ZIm/crates/gpui/src/elements/list.rs
Antonio Scandurra 2e72fd210a
Replace Default trait bound with a zero function on Summary/Dimension (#17975)
This lets us provide a context when constructing the zero value. We need
it so we can require anchors to be associated with a buffer id, which
we're doing as part of simplifying the multibuffer API.

Release Notes:

- N/A

Co-authored-by: Nathan <nathan@zed.dev>
2024-09-17 19:43:59 -06:00

973 lines
34 KiB
Rust

//! A list element that can be used to render a large number of differently sized elements
//! efficiently. Clients of this API need to ensure that elements outside of the scrolled
//! area do not change their height for this element to function correctly. In order to minimize
//! re-renders, this element's state is stored intrusively on your own views, so that your code
//! can coordinate directly with the list element's cached state.
//!
//! If all of your elements are the same height, see [`UniformList`] for a simpler API
use crate::{
point, px, size, AnyElement, AvailableSpace, Bounds, ContentMask, DispatchPhase, Edges,
Element, FocusHandle, GlobalElementId, Hitbox, IntoElement, Pixels, Point, ScrollWheelEvent,
Size, Style, StyleRefinement, Styled, WindowContext,
};
use collections::VecDeque;
use refineable::Refineable as _;
use std::{cell::RefCell, ops::Range, rc::Rc};
use sum_tree::{Bias, SumTree};
use taffy::style::Overflow;
/// Construct a new list element
pub fn list(state: ListState) -> List {
List {
state,
style: StyleRefinement::default(),
sizing_behavior: ListSizingBehavior::default(),
}
}
/// A list element
pub struct List {
state: ListState,
style: StyleRefinement,
sizing_behavior: ListSizingBehavior,
}
impl List {
/// Set the sizing behavior for the list.
pub fn with_sizing_behavior(mut self, behavior: ListSizingBehavior) -> Self {
self.sizing_behavior = behavior;
self
}
}
/// The list state that views must hold on behalf of the list element.
#[derive(Clone)]
pub struct ListState(Rc<RefCell<StateInner>>);
struct StateInner {
last_layout_bounds: Option<Bounds<Pixels>>,
last_padding: Option<Edges<Pixels>>,
render_item: Box<dyn FnMut(usize, &mut WindowContext) -> AnyElement>,
items: SumTree<ListItem>,
logical_scroll_top: Option<ListOffset>,
alignment: ListAlignment,
overdraw: Pixels,
reset: bool,
#[allow(clippy::type_complexity)]
scroll_handler: Option<Box<dyn FnMut(&ListScrollEvent, &mut WindowContext)>>,
}
/// Whether the list is scrolling from top to bottom or bottom to top.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ListAlignment {
/// The list is scrolling from top to bottom, like most lists.
Top,
/// The list is scrolling from bottom to top, like a chat log.
Bottom,
}
/// A scroll event that has been converted to be in terms of the list's items.
pub struct ListScrollEvent {
/// The range of items currently visible in the list, after applying the scroll event.
pub visible_range: Range<usize>,
/// The number of items that are currently visible in the list, after applying the scroll event.
pub count: usize,
/// Whether the list has been scrolled.
pub is_scrolled: bool,
}
/// The sizing behavior to apply during layout.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum ListSizingBehavior {
/// The list should calculate its size based on the size of its items.
Infer,
/// The list should not calculate a fixed size.
#[default]
Auto,
}
struct LayoutItemsResponse {
max_item_width: Pixels,
scroll_top: ListOffset,
item_layouts: VecDeque<ItemLayout>,
}
struct ItemLayout {
index: usize,
element: AnyElement,
size: Size<Pixels>,
}
/// Frame state used by the [List] element after layout.
