ZIm/crates/language_models/src/provider/open_ai.rs
Oleksiy Syvokon b96f76f377 openai: Don't send prompt_cache_key for OpenAI-compatible models (#36231)
Some APIs fail when they get this parameter

Closes #36215

Release Notes:

- Fixed OpenAI-compatible providers that don't support prompt caching
and/or reasoning
2025-08-15 16:26:41 +03:00

960 lines
32 KiB
Rust

use anyhow::{Context as _, Result, anyhow};
use collections::{BTreeMap, HashMap};
use credentials_provider::CredentialsProvider;
use futures::Stream;
use futures::{FutureExt, StreamExt, future::BoxFuture};
use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task, Window};
use http_client::HttpClient;
use language_model::{
AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
RateLimiter, Role, StopReason, TokenUsage,
};
use menu;
use open_ai::{ImageUrl, Model, ReasoningEffort, ResponseStreamEvent, stream_completion};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use settings::{Settings, SettingsStore};
use std::pin::Pin;
use std::str::FromStr as _;
use std::sync::Arc;
use strum::IntoEnumIterator;
use ui::{ElevationIndex, List, Tooltip, prelude::*};
use ui_input::SingleLineInput;
use util::ResultExt;
use crate::{AllLanguageModelSettings, ui::InstructionListItem};
const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
#[derive(Default, Clone, Debug, PartialEq)]
pub struct OpenAiSettings {
pub api_url: String,
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
pub name: String,
pub display_name: Option<String>,
pub max_tokens: u64,
pub max_output_tokens: Option<u64>,
pub max_completion_tokens: Option<u64>,
pub reasoning_effort: Option<ReasoningEffort>,
}
pub struct OpenAiLanguageModelProvider {
http_client: Arc<dyn HttpClient>,
state: gpui::Entity<State>,
}
pub struct State {
api_key: Option<String>,
api_key_from_env: bool,
_subscription: Subscription,
}
const OPENAI_API_KEY_VAR: &str = "OPENAI_API_KEY";
impl State {
//
fn is_authenticated(&self) -> bool {
self.api_key.is_some()
}
fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.openai
.api_url
.clone();
cx.spawn(async move |this, cx| {
credentials_provider
.delete_credentials(&api_url, &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = None;
this.api_key_from_env = false;
cx.notify();
})
})
}
fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.openai
.api_url
.clone();
cx.spawn(async move |this, cx| {
credentials_provider
.write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
.await
.log_err();
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
cx.notify();
})
})
}
fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
if self.is_authenticated() {
return Task::ready(Ok(()));
}
let credentials_provider = <dyn CredentialsProvider>::global(cx);
let api_url = AllLanguageModelSettings::get_global(cx)
.openai
.api_url
.clone();
cx.spawn(async move |this, cx| {
let (api_key, from_env) = if let Ok(api_key) = std::env::var(OPENAI_API_KEY_VAR) {
(api_key, true)
} else {
let (_, api_key) = credentials_provider
.read_credentials(&api_url, &cx)
.await?
