn new(
app_state: Arc<AppState>,
peer: Arc<Peer>,
notifications: Option<mpsc::Sender<()>>,
) -> Arc<Self> {
let mut server = Self {
peer,
app_state,
store: Default::default(),
handlers: Default::default(),
notifications,
};
server
.add_handler(Server::ping)
.add_handler(Server::open_worktree)
.add_handler(Server::close_worktree)
.add_handler(Server::share_worktree)
.add_handler(Server::unshare_worktree)
.add_handler(Server::join_worktree)
.add_handler(Server::leave_worktree)
.add_handler(Server::update_worktree)
.add_handler(Server::open_buffer)
.add_handler(Server::close_buffer)
.add_handler(Server::update_buffer)
.add_handler(Server::buffer_saved)
.add_handler(Server::save_buffer)
.add_handler(Server::get_channels)
.add_handler(Server::get_users)
.add_handler(Server::join_channel)
.add_handler(Server::leave_channel)
.add_handler(Server::send_channel_message)
.add_handler(Server::get_channel_messages);
Arc::new(server)
}
fn add_handler<F, Fut, M>(&mut self, handler: F) -> &mut Self
where
F: 'static + Send + Sync + Fn(Arc<Self>, TypedEnvelope<M>) -> Fut,
Fut: 'static + Send + Future<Output = tide::Result<()>>,
M: EnvelopedMessage,
{
let prev_handler = self.handlers.insert(
TypeId::of::<M>(),
Box::new(move |server, envelope| {
let envelope = envelope.into_any().downcast::<TypedEnvelope<M>>().unwrap();
(handler)(server, *envelope).boxed()
}),
);
if prev_handler.is_some() {
panic!("registered a handler for the same message twice");
}
self
}
pub fn handle_connection(
self: &Arc<Self>,
connection: Connection,
addr: String,
user_id: UserId,
) -> impl Future<Output = ()> {
let mut this = self.clone();
async move {
let (connection_id, handle_io, mut incoming_rx) =
this.peer.add_connection(connection).await;
this.state_mut()
.await
.add_connection(connection_id, user_id);
if let Err(err) = this.update_collaborators_for_users(&[user_id]).await {
log::error!("error updating collaborators for {:?}: {}", user_id, err);
}
let handle_io = handle_io.fuse();
futures::pin_mut!(handle_io);
loop {
let next_message = incoming_rx.recv().fuse();
futures::pin_mut!(next_message);
futures::select_biased! {
message = next_message => {
if let Some(message) = message {
let start_time = Instant::now();
log::info!("RPC message received: {}", message.payload_type_name());
if let Some(handler) = this.handlers.get(&message.payload_type_id()) {
if let Err(err) = (handler)(this.clone(), message).await {
log::error!("error handling message: {:?}", err);
} else {
log::info!("RPC message handled. duration:{:?}", start_time.elapsed());
}
if let Some(mut notifications) = this.notifications.clone() {
let _ = notifications.send(()).await;
}
} else {
log::warn!("unhandled message: {}", message.payload_type_name());
}
} else {
log::info!("rpc connection closed {:?}", addr);
break;
}
}
handle_io = handle_io => {
if let Err(err) = handle_io {
log::error!("error handling rpc connection {:?} - {:?}", addr, err);
}
break;
}
}
}
if let Err(err) = this.sign_out(connection_id).await {
log::error!("error signing out connection {:?} - {:?}", addr, err);
}
}
}
async fn sign_out(self: &mut Arc<Self>, connection_id: ConnectionId) -> tide::Result<()> {
self.peer.disconnect(connection_id).await;
let removed_connection = self.state_mut().await.remove_connection(connection_id)?;
for (worktree_id, worktree) in removed_connection.hosted_worktrees {
if let Some(share) = worktree.share {
broadcast(
connection_id,
share.guest_connection_ids.keys().copied().collect(),
|conn_id| {
self.peer
.send(conn_id, proto::UnshareWorktree { worktree_id })
},
)
.await?;
}
}
for (worktree_id, peer_ids) in removed_connection.guest_worktree_ids {
broadcast(connection_id, peer_ids, |conn_id| {
self.peer.send(
conn_id,
proto::RemovePeer {
worktree_id,
peer_id: connection_id.0,
},
)
})
.await?;
}
self.update_collaborators_for_users(removed_connection.collaborator_ids.iter())
.await?;
Ok(())
}
async fn ping(self: Arc<Server>, request: TypedEnvelope<proto::Ping>) -> tide::Result<()> {
self.peer.respond(request.receipt(), proto::Ack {}).await?;
Ok(())
}
async fn open_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::OpenWorktree>,
) -> tide::Result<()> {
let receipt = request.receipt();
let host_user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let mut collaborator_user_ids = HashSet::new();
collaborator_user_ids.insert(host_user_id);
for github_login in request.payload.collaborator_logins {
match self.app_state.db.create_user(&github_login, false).await {
Ok(collaborator_user_id) => {
collaborator_user_ids.insert(collaborator_user_id);
}
Err(err) => {
let message = err.to_string();
self.peer
.respond_with_error(receipt, proto::Error { message })
.await?;
return Ok(());
}
}
}
let collaborator_user_ids = collaborator_user_ids.into_iter().collect::<Vec<_>>();
let worktree_id = self.state_mut().await.add_worktree(Worktree {
host_connection_id: request.sender_id,
collaborator_user_ids: collaborator_user_ids.clone(),
root_name: request.payload.root_name,
share: None,
});
self.peer
.respond(receipt, proto::OpenWorktreeResponse { worktree_id })
.await?;
self.update_collaborators_for_users(&collaborator_user_ids)
.await?;
Ok(())
}
async fn close_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::CloseWorktree>,
) -> tide::Result<()> {
let worktree_id = request.payload.worktree_id;
let worktree = self
.state_mut()
.await
.remove_worktree(worktree_id, request.sender_id)?;
if let Some(share) = worktree.share {
broadcast(
request.sender_id,
share.guest_connection_ids.keys().copied().collect(),
|conn_id| {
self.peer
.send(conn_id, proto::UnshareWorktree { worktree_id })
},
)
.await?;
}
self.update_collaborators_for_users(&worktree.collaborator_user_ids)
.await?;
Ok(())
}
async fn share_worktree(
mut self: Arc<Server>,
mut request: TypedEnvelope<proto::ShareWorktree>,
) -> tide::Result<()> {
let worktree = request
.payload
.worktree
.as_mut()
.ok_or_else(|| anyhow!("missing worktree"))?;
let entries = mem::take(&mut worktree.entries)
.into_iter()
.map(|entry| (entry.id, entry))
.collect();
let collaborator_user_ids =
self.state_mut()
.await
.share_worktree(worktree.id, request.sender_id, entries);
if let Some(collaborator_user_ids) = collaborator_user_ids {
self.peer
.respond(request.receipt(), proto::ShareWorktreeResponse {})
.await?;
self.update_collaborators_for_users(&collaborator_user_ids)