pub struct ListPrepaintState {
hitbox: Hitbox,
layout: LayoutItemsResponse,
}
#[derive(Clone)]
enum ListItem {
Unmeasured {
focus_handle: Option<FocusHandle>,
},
Measured {
size: Size<Pixels>,
focus_handle: Option<FocusHandle>,
},
}
impl ListItem {
fn size(&self) -> Option<Size<Pixels>> {
if let ListItem::Measured { size, .. } = self {
Some(*size)
} else {
None
}
}
fn focus_handle(&self) -> Option<FocusHandle> {
match self {
ListItem::Unmeasured { focus_handle } | ListItem::Measured { focus_handle, .. } => {
focus_handle.clone()
}
}
}
fn contains_focused(&self, cx: &WindowContext) -> bool {
match self {
ListItem::Unmeasured { focus_handle } | ListItem::Measured { focus_handle, .. } => {
focus_handle
.as_ref()
.is_some_and(|handle| handle.contains_focused(cx))
}
}
}
}
#[derive(Clone, Debug, Default, PartialEq)]
struct ListItemSummary {
count: usize,
rendered_count: usize,
unrendered_count: usize,
height: Pixels,
has_focus_handles: bool,
}
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
struct Count(usize);
#[derive(Clone, Debug, Default)]
struct Height(Pixels);
impl ListState {
/// Construct a new list state, for storage on a view.
///
/// The overdraw parameter controls how much extra space is rendered
/// above and below the visible area. Elements within this area will
/// be measured even though they are not visible. This can help ensure
/// that the list doesn't flicker or pop in when scrolling.
pub fn new<R>(
item_count: usize,
alignment: ListAlignment,
overdraw: Pixels,
render_item: R,
) -> Self
where
R: 'static + FnMut(usize, &mut WindowContext) -> AnyElement,
{
let this = Self(Rc::new(RefCell::new(StateInner {
last_layout_bounds: None,
last_padding: None,
render_item: Box::new(render_item),
items: SumTree::default(),
logical_scroll_top: None,
alignment,
overdraw,
scroll_handler: None,
reset: false,
})));
this.splice(0..0, item_count);
this
}
/// Reset this instantiation of the list state.
///
/// Note that this will cause scroll events to be dropped until the next paint.
pub fn reset(&self, element_count: usize) {
let old_count = {
let state = &mut *self.0.borrow_mut();
state.reset = true;
state.logical_scroll_top = None;
state.items.summary().count
};
self.splice(0..old_count, element_count);
}
/// The number of items in this list.
pub fn item_count(&self) -> usize {
self.0.borrow().items.summary().count
}
/// Inform the list state that the items in `old_range` have been replaced
/// by `count` new items that must be recalculated.
pub fn splice(&self, old_range: Range<usize>, count: usize) {
self.splice_focusable(old_range, (0..count).map(|_| None))
}
/// Register with the list state that the items in `old_range` have been replaced
/// by new items. As opposed to [`splice`], this method allows an iterator of optional focus handles
/// to be supplied to properly integrate with items in the list that can be focused. If a focused item
/// is scrolled out of view, the list will continue to render it to allow keyboard interaction.
pub fn splice_focusable(
&self,
old_range: Range<usize>,
focus_handles: impl IntoIterator<Item = Option<FocusHandle>>,
) {
let state = &mut *self.0.borrow_mut();
let mut old_items = state.items.cursor::<Count>(&());
let mut new_items = old_items.slice(&Count(old_range.start), Bias::Right, &());
old_items.seek_forward(&Count(old_range.end), Bias::Right, &());
let mut spliced_count = 0;
new_items.extend(
focus_handles.into_iter().map(|focus_handle| {
spliced_count += 1;
ListItem::Unmeasured { focus_handle }
}),
&(),
);
new_items.append(old_items.suffix(&()), &());
drop(old_items);
state.items = new_items;
if let Some(ListOffset {
item_ix,
offset_in_item,
}) = state.logical_scroll_top.as_mut()
{
if old_range.contains(item_ix) {
*item_ix = old_range.start;
*offset_in_item = px(0.);
} else if old_range.end <= *item_ix {
*item_ix = *item_ix - (old_range.end - old_range.start) + spliced_count;
}
}
}
/// Set a handler that will be called when the list is scrolled.
pub fn set_scroll_handler(
&self,
handler: impl FnMut(&ListScrollEvent, &mut WindowContext) + 'static,
) {
self.0.borrow_mut().scroll_handler = Some(Box::new(handler))
}
/// Get the current scroll offset, in terms of the list's items.