.ok_or(AuthenticateError::CredentialsNotFound)?;
(
String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
false,
)
};
this.update(cx, |this, cx| {
this.api_key = Some(api_key);
this.api_key_from_env = from_env;
cx.notify();
})?;
Ok(())
})
}
}
impl OpenAiLanguageModelProvider {
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
let state = cx.new(|cx| State {
api_key: None,
api_key_from_env: false,
_subscription: cx.observe_global::<SettingsStore>(|_this: &mut State, cx| {
cx.notify();
}),
});
Self { http_client, state }
}
fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
Arc::new(OpenAiLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
state: self.state.clone(),
http_client: self.http_client.clone(),
request_limiter: RateLimiter::new(4),
})
}
}
impl LanguageModelProviderState for OpenAiLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for OpenAiLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
PROVIDER_ID
}
fn name(&self) -> LanguageModelProviderName {
PROVIDER_NAME
}
fn icon(&self) -> IconName {
IconName::AiOpenAi
}
fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(open_ai::Model::default()))
}
fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
Some(self.create_language_model(open_ai::Model::default_fast()))
}
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
// Add base models from open_ai::Model::iter()
for model in open_ai::Model::iter() {
if !matches!(model, open_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), model);
}
}
// Override with available models from settings
for model in &AllLanguageModelSettings::get_global(cx)
.openai
.available_models
{
models.insert(
model.name.clone(),
open_ai::Model::Custom {
name: model.name.clone(),
display_name: model.display_name.clone(),
max_tokens: model.max_tokens,
max_output_tokens: model.max_output_tokens,
max_completion_tokens: model.max_completion_tokens,
reasoning_effort: model.reasoning_effort.clone(),
},
);
}
models
.into_values()
.map(|model| self.create_language_model(model))
.collect()
}
fn is_authenticated(&self, cx: &App) -> bool {
self.state.read(cx).is_authenticated()
}
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
self.state.update(cx, |state, cx| state.authenticate(cx))
}
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
.into()
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
self.state.update(cx, |state, cx| state.reset_api_key(cx))
}
}
pub struct OpenAiLanguageModel {
id: LanguageModelId,
model: open_ai::Model,
state: gpui::Entity<State>,
http_client: Arc<dyn HttpClient>,
request_limiter: RateLimiter,
}
impl OpenAiLanguageModel {
fn stream_completion(
&self,
request: open_ai::Request,
cx: &AsyncApp,
) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
{
let http_client = self.http_client.clone();
let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
let settings = &AllLanguageModelSettings::get_global(cx).openai;
(state.api_key.clone(), settings.api_url.clone())
}) else {
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
};
let future = self.request_limiter.stream(async move {
let Some(api_key) = api_key else {
return Err(LanguageModelCompletionError::NoApiKey {
provider: PROVIDER_NAME,
});
};
let request = stream_completion(http_client.as_ref(), &api_url, &api_key, request);
let response = request.await?;
Ok(response)
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
impl LanguageModel for OpenAiLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
PROVIDER_ID
}
fn provider_name(&self) -> LanguageModelProviderName {
PROVIDER_NAME
}
fn supports_tools(&self) -> bool {
true
}
fn supports_images(&self) -> bool {
use open_ai::Model;
match &self.model {
Model::FourOmni
| Model::FourOmniMini
| Model::FourPointOne
| Model::FourPointOneMini
| Model::FourPointOneNano
| Model::Five
| Model::FiveMini
| Model::FiveNano
| Model::O1
| Model::O3
| Model::O4Mini => true,
Model::ThreePointFiveTurbo
| Model::Four
| Model::FourTurbo
| Model::O3Mini
| Model::Custom { .. } => false,
}
}
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
match choice {
LanguageModelToolChoice::Auto => true,
LanguageModelToolChoice::Any => true,
LanguageModelToolChoice::None => true,
}
}
fn telemetry_id(&self) -> String {
format!("openai/{}", self.model.id())
}
fn max_token_count(&self) -> u64 {
self.model.max_token_count()
}
fn max_output_tokens(&self) -> Option<u64> {
self.model.max_output_tokens()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
count_open_ai_tokens(request, self.model.clone(), cx)
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
futures::stream::BoxStream<
'static,
Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
>,
LanguageModelCompletionError,
>,
> {
let request = into_open_ai(
request,
self.model.id(),
self.model.supports_parallel_tool_calls(),
self.model.supports_prompt_cache_key(),
self.max_output_tokens(),
self.model.reasoning_effort(),
);
let completions = self.stream_completion(request, cx);
async move {
let mapper = OpenAiEventMapper::new();
Ok(mapper.map_stream(completions.await?).boxed())
}
.boxed()
}
}
pub fn into_open_ai(
request: LanguageModelRequest,
model_id: &str,
supports_parallel_tool_calls: bool,
supports_prompt_cache_key: bool,
max_output_tokens: Option<u64>,
reasoning_effort: Option<ReasoningEffort>,
) -> open_ai::Request {
let stream = !model_id.starts_with("o1-");
let mut messages = Vec::new();
for message in request.messages {
for content in message.content {
match content {
MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
add_message_content_part(
open_ai::MessagePart::Text { text: text },
message.role,
&mut messages,
)
}
MessageContent::RedactedThinking(_) => {}
MessageContent::Image(image) => {
add_message_content_part(
open_ai::MessagePart::Image {
image_url: ImageUrl {
url: image.to_base64_url(),
detail: None,
},
},
message.role,
&mut messages,
);
}
MessageContent::ToolUse(tool_use) => {
let tool_call = open_ai::ToolCall {
id: tool_use.id.to_string(),
content: open_ai::ToolCallContent::Function {
function: open_ai::FunctionContent {
name: tool_use.name.to_string(),
arguments: serde_json::to_string(&tool_use.input)
.unwrap_or_default(),
},
},
};
if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
messages.last_mut()
{
tool_calls.push(tool_call);
} else {
messages.push(open_ai::RequestMessage::Assistant {
content: None,
tool_calls: vec![tool_call],
});
}
}
MessageContent::ToolResult(tool_result) => {
let content = match &tool_result.content {
LanguageModelToolResultContent::Text(text) => {
vec![open_ai::MessagePart::Text {
text: text.to_string(),
}]
}
LanguageModelToolResultContent::Image(image) => {
vec![open_ai::MessagePart::Image {
image_url: ImageUrl {
url: image.to_base64_url(),
detail: None,
},
}]
}
};
messages.push(open_ai::RequestMessage::Tool {
content: content.into(),
tool_call_id: tool_result.tool_use_id.to_string(),
});
}
}
}
}
open_ai::Request {
model: model_id.into(),
messages,
stream,
stop: request.stop,
temperature: request.temperature.unwrap_or(1.0),
max_completion_tokens: max_output_tokens,
parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
// Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
Some(false)
} else {
None
},
prompt_cache_key: if supports_prompt_cache_key {
request.thread_id
} else {
None
},
tools: request
.tools
.into_iter()
.map(|tool| open_ai::ToolDefinition::Function {
function: open_ai::FunctionDefinition {
name: tool.name,
description: Some(tool.description),
parameters: Some(tool.input_schema),
},
})
.collect(),
tool_choice: request.tool_choice.map(|choice| match choice {
LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
LanguageModelToolChoice::None => open_ai::ToolChoice::None,
}),
reasoning_effort,
}
}
fn add_message_content_part(
new_part: open_ai::MessagePart,
role: Role,
messages: &mut Vec<open_ai::RequestMessage>,
) {
match (role, messages.last_mut()) {
(Role::User, Some(open_ai::RequestMessage::User { content }))
| (
Role::Assistant,
Some(open_ai::RequestMessage::Assistant {
content: Some(content),
..
}),
)
| (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
content.push_part(new_part);
}
_ => {
messages.push(match role {
Role::User => open_ai::RequestMessage::User {
content: open_ai::MessageContent::from(vec![new_part]),
},
Role::Assistant => open_ai::RequestMessage::Assistant {
content: Some(open_ai::MessageContent::from(vec![new_part])),
tool_calls: Vec::new(),
},
Role::System => open_ai::RequestMessage::System {
content: open_ai::MessageContent::from(vec![new_part]),
},
});
}
}
}
pub struct OpenAiEventMapper {
tool_calls_by_index: HashMap<usize, RawToolCall>,
}
impl OpenAiEventMapper {
pub fn new() -> Self {
Self {
tool_calls_by_index: HashMap::default(),
}
}
pub fn map_stream(
mut self,
events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
{
events.flat_map(move |event| {
futures::stream::iter(match event {
Ok(event) => self.map_event(event),
Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
})
})
}
pub fn map_event(
&mut self,
event: ResponseStreamEvent,
) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
let mut events = Vec::new();
if let Some(usage) = event.usage {
events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
input_tokens: usage.prompt_tokens,