.await?;
} else {
self.peer
.respond_with_error(
request.receipt(),
proto::Error {
message: "no such worktree".to_string(),
},
)
.await?;
}
Ok(())
}
async fn unshare_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::UnshareWorktree>,
) -> tide::Result<()> {
let worktree_id = request.payload.worktree_id;
let worktree = self
.state_mut()
.await
.unshare_worktree(worktree_id, request.sender_id)?;
broadcast(request.sender_id, worktree.connection_ids, |conn_id| {
self.peer
.send(conn_id, proto::UnshareWorktree { worktree_id })
})
.await?;
self.update_collaborators_for_users(&worktree.collaborator_ids)
.await?;
Ok(())
}
async fn join_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::JoinWorktree>,
) -> tide::Result<()> {
let worktree_id = request.payload.worktree_id;
let user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let mut state = self.state_mut().await;
match state.join_worktree(request.sender_id, user_id, worktree_id) {
Ok(JoinedWorktree {
replica_id,
worktree,
}) => {
let share = worktree.share()?;
let peer_count = share.guest_connection_ids.len();
let mut peers = Vec::with_capacity(peer_count);
peers.push(proto::Peer {
peer_id: worktree.host_connection_id.0,
replica_id: 0,
});
for (peer_conn_id, peer_replica_id) in &share.guest_connection_ids {
if *peer_conn_id != request.sender_id {
peers.push(proto::Peer {
peer_id: peer_conn_id.0,
replica_id: *peer_replica_id as u32,
});
}
}
let response = proto::JoinWorktreeResponse {
worktree: Some(proto::Worktree {
id: worktree_id,
root_name: worktree.root_name.clone(),
entries: share.entries.values().cloned().collect(),
}),
replica_id: replica_id as u32,
peers,
};
let connection_ids = worktree.connection_ids();
let collaborator_user_ids = worktree.collaborator_user_ids.clone();
drop(state);
broadcast(request.sender_id, connection_ids, |conn_id| {
self.peer.send(
conn_id,
proto::AddPeer {
worktree_id,
peer: Some(proto::Peer {
peer_id: request.sender_id.0,
replica_id: response.replica_id,
}),
},
)
})
.await?;
self.peer.respond(request.receipt(), response).await?;
self.update_collaborators_for_users(&collaborator_user_ids)
.await?;
}
Err(error) => {
drop(state);
self.peer
.respond_with_error(
request.receipt(),
proto::Error {
message: error.to_string(),
},
)
.await?;
}
}
Ok(())
}
async fn leave_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::LeaveWorktree>,
) -> tide::Result<()> {
let sender_id = request.sender_id;
let worktree_id = request.payload.worktree_id;
let worktree = self
.state_mut()
.await
.leave_worktree(sender_id, worktree_id);
if let Some(worktree) = worktree {
broadcast(sender_id, worktree.connection_ids, |conn_id| {
self.peer.send(
conn_id,
proto::RemovePeer {
worktree_id,
peer_id: sender_id.0,
},
)
})
.await?;
self.update_collaborators_for_users(&worktree.collaborator_ids)
.await?;
}
Ok(())
}
async fn update_worktree(
mut self: Arc<Server>,
request: TypedEnvelope<proto::UpdateWorktree>,
) -> tide::Result<()> {
let connection_ids = self.state_mut().await.update_worktree(
request.sender_id,
request.payload.worktree_id,
&request.payload.removed_entries,
&request.payload.updated_entries,
)?;
broadcast(request.sender_id, connection_ids, |connection_id| {
self.peer
.forward_send(request.sender_id, connection_id, request.payload.clone())
})
.await?;
Ok(())
}
async fn open_buffer(
self: Arc<Server>,
request: TypedEnvelope<proto::OpenBuffer>,
) -> tide::Result<()> {
let receipt = request.receipt();
let host_connection_id = self
.state()
.await
.worktree_host_connection_id(request.sender_id, request.payload.worktree_id)?;
let response = self
.peer
.forward_request(request.sender_id, host_connection_id, request.payload)
.await?;
self.peer.respond(receipt, response).await?;
Ok(())
}
async fn close_buffer(
self: Arc<Server>,
request: TypedEnvelope<proto::CloseBuffer>,
) -> tide::Result<()> {
let host_connection_id = self
.state()
.await
.worktree_host_connection_id(request.sender_id, request.payload.worktree_id)?;
self.peer
.forward_send(request.sender_id, host_connection_id, request.payload)
.await?;
Ok(())
}
async fn save_buffer(
self: Arc<Server>,
request: TypedEnvelope<proto::SaveBuffer>,
) -> tide::Result<()> {
let host;
let guests;
{
let state = self.state().await;
host = state
.worktree_host_connection_id(request.sender_id, request.payload.worktree_id)?;
guests = state
.worktree_guest_connection_ids(request.sender_id, request.payload.worktree_id)?;
}
let sender = request.sender_id;
let receipt = request.receipt();
let response = self
.peer
.forward_request(sender, host, request.payload.clone())
.await?;
broadcast(host, guests, |conn_id| {
let response = response.clone();
let peer = &self.peer;
async move {
if conn_id == sender {
peer.respond(receipt, response).await
} else {
peer.forward_send(host, conn_id, response).await
}
}
})
.await?;
Ok(())
}
async fn update_buffer(
self: Arc<Server>,
request: TypedEnvelope<proto::UpdateBuffer>,
) -> tide::Result<()> {
broadcast(
request.sender_id,
self.state()
.await
.worktree_connection_ids(request.sender_id, request.payload.worktree_id)?,
|connection_id| {
self.peer
.forward_send(request.sender_id, connection_id, request.payload.clone())
},
)
.await?;
self.peer.respond(request.receipt(), proto::Ack {}).await?;
Ok(())
}
async fn buffer_saved(
self: Arc<Server>,
request: TypedEnvelope<proto::BufferSaved>,
) -> tide::Result<()> {
broadcast(
request.sender_id,
self.store
.read()
.await
.worktree_connection_ids(request.sender_id, request.payload.worktree_id)?,
|connection_id| {
self.peer
.forward_send(request.sender_id, connection_id, request.payload.clone())
},
)
.await?;
Ok(())
}
async fn get_channels(
self: Arc<Server>,
request: TypedEnvelope<proto::GetChannels>,
) -> tide::Result<()> {
let user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let channels = self.app_state.db.get_accessible_channels(user_id).await?;
self.peer
.respond(
request.receipt(),
proto::GetChannelsResponse {
channels: channels
.into_iter()
.map(|chan| proto::Channel {
id: chan.id.to_proto(),
name: chan.name,
})
.collect(),
},
)
.await?;
Ok(())
}
async fn get_users(
self: Arc<Server>,
request: TypedEnvelope<proto::GetUsers>,
) -> tide::Result<()> {
let receipt = request.receipt();
let user_ids = request.payload.user_ids.into_iter().map(UserId::from_proto);
let users = self
.app_state
.db
.get_users_by_ids(user_ids)
.await?