pub fn logical_scroll_top(&self) -> ListOffset {
self.0.borrow().logical_scroll_top()
}
/// Scroll the list to the given offset
pub fn scroll_to(&self, mut scroll_top: ListOffset) {
let state = &mut *self.0.borrow_mut();
let item_count = state.items.summary().count;
if scroll_top.item_ix >= item_count {
scroll_top.item_ix = item_count;
scroll_top.offset_in_item = px(0.);
}
state.logical_scroll_top = Some(scroll_top);
}
/// Scroll the list to the given item, such that the item is fully visible.
pub fn scroll_to_reveal_item(&self, ix: usize) {
let state = &mut *self.0.borrow_mut();
let mut scroll_top = state.logical_scroll_top();
let height = state
.last_layout_bounds
.map_or(px(0.), |bounds| bounds.size.height);
let padding = state.last_padding.unwrap_or_default();
if ix <= scroll_top.item_ix {
scroll_top.item_ix = ix;
scroll_top.offset_in_item = px(0.);
} else {
let mut cursor = state.items.cursor::<ListItemSummary>(&());
cursor.seek(&Count(ix + 1), Bias::Right, &());
let bottom = cursor.start().height + padding.top;
let goal_top = px(0.).max(bottom - height + padding.bottom);
cursor.seek(&Height(goal_top), Bias::Left, &());
let start_ix = cursor.start().count;
let start_item_top = cursor.start().height;
if start_ix >= scroll_top.item_ix {
scroll_top.item_ix = start_ix;
scroll_top.offset_in_item = goal_top - start_item_top;
}
}
state.logical_scroll_top = Some(scroll_top);
}
/// Get the bounds for the given item in window coordinates, if it's
/// been rendered.
pub fn bounds_for_item(&self, ix: usize) -> Option<Bounds<Pixels>> {
let state = &*self.0.borrow();
let bounds = state.last_layout_bounds.unwrap_or_default();
let scroll_top = state.logical_scroll_top();
if ix < scroll_top.item_ix {
return None;
}
let mut cursor = state.items.cursor::<(Count, Height)>(&());
cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &());
let scroll_top = cursor.start().1 .0 + scroll_top.offset_in_item;
cursor.seek_forward(&Count(ix), Bias::Right, &());
if let Some(&ListItem::Measured { size, .. }) = cursor.item() {
let &(Count(count), Height(top)) = cursor.start();
if count == ix {
let top = bounds.top() + top - scroll_top;
return Some(Bounds::from_corners(
point(bounds.left(), top),
point(bounds.right(), top + size.height),
));
}
}
None
}
}
impl StateInner {
fn visible_range(&self, height: Pixels, scroll_top: &ListOffset) -> Range<usize> {
let mut cursor = self.items.cursor::<ListItemSummary>(&());
cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &());
let start_y = cursor.start().height + scroll_top.offset_in_item;
cursor.seek_forward(&Height(start_y + height), Bias::Left, &());
scroll_top.item_ix..cursor.start().count + 1
}
fn scroll(
&mut self,
scroll_top: &ListOffset,
height: Pixels,
delta: Point<Pixels>,
cx: &mut WindowContext,
) {
// Drop scroll events after a reset, since we can't calculate
// the new logical scroll top without the item heights
if self.reset {
return;
}
let padding = self.last_padding.unwrap_or_default();
let scroll_max =
(self.items.summary().height + padding.top + padding.bottom - height).max(px(0.));
let new_scroll_top = (self.scroll_top(scroll_top) - delta.y)
.max(px(0.))