output_tokens: usage.completion_tokens,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 0,
})));
}
let Some(choice) = event.choices.first() else {
return events;
};
if let Some(content) = choice.delta.content.clone() {
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
}
if let Some(tool_calls) = choice.delta.tool_calls.as_ref() {
for tool_call in tool_calls {
let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
if let Some(tool_id) = tool_call.id.clone() {
entry.id = tool_id;
}
if let Some(function) = tool_call.function.as_ref() {
if let Some(name) = function.name.clone() {
entry.name = name;
}
if let Some(arguments) = function.arguments.clone() {
entry.arguments.push_str(&arguments);
}
}
}
}
match choice.finish_reason.as_deref() {
Some("stop") => {
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
}
Some("tool_calls") => {
events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
match serde_json::Value::from_str(&tool_call.arguments) {
Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
LanguageModelToolUse {
id: tool_call.id.clone().into(),
name: tool_call.name.as_str().into(),
is_input_complete: true,
input,
raw_input: tool_call.arguments.clone(),
},
)),
Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
id: tool_call.id.into(),
tool_name: tool_call.name.into(),
raw_input: tool_call.arguments.clone().into(),
json_parse_error: error.to_string(),
}),
}
}));
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
}
Some(stop_reason) => {
log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
}
None => {}
}
events
}
}
#[derive(Default)]
struct RawToolCall {
id: String,
name: String,
arguments: String,
}
pub(crate) fn collect_tiktoken_messages(
request: LanguageModelRequest,
) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
request
.messages
.into_iter()
.map(|message| tiktoken_rs::ChatCompletionRequestMessage {
role: match message.role {
Role::User => "user".into(),
Role::Assistant => "assistant".into(),
Role::System => "system".into(),
},
content: Some(message.string_contents()),
name: None,
function_call: None,
})
.collect::<Vec<_>>()
}
pub fn count_open_ai_tokens(
request: LanguageModelRequest,
model: Model,
cx: &App,
) -> BoxFuture<'static, Result<u64>> {
cx.background_spawn(async move {
let messages = collect_tiktoken_messages(request);
match model {
Model::Custom { max_tokens, .. } => {
let model = if max_tokens >= 100_000 {
// If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
"gpt-4o"
} else {
// Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
// supported with this tiktoken method
"gpt-4"
};
tiktoken_rs::num_tokens_from_messages(model, &messages)
}
// Currently supported by tiktoken_rs
// Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
// arm with an override. We enumerate all supported models here so that we can check if new
// models are supported yet or not.
Model::ThreePointFiveTurbo
| Model::Four
| Model::FourTurbo
| Model::FourOmni
| Model::FourOmniMini
| Model::FourPointOne
| Model::FourPointOneMini
| Model::FourPointOneNano
| Model::O1
| Model::O3
| Model::O3Mini
| Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
// GPT-5 models don't have tiktoken support yet; fall back on gpt-4o tokenizer
Model::Five | Model::FiveMini | Model::FiveNano => {
tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
}
}
.map(|tokens| tokens as u64)
})
.boxed()
}
struct ConfigurationView {
api_key_editor: Entity<SingleLineInput>,
state: gpui::Entity<State>,
load_credentials_task: Option<Task<()>>,
}
impl ConfigurationView {
fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
let api_key_editor = cx.new(|cx| {
SingleLineInput::new(
window,
cx,
"sk-000000000000000000000000000000000000000000000000",
)
});
cx.observe(&state, |_, _, cx| {
cx.notify();
})
.detach();
let load_credentials_task = Some(cx.spawn_in(window, {
let state = state.clone();
async move |this, cx| {
if let Some(task) = state
.update(cx, |state, cx| state.authenticate(cx))
.log_err()
{
// We don't log an error, because "not signed in" is also an error.
let _ = task.await;
}
this.update(cx, |this, cx| {
this.load_credentials_task = None;
cx.notify();
})
.log_err();
}
}));
Self {
api_key_editor,
state,
load_credentials_task,
}
}
fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
let api_key = self
.api_key_editor
.read(cx)
.editor()
.read(cx)
.text(cx)
.trim()
.to_string();
// Don't proceed if no API key is provided and we're not authenticated
if api_key.is_empty() && !self.state.read(cx).is_authenticated() {
return;
}
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state
.update(cx, |state, cx| state.set_api_key(api_key, cx))?