.into_iter()
.map(|user| proto::User {
id: user.id.to_proto(),
avatar_url: format!("https://github.com/{}.png?size=128", user.github_login),
github_login: user.github_login,
})
.collect();
self.peer
.respond(receipt, proto::GetUsersResponse { users })
.await?;
Ok(())
}
async fn update_collaborators_for_users<'a>(
self: &Arc<Server>,
user_ids: impl IntoIterator<Item = &'a UserId>,
) -> tide::Result<()> {
let mut send_futures = Vec::new();
let state = self.state().await;
for user_id in user_ids {
let collaborators = state.collaborators_for_user(*user_id);
for connection_id in state.connection_ids_for_user(*user_id) {
send_futures.push(self.peer.send(
connection_id,
proto::UpdateCollaborators {
collaborators: collaborators.clone(),
},
));
}
}
drop(state);
futures::future::try_join_all(send_futures).await?;
Ok(())
}
async fn join_channel(
mut self: Arc<Self>,
request: TypedEnvelope<proto::JoinChannel>,
) -> tide::Result<()> {
let user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let channel_id = ChannelId::from_proto(request.payload.channel_id);
if !self
.app_state
.db
.can_user_access_channel(user_id, channel_id)
.await?
{
Err(anyhow!("access denied"))?;
}
self.state_mut()
.await
.join_channel(request.sender_id, channel_id);
let messages = self
.app_state
.db
.get_channel_messages(channel_id, MESSAGE_COUNT_PER_PAGE, None)
.await?
.into_iter()
.map(|msg| proto::ChannelMessage {
id: msg.id.to_proto(),
body: msg.body,
timestamp: msg.sent_at.unix_timestamp() as u64,
sender_id: msg.sender_id.to_proto(),
nonce: Some(msg.nonce.as_u128().into()),
})
.collect::<Vec<_>>();
self.peer
.respond(
request.receipt(),
proto::JoinChannelResponse {
done: messages.len() < MESSAGE_COUNT_PER_PAGE,
messages,
},
)
.await?;
Ok(())
}
async fn leave_channel(
mut self: Arc<Self>,
request: TypedEnvelope<proto::LeaveChannel>,
) -> tide::Result<()> {
let user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let channel_id = ChannelId::from_proto(request.payload.channel_id);
if !self
.app_state
.db
.can_user_access_channel(user_id, channel_id)
.await?
{
Err(anyhow!("access denied"))?;
}
self.state_mut()
.await
.leave_channel(request.sender_id, channel_id);
Ok(())
}
async fn send_channel_message(
self: Arc<Self>,
request: TypedEnvelope<proto::SendChannelMessage>,
) -> tide::Result<()> {
let receipt = request.receipt();
let channel_id = ChannelId::from_proto(request.payload.channel_id);
let user_id;
let connection_ids;
{
let state = self.state().await;
user_id = state.user_id_for_connection(request.sender_id)?;
if let Some(ids) = state.channel_connection_ids(channel_id) {
connection_ids = ids;
} else {
return Ok(());
}
}
// Validate the message body.
let body = request.payload.body.trim().to_string();
if body.len() > MAX_MESSAGE_LEN {
self.peer
.respond_with_error(
receipt,
proto::Error {
message: "message is too long".to_string(),
},
)
.await?;
return Ok(());
}
if body.is_empty() {
self.peer
.respond_with_error(
receipt,
proto::Error {
message: "message can't be blank".to_string(),
},
)
.await?;
return Ok(());
}
let timestamp = OffsetDateTime::now_utc();
let nonce = if let Some(nonce) = request.payload.nonce {
nonce
} else {
self.peer
.respond_with_error(
receipt,
proto::Error {
message: "nonce can't be blank".to_string(),
},
)
.await?;
return Ok(());
};
let message_id = self
.app_state
.db
.create_channel_message(channel_id, user_id, &body, timestamp, nonce.clone().into())
.await?
.to_proto();
let message = proto::ChannelMessage {
sender_id: user_id.to_proto(),
id: message_id,
body,
timestamp: timestamp.unix_timestamp() as u64,
nonce: Some(nonce),
};
broadcast(request.sender_id, connection_ids, |conn_id| {
self.peer.send(
conn_id,
proto::ChannelMessageSent {
channel_id: channel_id.to_proto(),
message: Some(message.clone()),
},
)
})
.await?;
self.peer
.respond(
receipt,
proto::SendChannelMessageResponse {
message: Some(message),
},
)
.await?;
Ok(())
}
async fn get_channel_messages(
self: Arc<Self>,
request: TypedEnvelope<proto::GetChannelMessages>,
) -> tide::Result<()> {
let user_id = self
.state()
.await
.user_id_for_connection(request.sender_id)?;
let channel_id = ChannelId::from_proto(request.payload.channel_id);
if !self
.app_state
.db
.can_user_access_channel(user_id, channel_id)
.await?
{
Err(anyhow!("access denied"))?;
}
let messages = self
.app_state
.db
.get_channel_messages(
channel_id,
MESSAGE_COUNT_PER_PAGE,
Some(MessageId::from_proto(request.payload.before_message_id)),
)
.await?