.min(scroll_max);
if self.alignment == ListAlignment::Bottom && new_scroll_top == scroll_max {
self.logical_scroll_top = None;
} else {
let mut cursor = self.items.cursor::<ListItemSummary>(&());
cursor.seek(&Height(new_scroll_top), Bias::Right, &());
let item_ix = cursor.start().count;
let offset_in_item = new_scroll_top - cursor.start().height;
self.logical_scroll_top = Some(ListOffset {
item_ix,
offset_in_item,
});
}
if self.scroll_handler.is_some() {
let visible_range = self.visible_range(height, scroll_top);
self.scroll_handler.as_mut().unwrap()(
&ListScrollEvent {
visible_range,
count: self.items.summary().count,
is_scrolled: self.logical_scroll_top.is_some(),
},
cx,
);
}
cx.refresh();
}
fn logical_scroll_top(&self) -> ListOffset {
self.logical_scroll_top
.unwrap_or_else(|| match self.alignment {
ListAlignment::Top => ListOffset {
item_ix: 0,
offset_in_item: px(0.),
},
ListAlignment::Bottom => ListOffset {
item_ix: self.items.summary().count,
offset_in_item: px(0.),
},
})
}
fn scroll_top(&self, logical_scroll_top: &ListOffset) -> Pixels {
let mut cursor = self.items.cursor::<ListItemSummary>(&());
cursor.seek(&Count(logical_scroll_top.item_ix), Bias::Right, &());
cursor.start().height + logical_scroll_top.offset_in_item
}
fn layout_items(
&mut self,
available_width: Option<Pixels>,
available_height: Pixels,
padding: &Edges<Pixels>,
cx: &mut WindowContext,
) -> LayoutItemsResponse {
let old_items = self.items.clone();
let mut measured_items = VecDeque::new();
let mut item_layouts = VecDeque::new();
let mut rendered_height = padding.top;
let mut max_item_width = px(0.);
let mut scroll_top = self.logical_scroll_top();
let mut rendered_focused_item = false;
let available_item_space = size(
available_width.map_or(AvailableSpace::MinContent, |width| {
AvailableSpace::Definite(width)
}),
AvailableSpace::MinContent,
);
let mut cursor = old_items.cursor::<Count>(&());
// Render items after the scroll top, including those in the trailing overdraw
cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &());
for (ix, item) in cursor.by_ref().enumerate() {
let visible_height = rendered_height - scroll_top.offset_in_item;
if visible_height >= available_height + self.overdraw {
break;
}
// Use the previously cached height and focus handle if available
let mut size = item.size();
// If we're within the visible area or the height wasn't cached, render and measure the item's element
if visible_height < available_height || size.is_none() {
let item_index = scroll_top.item_ix + ix;
let mut element = (self.render_item)(item_index, cx);
let element_size = element.layout_as_root(available_item_space, cx);
size = Some(element_size);
if visible_height < available_height {
item_layouts.push_back(ItemLayout {
index: item_index,
element,
size: element_size,
});
if item.contains_focused(cx) {
rendered_focused_item = true;
}
}
}
let size = size.unwrap();
rendered_height += size.height;
max_item_width = max_item_width.max(size.width);
measured_items.push_back(ListItem::Measured {
size,
focus_handle: item.focus_handle(),
});
}
rendered_height += padding.bottom;
// Prepare to start walking upward from the item at the scroll top.
cursor.seek(&Count(scroll_top.item_ix), Bias::Right, &());
// If the rendered items do not fill the visible region, then adjust
// the scroll top upward.
if rendered_height - scroll_top.offset_in_item < available_height {
while rendered_height < available_height {
cursor.prev(&());
if let Some(item) = cursor.item() {
let item_index = cursor.start().0;
let mut element = (self.render_item)(item_index, cx);
let element_size = element.layout_as_root(available_item_space, cx);
let focus_handle = item.focus_handle();
rendered_height += element_size.height;
measured_items.push_front(ListItem::Measured {
size: element_size,
focus_handle,
});
item_layouts.push_front(ItemLayout {
index: item_index,
element,
size: element_size,
});
if item.contains_focused(cx) {
rendered_focused_item = true;
}
} else {
break;
}
}
scroll_top = ListOffset {
item_ix: cursor.start().0,
offset_in_item: rendered_height - available_height,
};
match self.alignment {
ListAlignment::Top => {
scroll_top.offset_in_item = scroll_top.offset_in_item.max(px(0.));
self.logical_scroll_top = Some(scroll_top);
}
ListAlignment::Bottom => {
scroll_top = ListOffset {
item_ix: cursor.start().0,
offset_in_item: rendered_height - available_height,
};
self.logical_scroll_top = None;
}
};
}
// Measure items in the leading overdraw
let mut leading_overdraw = scroll_top.offset_in_item;
while leading_overdraw < self.overdraw {
cursor.prev(&());
if let Some(item) = cursor.item() {
let size = if let ListItem::Measured { size, .. } = item {
*size
} else {
let mut element = (self.render_item)(cursor.start().0, cx);
element.layout_as_root(available_item_space, cx)
};
leading_overdraw += size.height;
measured_items.push_front(ListItem::Measured {
size,
focus_handle: item.focus_handle(),
});
} else {
break;
}
}
let measured_range = cursor.start().0..(cursor.start().0 + measured_items.len());
let mut cursor = old_items.cursor::<Count>(&());
let mut new_items = cursor.slice(&Count(measured_range.start), Bias::Right, &());
new_items.extend(measured_items, &());
cursor.seek(&Count(measured_range.end), Bias::Right, &());
new_items.append(cursor.suffix(&()), &());
self.items = new_items;
// If none of the visible items are focused, check if an off-screen item is focused
// and include it to be rendered after the visible items so keyboard interaction continues
// to work for it.