.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
self.api_key_editor.update(cx, |input, cx| {
input.editor.update(cx, |editor, cx| {
editor.set_text("", window, cx);
});
});
let state = self.state.clone();
cx.spawn_in(window, async move |_, cx| {
state.update(cx, |state, cx| state.reset_api_key(cx))?.await
})
.detach_and_log_err(cx);
cx.notify();
}
fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
!self.state.read(cx).is_authenticated()
}
}
impl Render for ConfigurationView {
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
let env_var_set = self.state.read(cx).api_key_from_env;
let api_key_section = if self.should_render_editor(cx) {
v_flex()
.on_action(cx.listener(Self::save_api_key))
.child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
.child(
List::new()
.child(InstructionListItem::new(
"Create one by visiting",
Some("OpenAI's console"),
Some("https://platform.openai.com/api-keys"),
))
.child(InstructionListItem::text_only(
"Ensure your OpenAI account has credits",
))
.child(InstructionListItem::text_only(
"Paste your API key below and hit enter to start using the assistant",
)),
)
.child(self.api_key_editor.clone())
.child(
Label::new(
format!("You can also assign the {OPENAI_API_KEY_VAR} environment variable and restart Zed."),
)
.size(LabelSize::Small).color(Color::Muted),
)
.child(
Label::new(
"Note that having a subscription for another service like GitHub Copilot won't work.",
)
.size(LabelSize::Small).color(Color::Muted),
)
.into_any()
} else {
h_flex()
.mt_1()
.p_1()
.justify_between()
.rounded_md()
.border_1()
.border_color(cx.theme().colors().border)
.bg(cx.theme().colors().background)
.child(
h_flex()
.gap_1()
.child(Icon::new(IconName::Check).color(Color::Success))
.child(Label::new(if env_var_set {
format!("API key set in {OPENAI_API_KEY_VAR} environment variable.")
} else {
"API key configured.".to_string()
})),
)
.child(
Button::new("reset-api-key", "Reset API Key")
.label_size(LabelSize::Small)
.icon(IconName::Undo)
.icon_size(IconSize::Small)
.icon_position(IconPosition::Start)
.layer(ElevationIndex::ModalSurface)
.when(env_var_set, |this| {
this.tooltip(Tooltip::text(format!("To reset your API key, unset the {OPENAI_API_KEY_VAR} environment variable.")))
})
.on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
)
.into_any()
};
let compatible_api_section = h_flex()
.mt_1p5()
.gap_0p5()
.flex_wrap()
.when(self.should_render_editor(cx), |this| {
this.pt_1p5()
.border_t_1()
.border_color(cx.theme().colors().border_variant)
})
.child(
h_flex()
.gap_2()
.child(
Icon::new(IconName::Info)
.size(IconSize::XSmall)
.color(Color::Muted),
)
.child(Label::new("Zed also supports OpenAI-compatible models.")),
)
.child(
Button::new("docs", "Learn More")
.icon(IconName::ArrowUpRight)
.icon_size(IconSize::Small)
.icon_color(Color::Muted)
.on_click(move |_, _window, cx| {
cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
}),
);
if self.load_credentials_task.is_some() {
div().child(Label::new("Loading credentials…")).into_any()
} else {
v_flex()
.size_full()
.child(api_key_section)
.child(compatible_api_section)
.into_any()
}
}
}
#[cfg(test)]
mod tests {
use gpui::TestAppContext;
use language_model::LanguageModelRequestMessage;
use super::*;
#[gpui::test]
fn tiktoken_rs_support(cx: &TestAppContext) {
let request = LanguageModelRequest {
thread_id: None,
prompt_id: None,
intent: None,
mode: None,
messages: vec![LanguageModelRequestMessage {
role: Role::User,
content: vec![MessageContent::Text("message".into())],
cache: false,
}],
tools: vec![],
tool_choice: None,
stop: vec![],
temperature: None,
thinking_allowed: true,
};
// Validate that all models are supported by tiktoken-rs
for model in Model::iter() {
let count = cx
.executor()
.block(count_open_ai_tokens(
request.clone(),
model,
&cx.app.borrow(),
))
.unwrap();
assert!(count > 0);
}
}
}