.into_iter()
.map(|msg| proto::ChannelMessage {
id: msg.id.to_proto(),
body: msg.body,
timestamp: msg.sent_at.unix_timestamp() as u64,
sender_id: msg.sender_id.to_proto(),
nonce: Some(msg.nonce.as_u128().into()),
})
.collect::<Vec<_>>();
self.peer
.respond(
request.receipt(),
proto::GetChannelMessagesResponse {
done: messages.len() < MESSAGE_COUNT_PER_PAGE,
messages,
},
)
.await?;
Ok(())
}
fn state<'a>(
self: &'a Arc<Self>,
) -> impl Future<Output = async_std::sync::RwLockReadGuard<'a, Store>> {
self.store.read()
}
fn state_mut<'a>(
self: &'a mut Arc<Self>,
) -> impl Future<Output = async_std::sync::RwLockWriteGuard<'a, Store>> {
self.store.write()
}
}
pub async fn broadcast<F, T>(
sender_id: ConnectionId,
receiver_ids: Vec<ConnectionId>,
mut f: F,
) -> anyhow::Result<()>
where
F: FnMut(ConnectionId) -> T,
T: Future<Output = anyhow::Result<()>>,
{
let futures = receiver_ids
.into_iter()
.filter(|id| *id != sender_id)
.map(|id| f(id));
futures::future::try_join_all(futures).await?;
Ok(())
}
pub fn add_routes(app: &mut tide::Server<Arc<AppState>>, rpc: &Arc<Peer>) {
let server = Server::new(app.state().clone(), rpc.clone(), None);
app.at("/rpc").get(move |request: Request<Arc<AppState>>| {
let server = server.clone();
async move {
const WEBSOCKET_GUID: &str = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11";
let connection_upgrade = header_contains_ignore_case(&request, CONNECTION, "upgrade");
let upgrade_to_websocket = header_contains_ignore_case(&request, UPGRADE, "websocket");
let upgrade_requested = connection_upgrade && upgrade_to_websocket;
let client_protocol_version: Option<u32> = request
.header("X-Zed-Protocol-Version")
.and_then(|v| v.as_str().parse().ok());
if !upgrade_requested || client_protocol_version != Some(rpc::PROTOCOL_VERSION) {
return Ok(Response::new(StatusCode::UpgradeRequired));
}
let header = match request.header("Sec-Websocket-Key") {
Some(h) => h.as_str(),
None => return Err(anyhow!("expected sec-websocket-key"))?,
};
let user_id = process_auth_header(&request).await?;
let mut response = Response::new(StatusCode::SwitchingProtocols);
response.insert_header(UPGRADE, "websocket");
response.insert_header(CONNECTION, "Upgrade");
let hash = Sha1::new().chain(header).chain(WEBSOCKET_GUID).finalize();
response.insert_header("Sec-Websocket-Accept", base64::encode(&hash[..]));
response.insert_header("Sec-Websocket-Version", "13");
let http_res: &mut tide::http::Response = response.as_mut();
let upgrade_receiver = http_res.recv_upgrade().await;
let addr = request.remote().unwrap_or("unknown").to_string();
task::spawn(async move {
if let Some(stream) = upgrade_receiver.await {
server
.handle_connection(
Connection::new(
WebSocketStream::from_raw_socket(stream, Role::Server, None).await,
),
addr,
user_id,
)
.await;
}
});
Ok(response)
}
});
}
fn header_contains_ignore_case<T>(
request: &tide::Request<T>,
header_name: HeaderName,
value: &str,
) -> bool {
request
.header(header_name)
.map(|h| {
h.as_str()
.split(',')
.any(|s| s.trim().eq_ignore_ascii_case(value.trim()))
})
.unwrap_or(false)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
auth,
db::{tests::TestDb, UserId},
github, AppState, Config,
};
use ::rpc::Peer;
use async_std::{sync::RwLockReadGuard, task};
use gpui::{ModelHandle, TestAppContext};
use parking_lot::Mutex;
use postage::{mpsc, watch};
use serde_json::json;
use sqlx::types::time::OffsetDateTime;
use std::{
path::Path,
sync::{
atomic::{AtomicBool, Ordering::SeqCst},
Arc,
},
time::Duration,
};
use zed::{
client::{
self, test::FakeHttpClient, Channel, ChannelDetails, ChannelList, Client, Credentials,
EstablishConnectionError, UserStore,
},
editor::{Editor, EditorSettings, Input},
fs::{FakeFs, Fs as _},
language::{
tree_sitter_rust, Diagnostic, Language, LanguageConfig, LanguageRegistry,
LanguageServerConfig, Point,
},
lsp,
people_panel::JoinWorktree,
project::{ProjectPath, Worktree},
workspace::{Workspace, WorkspaceParams},
};
#[gpui::test]
async fn test_share_worktree(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
let (window_b, _) = cx_b.add_window(|_| EmptyView);
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
cx_a.foreground().forbid_parking();
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.txt": "a-contents",
"b.txt": "b-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as client B, and see that a guest has joined as client A.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
let replica_id_b = worktree_b.read_with(&cx_b, |tree, _| tree.replica_id());
worktree_a
.condition(&cx_a, |tree, _| {
tree.peers()
.values()
.any(|replica_id| *replica_id == replica_id_b)
})
.await;
// Open the same file as client B and client A.
let buffer_b = worktree_b
.update(&mut cx_b, |worktree, cx| worktree.open_buffer("b.txt", cx))
.await
.unwrap();
buffer_b.read_with(&cx_b, |buf, _| assert_eq!(buf.text(), "b-contents"));
worktree_a.read_with(&cx_a, |tree, cx| assert!(tree.has_open_buffer("b.txt", cx)));
let buffer_a = worktree_a
.update(&mut cx_a, |tree, cx| tree.open_buffer("b.txt", cx))
.await
.unwrap();
// Create a selection set as client B and see that selection set as client A.
let editor_b = cx_b.add_view(window_b, |cx| {
Editor::for_buffer(buffer_b, |cx| EditorSettings::test(cx), cx)
});
buffer_a
.condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 1)
.await;
// Edit the buffer as client B and see that edit as client A.
editor_b.update(&mut cx_b, |editor, cx| {
editor.handle_input(&Input("ok, ".into()), cx)
});
buffer_a
.condition(&cx_a, |buffer, _| buffer.text() == "ok, b-contents")
.await;
// Remove the selection set as client B, see those selections disappear as client A.
cx_b.update(move |_| drop(editor_b));
buffer_a
.condition(&cx_a, |buffer, _| buffer.selection_sets().count() == 0)
.await;
// Close the buffer as client A, see that the buffer is closed.
cx_a.update(move |_| drop(buffer_a));
worktree_a
.condition(&cx_a, |tree, cx| !tree.has_open_buffer("b.txt", cx))
.await;
// Dropping the worktree removes client B from client A's peers.
cx_b.update(move |_| drop(worktree_b));
worktree_a
.condition(&cx_a, |tree, _| tree.peers().is_empty())
.await;
}
#[gpui::test]
async fn test_unshare_worktree(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
cx_b.update(zed::people_panel::init);
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
let mut workspace_b_params = cx_b.update(WorkspaceParams::test);
workspace_b_params.client = client_b;
workspace_b_params.user_store = user_store_b;
cx_a.foreground().forbid_parking();
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.txt": "a-contents",
"b.txt": "b-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let remote_worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
let (window_b, workspace_b) = cx_b.add_window(|cx| Workspace::new(&workspace_b_params, cx));
cx_b.update(|cx| {
cx.dispatch_action(
window_b,
vec![workspace_b.id()],
&JoinWorktree(remote_worktree_id),
);
});
workspace_b
.condition(&cx_b, |workspace, cx| workspace.worktrees(cx).len() == 1)
.await;
let local_worktree_id_b = workspace_b.read_with(&cx_b, |workspace, cx| {
let active_pane = workspace.active_pane().read(cx);
assert!(active_pane.active_item().is_none());
workspace.worktrees(cx).first().unwrap().id()
});
workspace_b
.update(&mut cx_b, |workspace, cx| {
workspace.open_entry(
ProjectPath {
worktree_id: local_worktree_id_b,
path: Path::new("a.txt").into(),
},
cx,
)
})
.unwrap()
.await;
workspace_b.read_with(&cx_b, |workspace, cx| {
let active_pane = workspace.active_pane().read(cx);
assert!(active_pane.active_item().is_some());
});
worktree_a.update(&mut cx_a, |tree, cx| {
tree.as_local_mut().unwrap().unshare(cx);
});
workspace_b
.condition(&cx_b, |workspace, cx| workspace.worktrees(cx).len() == 0)
.await;
workspace_b.read_with(&cx_b, |workspace, cx| {
let active_pane = workspace.active_pane().read(cx);
assert!(active_pane.active_item().is_none());
});
}
#[gpui::test]
async fn test_propagate_saves_and_fs_changes_in_shared_worktree(
mut cx_a: TestAppContext,
mut cx_b: TestAppContext,
mut cx_c: TestAppContext,
) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 3 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
let (client_c, _) = server.create_client(&mut cx_c, "user_c").await;
let fs = Arc::new(FakeFs::new());
// Share a worktree as client A.