if !rendered_focused_item {
let mut cursor = self
.items
.filter::<_, Count>(&(), |summary| summary.has_focus_handles);
cursor.next(&());
while let Some(item) = cursor.item() {
if item.contains_focused(cx) {
let item_index = cursor.start().0;
let mut element = (self.render_item)(cursor.start().0, cx);
let size = element.layout_as_root(available_item_space, cx);
item_layouts.push_back(ItemLayout {
index: item_index,
element,
size,
});
break;
}
cursor.next(&());
}
}
LayoutItemsResponse {
max_item_width,
scroll_top,
item_layouts,
}
}
fn prepaint_items(
&mut self,
bounds: Bounds<Pixels>,
padding: Edges<Pixels>,
autoscroll: bool,
cx: &mut WindowContext,
) -> Result<LayoutItemsResponse, ListOffset> {
cx.transact(|cx| {
let mut layout_response =
self.layout_items(Some(bounds.size.width), bounds.size.height, &padding, cx);
// Avoid honoring autoscroll requests from elements other than our children.
cx.take_autoscroll();
// Only paint the visible items, if there is actually any space for them (taking padding into account)
if bounds.size.height > padding.top + padding.bottom {
let mut item_origin = bounds.origin + Point::new(px(0.), padding.top);
item_origin.y -= layout_response.scroll_top.offset_in_item;
for item in &mut layout_response.item_layouts {
cx.with_content_mask(Some(ContentMask { bounds }), |cx| {
item.element.prepaint_at(item_origin, cx);
});
if let Some(autoscroll_bounds) = cx.take_autoscroll() {
if autoscroll {
if autoscroll_bounds.top() < bounds.top() {
return Err(ListOffset {
item_ix: item.index,
offset_in_item: autoscroll_bounds.top() - item_origin.y,
});
} else if autoscroll_bounds.bottom() > bounds.bottom() {
let mut cursor = self.items.cursor::<Count>(&());
cursor.seek(&Count(item.index), Bias::Right, &());
let mut height = bounds.size.height - padding.top - padding.bottom;
// Account for the height of the element down until the autoscroll bottom.
height -= autoscroll_bounds.bottom() - item_origin.y;
// Keep decreasing the scroll top until we fill all the available space.
while height > Pixels::ZERO {
cursor.prev(&());
let Some(item) = cursor.item() else { break };
let size = item.size().unwrap_or_else(|| {
let mut item = (self.render_item)(cursor.start().0, cx);
let item_available_size = size(
bounds.size.width.into(),
AvailableSpace::MinContent,
);
item.layout_as_root(item_available_size, cx)
});
height -= size.height;
}
return Err(ListOffset {
item_ix: cursor.start().0,
offset_in_item: if height < Pixels::ZERO {
-height
} else {
Pixels::ZERO
},
});
}
}
}
item_origin.y += item.size.height;
}
} else {
layout_response.item_layouts.clear();
}
Ok(layout_response)
})
}
}
impl std::fmt::Debug for ListItem {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Unmeasured { .. } => write!(f, "Unrendered"),
Self::Measured { size, .. } => f.debug_struct("Rendered").field("size", size).finish(),
}
}
}
/// An offset into the list's items, in terms of the item index and the number
/// of pixels off the top left of the item.