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b", "user_c"]"#,
"file1": "",
"file2": ""
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs.clone(),
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as clients B and C.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
let worktree_c = Worktree::open_remote(
client_c.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_c.to_async(),
)
.await
.unwrap();
// Open and edit a buffer as both guests B and C.
let buffer_b = worktree_b
.update(&mut cx_b, |tree, cx| tree.open_buffer("file1", cx))
.await
.unwrap();
let buffer_c = worktree_c
.update(&mut cx_c, |tree, cx| tree.open_buffer("file1", cx))
.await
.unwrap();
buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "i-am-b, ", cx));
buffer_c.update(&mut cx_c, |buf, cx| buf.edit([0..0], "i-am-c, ", cx));
// Open and edit that buffer as the host.
let buffer_a = worktree_a
.update(&mut cx_a, |tree, cx| tree.open_buffer("file1", cx))
.await
.unwrap();
buffer_a
.condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, ")
.await;
buffer_a.update(&mut cx_a, |buf, cx| {
buf.edit([buf.len()..buf.len()], "i-am-a", cx)
});
// Wait for edits to propagate
buffer_a
.condition(&mut cx_a, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
.await;
buffer_b
.condition(&mut cx_b, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
.await;
buffer_c
.condition(&mut cx_c, |buf, _| buf.text() == "i-am-c, i-am-b, i-am-a")
.await;
// Edit the buffer as the host and concurrently save as guest B.
let save_b = buffer_b.update(&mut cx_b, |buf, cx| buf.save(cx).unwrap());
buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "hi-a, ", cx));
save_b.await.unwrap();
assert_eq!(
fs.load("/a/file1".as_ref()).await.unwrap(),
"hi-a, i-am-c, i-am-b, i-am-a"
);
buffer_a.read_with(&cx_a, |buf, _| assert!(!buf.is_dirty()));
buffer_b.read_with(&cx_b, |buf, _| assert!(!buf.is_dirty()));
buffer_c.condition(&cx_c, |buf, _| !buf.is_dirty()).await;
// Make changes on host's file system, see those changes on the guests.
fs.rename("/a/file2".as_ref(), "/a/file3".as_ref())
.await
.unwrap();
fs.insert_file(Path::new("/a/file4"), "4".into())
.await
.unwrap();
worktree_b
.condition(&cx_b, |tree, _| tree.file_count() == 4)
.await;
worktree_c
.condition(&cx_c, |tree, _| tree.file_count() == 4)
.await;
worktree_b.read_with(&cx_b, |tree, _| {
assert_eq!(
tree.paths()
.map(|p| p.to_string_lossy())
.collect::<Vec<_>>(),
&[".zed.toml", "file1", "file3", "file4"]
)
});
worktree_c.read_with(&cx_c, |tree, _| {
assert_eq!(
tree.paths()
.map(|p| p.to_string_lossy())
.collect::<Vec<_>>(),
&[".zed.toml", "file1", "file3", "file4"]
)
});
}
#[gpui::test]
async fn test_buffer_conflict_after_save(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/dir",
json!({
".zed.toml": r#"collaborators = ["user_b", "user_c"]"#,
"a.txt": "a-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/dir".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as client B, and see that a guest has joined as client A.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
let buffer_b = worktree_b
.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx))
.await
.unwrap();
let mtime = buffer_b.read_with(&cx_b, |buf, _| buf.file().unwrap().mtime());
buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "world ", cx));
buffer_b.read_with(&cx_b, |buf, _| {
assert!(buf.is_dirty());
assert!(!buf.has_conflict());
});
buffer_b
.update(&mut cx_b, |buf, cx| buf.save(cx))
.unwrap()
.await
.unwrap();
worktree_b
.condition(&cx_b, |_, cx| {
buffer_b.read(cx).file().unwrap().mtime() != mtime
})
.await;
buffer_b.read_with(&cx_b, |buf, _| {
assert!(!buf.is_dirty());
assert!(!buf.has_conflict());
});
buffer_b.update(&mut cx_b, |buf, cx| buf.edit([0..0], "hello ", cx));
buffer_b.read_with(&cx_b, |buf, _| {
assert!(buf.is_dirty());
assert!(!buf.has_conflict());
});
}
#[gpui::test]
async fn test_editing_while_guest_opens_buffer(
mut cx_a: TestAppContext,
mut cx_b: TestAppContext,
) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/dir",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.txt": "a-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/dir".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as client B, and see that a guest has joined as client A.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
let buffer_a = worktree_a
.update(&mut cx_a, |tree, cx| tree.open_buffer("a.txt", cx))
.await
.unwrap();
let buffer_b = cx_b
.background()
.spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx)));
task::yield_now().await;
buffer_a.update(&mut cx_a, |buf, cx| buf.edit([0..0], "z", cx));
let text = buffer_a.read_with(&cx_a, |buf, _| buf.text());
let buffer_b = buffer_b.await.unwrap();
buffer_b.condition(&cx_b, |buf, _| buf.text() == text).await;
}
#[gpui::test]
async fn test_leaving_worktree_while_opening_buffer(
mut cx_a: TestAppContext,
mut cx_b: TestAppContext,
) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_b, "user_b").await;
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/dir",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.txt": "a-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/dir".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as client B, and see that a guest has joined as client A.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
worktree_a
.condition(&cx_a, |tree, _| tree.peers().len() == 1)
.await;
let buffer_b = cx_b
.background()
.spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.txt", cx)));
cx_b.update(|_| drop(worktree_b));
drop(buffer_b);
worktree_a
.condition(&cx_a, |tree, _| tree.peers().len() == 0)
.await;
}
#[gpui::test]
async fn test_peer_disconnection(mut cx_a: TestAppContext, cx_b: TestAppContext) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_a, "user_b").await;
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.txt": "a-contents",
"b.txt": "b-contents",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Join that worktree as client B, and see that a guest has joined as client A.
let _worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
worktree_a
.condition(&cx_a, |tree, _| tree.peers().len() == 1)
.await;
// Drop client B's connection and ensure client A observes client B leaving the worktree.