#[derive(Debug, Clone, Copy, Default)]
pub struct ListOffset {
/// The index of an item in the list
pub item_ix: usize,
/// The number of pixels to offset from the item index.
pub offset_in_item: Pixels,
}
impl Element for List {
type RequestLayoutState = ();
type PrepaintState = ListPrepaintState;
fn id(&self) -> Option<crate::ElementId> {
None
}
fn request_layout(
&mut self,
_id: Option<&GlobalElementId>,
cx: &mut crate::WindowContext,
) -> (crate::LayoutId, Self::RequestLayoutState) {
let layout_id = match self.sizing_behavior {
ListSizingBehavior::Infer => {
let mut style = Style::default();
style.overflow.y = Overflow::Scroll;
style.refine(&self.style);
cx.with_text_style(style.text_style().cloned(), |cx| {
let state = &mut *self.state.0.borrow_mut();
let available_height = if let Some(last_bounds) = state.last_layout_bounds {
last_bounds.size.height
} else {
// If we don't have the last layout bounds (first render),
// we might just use the overdraw value as the available height to layout enough items.
state.overdraw
};
let padding = style.padding.to_pixels(
state.last_layout_bounds.unwrap_or_default().size.into(),
cx.rem_size(),
);
let layout_response = state.layout_items(None, available_height, &padding, cx);
let max_element_width = layout_response.max_item_width;
let summary = state.items.summary();
let total_height = summary.height;
cx.request_measured_layout(
style,
move |known_dimensions, available_space, _cx| {
let width =
known_dimensions
.width
.unwrap_or(match available_space.width {
AvailableSpace::Definite(x) => x,
AvailableSpace::MinContent | AvailableSpace::MaxContent => {
max_element_width
}
});
let height = match available_space.height {
AvailableSpace::Definite(height) => total_height.min(height),
AvailableSpace::MinContent | AvailableSpace::MaxContent => {
total_height
}
};
size(width, height)
},
)
})
}
ListSizingBehavior::Auto => {
let mut style = Style::default();
style.refine(&self.style);
cx.with_text_style(style.text_style().cloned(), |cx| {
cx.request_layout(style, None)
})
}
};
(layout_id, ())
}
fn prepaint(
&mut self,
_id: Option<&GlobalElementId>,
bounds: Bounds<Pixels>,
_: &mut Self::RequestLayoutState,
cx: &mut WindowContext,
) -> ListPrepaintState {
let state = &mut *self.state.0.borrow_mut();
state.reset = false;
let mut style = Style::default();
style.refine(&self.style);
let hitbox = cx.insert_hitbox(bounds, false);
// If the width of the list has changed, invalidate all cached item heights
if state.last_layout_bounds.map_or(true, |last_bounds| {
last_bounds.size.width != bounds.size.width
}) {
let new_items = SumTree::from_iter(
state.items.iter().map(|item| ListItem::Unmeasured {
focus_handle: item.focus_handle(),
}),
&(),
);
state.items = new_items;
}
let padding = style.padding.to_pixels(bounds.size.into(), cx.rem_size());
let layout = match state.prepaint_items(bounds, padding, true, cx) {
Ok(layout) => layout,
Err(autoscroll_request) => {
state.logical_scroll_top = Some(autoscroll_request);
state.prepaint_items(bounds, padding, false, cx).unwrap()
}
};
state.last_layout_bounds = Some(bounds);
state.last_padding = Some(padding);
ListPrepaintState { hitbox, layout }
}
fn paint(
&mut self,
_id: Option<&GlobalElementId>,
bounds: Bounds<crate::Pixels>,
_: &mut Self::RequestLayoutState,
prepaint: &mut Self::PrepaintState,
cx: &mut crate::WindowContext,
) {
cx.with_content_mask(Some(ContentMask { bounds }), |cx| {
for item in &mut prepaint.layout.item_layouts {
item.element.paint(cx);
}
});
let list_state = self.state.clone();
let height = bounds.size.height;
let scroll_top = prepaint.layout.scroll_top;
let hitbox_id = prepaint.hitbox.id;
cx.on_mouse_event(move |event: &ScrollWheelEvent, phase, cx| {
if phase == DispatchPhase::Bubble && hitbox_id.is_hovered(cx) {
list_state.0.borrow_mut().scroll(
&scroll_top,
height,
event.delta.pixel_delta(px(20.)),
cx,
)
}
});
}
}
impl IntoElement for List {
type Element = Self;
fn into_element(self) -> Self::Element {
self
}
}
impl Styled for List {
fn style(&mut self) -> &mut StyleRefinement {
&mut self.style
}
}
impl sum_tree::Item for ListItem {
type Summary = ListItemSummary;
fn summary(&self) -> Self::Summary {
match self {
ListItem::Unmeasured { focus_handle } => ListItemSummary {
count: 1,
rendered_count: 0,
unrendered_count: 1,
height: px(0.),
has_focus_handles: focus_handle.is_some(),
},
ListItem::Measured {
size, focus_handle, ..
} => ListItemSummary {
count: 1,
rendered_count: 1,
unrendered_count: 0,
height: size.height,
has_focus_handles: focus_handle.is_some(),
},
}
}
}
impl sum_tree::Summary for ListItemSummary {
type Context = ();
fn zero(_cx: &()) -> Self {
Default::default()
}
fn add_summary(&mut self, summary: &Self, _: &()) {
self.count += summary.count;
self.rendered_count += summary.rendered_count;
self.unrendered_count += summary.unrendered_count;
self.height += summary.height;
self.has_focus_handles |= summary.has_focus_handles;
}
}
impl<'a> sum_tree::Dimension<'a, ListItemSummary> for Count {
fn zero(_cx: &()) -> Self {
Default::default()
}
fn add_summary(&mut self, summary: &'a ListItemSummary, _: &()) {
self.0 += summary.count;
}
}
impl<'a> sum_tree::Dimension<'a, ListItemSummary> for Height {
fn zero(_cx: &()) -> Self {
Default::default()
}
fn add_summary(&mut self, summary: &'a ListItemSummary, _: &()) {
self.0 += summary.height;
}
}
impl<'a> sum_tree::SeekTarget<'a, ListItemSummary, ListItemSummary> for Count {
fn cmp(&self, other: &ListItemSummary, _: &()) -> std::cmp::Ordering {
self.0.partial_cmp(&other.count).unwrap()
}
}
impl<'a> sum_tree::SeekTarget<'a, ListItemSummary, ListItemSummary> for Height {
fn cmp(&self, other: &ListItemSummary, _: &()) -> std::cmp::Ordering {
self.0.partial_cmp(&other.height).unwrap()
}
}
#[cfg(test)]
mod test {
use gpui::{ScrollDelta, ScrollWheelEvent};
use crate::{self as gpui, TestAppContext};
#[gpui::test]
fn test_reset_after_paint_before_scroll(cx: &mut TestAppContext) {
use crate::{div, list, point, px, size, Element, ListState, Styled};
let cx = cx.add_empty_window();
let state = ListState::new(5, crate::ListAlignment::Top, px(10.), |_, _| {
div().h(px(10.)).w_full().into_any()
});
// Ensure that the list is scrolled to the top
state.scroll_to(gpui::ListOffset {
item_ix: 0,
offset_in_item: px(0.0),
});
// Paint
cx.draw(point(px(0.), px(0.)), size(px(100.), px(20.)), |_| {
list(state.clone()).w_full().h_full()
});
// Reset
state.reset(5);
// And then receive a scroll event _before_ the next paint
cx.simulate_event(ScrollWheelEvent {
position: point(px(1.), px(1.)),
delta: ScrollDelta::Pixels(point(px(0.), px(-500.))),
..Default::default()
});
// Scroll position should stay at the top of the list
assert_eq!(state.logical_scroll_top().item_ix, 0);
assert_eq!(state.logical_scroll_top().offset_in_item, px(0.));
}
}