client_b.disconnect(&cx_b.to_async()).await.unwrap();
worktree_a
.condition(&cx_a, |tree, _| tree.peers().len() == 0)
.await;
}
#[gpui::test]
async fn test_collaborating_with_diagnostics(
mut cx_a: TestAppContext,
mut cx_b: TestAppContext,
) {
cx_a.foreground().forbid_parking();
let (language_server_config, mut fake_language_server) =
LanguageServerConfig::fake(cx_a.background()).await;
let mut lang_registry = LanguageRegistry::new();
lang_registry.add(Arc::new(Language::new(
LanguageConfig {
name: "Rust".to_string(),
path_suffixes: vec!["rs".to_string()],
language_server: Some(language_server_config),
..Default::default()
},
tree_sitter_rust::language(),
)));
let lang_registry = Arc::new(lang_registry);
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, _) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, _) = server.create_client(&mut cx_a, "user_b").await;
// Share a local worktree as client A
let fs = Arc::new(FakeFs::new());
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b"]"#,
"a.rs": "let one = two",
"other.rs": "",
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs,
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
worktree_a
.read_with(&cx_a, |tree, _| tree.as_local().unwrap().scan_complete())
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
// Cause language server to start.
let _ = cx_a
.background()
.spawn(worktree_a.update(&mut cx_a, |worktree, cx| {
worktree.open_buffer("other.rs", cx)
}))
.await
.unwrap();
// Simulate a language server reporting errors for a file.
fake_language_server
.notify::<lsp::notification::PublishDiagnostics>(lsp::PublishDiagnosticsParams {
uri: lsp::Url::from_file_path("/a/a.rs").unwrap(),
version: None,
diagnostics: vec![
lsp::Diagnostic {
severity: Some(lsp::DiagnosticSeverity::ERROR),
range: lsp::Range::new(lsp::Position::new(0, 4), lsp::Position::new(0, 7)),
message: "message 1".to_string(),
..Default::default()
},
lsp::Diagnostic {
severity: Some(lsp::DiagnosticSeverity::WARNING),
range: lsp::Range::new(
lsp::Position::new(0, 10),
lsp::Position::new(0, 13),
),
message: "message 2".to_string(),
..Default::default()
},
],
})
.await;
// Join the worktree as client B.
let worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
// Open the file with the errors.
let buffer_b = cx_b
.background()
.spawn(worktree_b.update(&mut cx_b, |worktree, cx| worktree.open_buffer("a.rs", cx)))
.await
.unwrap();
buffer_b.read_with(&cx_b, |buffer, _| {
assert_eq!(
buffer
.diagnostics_in_range(0..buffer.len())
.collect::<Vec<_>>(),
&[
(
Point::new(0, 4)..Point::new(0, 7),
&Diagnostic {
group_id: 0,
message: "message 1".to_string(),
severity: lsp::DiagnosticSeverity::ERROR,
is_primary: true
}
),
(
Point::new(0, 10)..Point::new(0, 13),
&Diagnostic {
group_id: 1,
severity: lsp::DiagnosticSeverity::WARNING,
message: "message 2".to_string(),
is_primary: true
}
)
]
);
});
}
#[gpui::test]
async fn test_basic_chat(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
cx_a.foreground().forbid_parking();
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
// Create an org that includes these 2 users.
let db = &server.app_state.db;
let org_id = db.create_org("Test Org", "test-org").await.unwrap();
db.add_org_member(org_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
db.add_org_member(org_id, current_user_id(&user_store_b, &cx_b), false)
.await
.unwrap();
// Create a channel that includes all the users.
let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
db.add_channel_member(channel_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
db.add_channel_member(channel_id, current_user_id(&user_store_b, &cx_b), false)
.await
.unwrap();
db.create_channel_message(
channel_id,
current_user_id(&user_store_b, &cx_b),
"hello A, it's B.",
OffsetDateTime::now_utc(),
1,
)
.await
.unwrap();
let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
channels_a
.condition(&mut cx_a, |list, _| list.available_channels().is_some())
.await;
channels_a.read_with(&cx_a, |list, _| {
assert_eq!(
list.available_channels().unwrap(),
&[ChannelDetails {
id: channel_id.to_proto(),
name: "test-channel".to_string()
}]
)
});
let channel_a = channels_a.update(&mut cx_a, |this, cx| {
this.get_channel(channel_id.to_proto(), cx).unwrap()
});
channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
channel_a
.condition(&cx_a, |channel, _| {
channel_messages(channel)
== [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
})
.await;
let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b, client_b, cx));
channels_b
.condition(&mut cx_b, |list, _| list.available_channels().is_some())
.await;
channels_b.read_with(&cx_b, |list, _| {
assert_eq!(
list.available_channels().unwrap(),
&[ChannelDetails {
id: channel_id.to_proto(),
name: "test-channel".to_string()
}]
)
});
let channel_b = channels_b.update(&mut cx_b, |this, cx| {
this.get_channel(channel_id.to_proto(), cx).unwrap()
});
channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
channel_b
.condition(&cx_b, |channel, _| {
channel_messages(channel)
== [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
})
.await;
channel_a
.update(&mut cx_a, |channel, cx| {
channel
.send_message("oh, hi B.".to_string(), cx)
.unwrap()
.detach();
let task = channel.send_message("sup".to_string(), cx).unwrap();
assert_eq!(
channel_messages(channel),
&[
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), true),
("user_a".to_string(), "sup".to_string(), true)
]
);
task
})
.await
.unwrap();
channel_b
.condition(&cx_b, |channel, _| {
channel_messages(channel)
== [
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), false),
("user_a".to_string(), "sup".to_string(), false),
]
})
.await;
assert_eq!(
server
.state()
.await
.channel(channel_id)
.unwrap()
.connection_ids
.len(),
2
);
cx_b.update(|_| drop(channel_b));
server
.condition(|state| state.channel(channel_id).unwrap().connection_ids.len() == 1)
.await;
cx_a.update(|_| drop(channel_a));
server
.condition(|state| state.channel(channel_id).is_none())
.await;
}
#[gpui::test]
async fn test_chat_message_validation(mut cx_a: TestAppContext) {
cx_a.foreground().forbid_parking();
let mut server = TestServer::start().await;
let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
let db = &server.app_state.db;
let org_id = db.create_org("Test Org", "test-org").await.unwrap();
let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
db.add_org_member(org_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
db.add_channel_member(channel_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
channels_a
.condition(&mut cx_a, |list, _| list.available_channels().is_some())
.await;
let channel_a = channels_a.update(&mut cx_a, |this, cx| {
this.get_channel(channel_id.to_proto(), cx).unwrap()
});
// Messages aren't allowed to be too long.
channel_a
.update(&mut cx_a, |channel, cx| {
let long_body = "this is long.\n".repeat(1024);
channel.send_message(long_body, cx).unwrap()
})
.await
.unwrap_err();
// Messages aren't allowed to be blank.
channel_a.update(&mut cx_a, |channel, cx| {
channel.send_message(String::new(), cx).unwrap_err()
});
// Leading and trailing whitespace are trimmed.
channel_a
.update(&mut cx_a, |channel, cx| {
channel
.send_message("\n surrounded by whitespace \n".to_string(), cx)
.unwrap()
})
.await
.unwrap();
assert_eq!(
db.get_channel_messages(channel_id, 10, None)
.await
.unwrap()
.iter()
.map(|m| &m.body)
.collect::<Vec<_>>(),
&["surrounded by whitespace"]
);
}
#[gpui::test]
async fn test_chat_reconnection(mut cx_a: TestAppContext, mut cx_b: TestAppContext) {
cx_a.foreground().forbid_parking();
// Connect to a server as 2 clients.
let mut server = TestServer::start().await;
let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
let mut status_b = client_b.status();
// Create an org that includes these 2 users.
let db = &server.app_state.db;
let org_id = db.create_org("Test Org", "test-org").await.unwrap();
db.add_org_member(org_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
db.add_org_member(org_id, current_user_id(&user_store_b, &cx_b), false)
.await
.unwrap();
// Create a channel that includes all the users.
let channel_id = db.create_org_channel(org_id, "test-channel").await.unwrap();
db.add_channel_member(channel_id, current_user_id(&user_store_a, &cx_a), false)
.await
.unwrap();
db.add_channel_member(channel_id, current_user_id(&user_store_b, &cx_b), false)
.await
.unwrap();
db.create_channel_message(
channel_id,
current_user_id(&user_store_b, &cx_b),
"hello A, it's B.",
OffsetDateTime::now_utc(),
2,
)
.await
.unwrap();
let channels_a = cx_a.add_model(|cx| ChannelList::new(user_store_a, client_a, cx));
channels_a
.condition(&mut cx_a, |list, _| list.available_channels().is_some())
.await;
channels_a.read_with(&cx_a, |list, _| {
assert_eq!(
list.available_channels().unwrap(),
&[ChannelDetails {
id: channel_id.to_proto(),
name: "test-channel".to_string()
}]
)
});
let channel_a = channels_a.update(&mut cx_a, |this, cx| {
this.get_channel(channel_id.to_proto(), cx).unwrap()
});
channel_a.read_with(&cx_a, |channel, _| assert!(channel.messages().is_empty()));
channel_a
.condition(&cx_a, |channel, _| {
channel_messages(channel)
== [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
})
.await;
let channels_b = cx_b.add_model(|cx| ChannelList::new(user_store_b.clone(), client_b, cx));
channels_b
.condition(&mut cx_b, |list, _| list.available_channels().is_some())
.await;
channels_b.read_with(&cx_b, |list, _| {
assert_eq!(
list.available_channels().unwrap(),
&[ChannelDetails {
id: channel_id.to_proto(),
name: "test-channel".to_string()
}]
)
});
let channel_b = channels_b.update(&mut cx_b, |this, cx| {
this.get_channel(channel_id.to_proto(), cx).unwrap()
});
channel_b.read_with(&cx_b, |channel, _| assert!(channel.messages().is_empty()));
channel_b
.condition(&cx_b, |channel, _| {
channel_messages(channel)
== [("user_b".to_string(), "hello A, it's B.".to_string(), false)]
})
.await;
// Disconnect client B, ensuring we can still access its cached channel data.
server.forbid_connections();
server.disconnect_client(current_user_id(&user_store_b, &cx_b));
while !matches!(
status_b.recv().await,
Some(client::Status::ReconnectionError { .. })
) {}
channels_b.read_with(&cx_b, |channels, _| {
assert_eq!(
channels.available_channels().unwrap(),
[ChannelDetails {
id: channel_id.to_proto(),
name: "test-channel".to_string()
}]
)
});
channel_b.read_with(&cx_b, |channel, _| {
assert_eq!(
channel_messages(channel),
[("user_b".to_string(), "hello A, it's B.".to_string(), false)]
)
});
// Send a message from client B while it is disconnected.
channel_b
.update(&mut cx_b, |channel, cx| {
let task = channel
.send_message("can you see this?".to_string(), cx)
.unwrap();
assert_eq!(
channel_messages(channel),
&[
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_b".to_string(), "can you see this?".to_string(), true)
]
);
task
})
.await
.unwrap_err();
// Send a message from client A while B is disconnected.
channel_a
.update(&mut cx_a, |channel, cx| {
channel
.send_message("oh, hi B.".to_string(), cx)
.unwrap()
.detach();
let task = channel.send_message("sup".to_string(), cx).unwrap();
assert_eq!(
channel_messages(channel),
&[
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), true),
("user_a".to_string(), "sup".to_string(), true)
]
);
task
})
.await
.unwrap();
// Give client B a chance to reconnect.
server.allow_connections();
cx_b.foreground().advance_clock(Duration::from_secs(10));
// Verify that B sees the new messages upon reconnection, as well as the message client B
// sent while offline.
channel_b
.condition(&cx_b, |channel, _| {
channel_messages(channel)
== [
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), false),
("user_a".to_string(), "sup".to_string(), false),
("user_b".to_string(), "can you see this?".to_string(), false),
]
})
.await;
// Ensure client A and B can communicate normally after reconnection.
channel_a
.update(&mut cx_a, |channel, cx| {
channel.send_message("you online?".to_string(), cx).unwrap()
})
.await
.unwrap();
channel_b
.condition(&cx_b, |channel, _| {
channel_messages(channel)
== [
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), false),
("user_a".to_string(), "sup".to_string(), false),
("user_b".to_string(), "can you see this?".to_string(), false),
("user_a".to_string(), "you online?".to_string(), false),
]
})
.await;
channel_b
.update(&mut cx_b, |channel, cx| {
channel.send_message("yep".to_string(), cx).unwrap()
})
.await
.unwrap();
channel_a
.condition(&cx_a, |channel, _| {
channel_messages(channel)
== [
("user_b".to_string(), "hello A, it's B.".to_string(), false),
("user_a".to_string(), "oh, hi B.".to_string(), false),
("user_a".to_string(), "sup".to_string(), false),
("user_b".to_string(), "can you see this?".to_string(), false),
("user_a".to_string(), "you online?".to_string(), false),
("user_b".to_string(), "yep".to_string(), false),
]
})
.await;
}
#[gpui::test]
async fn test_collaborators(
mut cx_a: TestAppContext,
mut cx_b: TestAppContext,
mut cx_c: TestAppContext,
) {
cx_a.foreground().forbid_parking();
let lang_registry = Arc::new(LanguageRegistry::new());
// Connect to a server as 3 clients.
let mut server = TestServer::start().await;
let (client_a, user_store_a) = server.create_client(&mut cx_a, "user_a").await;
let (client_b, user_store_b) = server.create_client(&mut cx_b, "user_b").await;
let (_client_c, user_store_c) = server.create_client(&mut cx_c, "user_c").await;
let fs = Arc::new(FakeFs::new());
// Share a worktree as client A.
fs.insert_tree(
"/a",
json!({
".zed.toml": r#"collaborators = ["user_b", "user_c"]"#,
}),
)
.await;
let worktree_a = Worktree::open_local(
client_a.clone(),
"/a".as_ref(),
fs.clone(),
lang_registry.clone(),
&mut cx_a.to_async(),
)
.await
.unwrap();
user_store_a
.condition(&cx_a, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec![])])]
})
.await;
user_store_b
.condition(&cx_b, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec![])])]
})
.await;
user_store_c
.condition(&cx_c, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec![])])]
})
.await;
let worktree_id = worktree_a
.update(&mut cx_a, |tree, cx| tree.as_local_mut().unwrap().share(cx))
.await
.unwrap();
let _worktree_b = Worktree::open_remote(
client_b.clone(),
worktree_id,
lang_registry.clone(),
&mut cx_b.to_async(),
)
.await
.unwrap();
user_store_a
.condition(&cx_a, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec!["user_b"])])]
})
.await;
user_store_b
.condition(&cx_b, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec!["user_b"])])]
})
.await;
user_store_c
.condition(&cx_c, |user_store, _| {
collaborators(user_store) == vec![("user_a", vec![("a", vec!["user_b"])])]
})
.await;
cx_a.update(move |_| drop(worktree_a));
user_store_a
.condition(&cx_a, |user_store, _| collaborators(user_store) == vec![])
.await;
user_store_b
.condition(&cx_b, |user_store, _| collaborators(user_store) == vec![])
.await;
user_store_c
.condition(&cx_c, |user_store, _| collaborators(user_store) == vec![])
.await;
fn collaborators(user_store: &UserStore) -> Vec<(&str, Vec<(&str, Vec<&str>)>)> {
user_store
.collaborators()
.iter()
.map(|collaborator| {
let worktrees = collaborator
.worktrees
.iter()
.map(|w| {
(
w.root_name.as_str(),
w.guests.iter().map(|p| p.github_login.as_str()).collect(),
)
})
.collect();
(collaborator.user.github_login.as_str(), worktrees)
})
.collect()
}
}
struct TestServer {
peer: Arc<Peer>,
app_state: Arc<AppState>,
server: Arc<Server>,
notifications: mpsc::Receiver<()>,
connection_killers: Arc<Mutex<HashMap<UserId, watch::Sender<Option<()>>>>>,
forbid_connections: Arc<AtomicBool>,
_test_db: TestDb,
}
impl TestServer {
async fn start() -> Self {
let test_db = TestDb::new();
let app_state = Self::build_app_state(&test_db).await;
let peer = Peer::new();
let notifications = mpsc::channel(128);
let server = Server::new(app_state.clone(), peer.clone(), Some(notifications.0));
Self {
peer,
app_state,
server,
notifications: notifications.1,
connection_killers: Default::default(),
forbid_connections: Default::default(),
_test_db: test_db,
}
}
async fn create_client(
&mut self,
cx: &mut TestAppContext,
name: &str,
) -> (Arc<Client>, ModelHandle<UserStore>) {
let user_id = self.app_state.db.create_user(name, false).await.unwrap();
let client_name = name.to_string();
let mut client = Client::new();
let server = self.server.clone();
let connection_killers = self.connection_killers.clone();
let forbid_connections = self.forbid_connections.clone();
Arc::get_mut(&mut client)
.unwrap()
.override_authenticate(move |cx| {
cx.spawn(|_| async move {
let access_token = "the-token".to_string();
Ok(Credentials {
user_id: user_id.0 as u64,
access_token,
})
})
})
.override_establish_connection(move |credentials, cx| {
assert_eq!(credentials.user_id, user_id.0 as u64);
assert_eq!(credentials.access_token, "the-token");
let server = server.clone();
let connection_killers = connection_killers.clone();
let forbid_connections = forbid_connections.clone();
let client_name = client_name.clone();
cx.spawn(move |cx| async move {
if forbid_connections.load(SeqCst) {
Err(EstablishConnectionError::other(anyhow!(
"server is forbidding connections"
)))
} else {
let (client_conn, server_conn, kill_conn) = Connection::in_memory();
connection_killers.lock().insert(user_id, kill_conn);
cx.background()
.spawn(server.handle_connection(server_conn, client_name, user_id))
.detach();
Ok(client_conn)
}
})
});
let http = FakeHttpClient::new(|_| async move { Ok(surf::http::Response::new(404)) });
client
.authenticate_and_connect(&cx.to_async())
.await
.unwrap();
let user_store = cx.add_model(|cx| UserStore::new(client.clone(), http, cx));
let mut authed_user =
user_store.read_with(cx, |user_store, _| user_store.watch_current_user());
while authed_user.recv().await.unwrap().is_none() {}
(client, user_store)
}
fn disconnect_client(&self, user_id: UserId) {
if let Some(mut kill_conn) = self.connection_killers.lock().remove(&user_id) {
let _ = kill_conn.try_send(Some(()));
}
}
fn forbid_connections(&self) {
self.forbid_connections.store(true, SeqCst);
}
fn allow_connections(&self) {
self.forbid_connections.store(false, SeqCst);
}
async fn build_app_state(test_db: &TestDb) -> Arc<AppState> {
let mut config = Config::default();
config.session_secret = "a".repeat(32);
config.database_url = test_db.url.clone();
let github_client = github::AppClient::test();
Arc::new(AppState {
db: test_db.db().clone(),
handlebars: Default::default(),
auth_client: auth::build_client("", ""),
repo_client: github::RepoClient::test(&github_client),
github_client,
config,
})
}
async fn state<'a>(&'a self) -> RwLockReadGuard<'a, Store> {
self.server.store.read().await
}
async fn condition<F>(&mut self, mut predicate: F)
where
F: FnMut(&Store) -> bool,
{
async_std::future::timeout(Duration::from_millis(500), async {
while !(predicate)(&*self.server.store.read().await) {
self.notifications.recv().await;
}
})
.await
.expect("condition timed out");
}
}
impl Drop for TestServer {
fn drop(&mut self) {
task::block_on(self.peer.reset());
}
}
fn current_user_id(user_store: &ModelHandle<UserStore>, cx: &TestAppContext) -> UserId {
UserId::from_proto(
user_store.read_with(cx, |user_store, _| user_store.current_user().unwrap().id),
)
}
fn channel_messages(channel: &Channel) -> Vec<(String, String, bool)> {
channel
.messages()
.cursor::<()>()
.map(|m| {
(
m.sender.github_login.clone(),
m.body.clone(),
m.is_pending(),
)
})
.collect()
}
struct EmptyView;
impl gpui::Entity for EmptyView {
type Event = ();
}
impl gpui::View for EmptyView {
fn ui_name() -> &'static str {
"empty view"
}
fn render(&mut self, _: &mut gpui::RenderContext<Self>) -> gpui::ElementBox {
gpui::Element::boxed(gpui::elements::Empty)
}
}
}