ZIm/crates/gpui/src/platform/mac/renderer.rs
Piotr Osiewicz 576d8806f5 Fix up gpui1
2024-01-02 13:18:56 +01:00

1277 lines
46 KiB
Rust

use super::{atlas::AtlasAllocator, image_cache::ImageCache, sprite_cache::SpriteCache};
use crate::{
color::Color,
geometry::{
rect::RectF,
vector::{vec2f, vec2i, Vector2F},
},
platform,
scene::{Glyph, Icon, Image, ImageGlyph, Layer, Quad, Scene, Shadow, Underline},
};
use cocoa::{
base::{NO, YES},
foundation::NSUInteger,
quartzcore::AutoresizingMask,
};
use core_foundation::base::TCFType;
use foreign_types::ForeignTypeRef;
use log::warn;
use media::core_video::{self, CVMetalTextureCache};
use metal::{CommandQueue, MTLPixelFormat, MTLResourceOptions, NSRange};
use objc::{self, msg_send, sel, sel_impl};
use shaders::ToFloat2 as _;
use std::{collections::HashMap, ffi::c_void, iter::Peekable, mem, ptr, sync::Arc, vec};
const SHADERS_METALLIB: &[u8] = include_bytes!(concat!(env!("OUT_DIR"), "/shaders.metallib"));
const INSTANCE_BUFFER_SIZE: usize = 8192 * 1024; // This is an arbitrary decision. There's probably a more optimal value.
pub struct Renderer {
layer: metal::MetalLayer,
command_queue: CommandQueue,
sprite_cache: SpriteCache,
image_cache: ImageCache,
path_atlases: AtlasAllocator,
quad_pipeline_state: metal::RenderPipelineState,
shadow_pipeline_state: metal::RenderPipelineState,
sprite_pipeline_state: metal::RenderPipelineState,
image_pipeline_state: metal::RenderPipelineState,
surface_pipeline_state: metal::RenderPipelineState,
path_atlas_pipeline_state: metal::RenderPipelineState,
underline_pipeline_state: metal::RenderPipelineState,
unit_vertices: metal::Buffer,
instances: metal::Buffer,
cv_texture_cache: core_video::CVMetalTextureCache,
}
struct PathSprite {
layer_id: usize,
atlas_id: usize,
shader_data: shaders::GPUISprite,
}
pub struct Surface {
pub bounds: RectF,
pub image_buffer: core_video::CVImageBuffer,
}
impl Renderer {
pub fn new(is_opaque: bool, fonts: Arc<dyn platform::FontSystem>) -> Self {
const PIXEL_FORMAT: MTLPixelFormat = MTLPixelFormat::BGRA8Unorm;
let device: metal::Device = if let Some(device) = metal::Device::system_default() {
device
} else {
log::error!("unable to access a compatible graphics device");
std::process::exit(1);
};
let layer = metal::MetalLayer::new();
layer.set_device(&device);
layer.set_pixel_format(PIXEL_FORMAT);
layer.set_presents_with_transaction(true);
layer.set_opaque(is_opaque);
unsafe {
let _: () = msg_send![&*layer, setAllowsNextDrawableTimeout: NO];
let _: () = msg_send![&*layer, setNeedsDisplayOnBoundsChange: YES];
let _: () = msg_send![
&*layer,
setAutoresizingMask: AutoresizingMask::WIDTH_SIZABLE
| AutoresizingMask::HEIGHT_SIZABLE
];
}
let library = device
.new_library_with_data(SHADERS_METALLIB)
.expect("error building metal library");
let unit_vertices = [
(0., 0.).to_float2(),
(1., 0.).to_float2(),
(0., 1.).to_float2(),
(0., 1.).to_float2(),
(1., 0.).to_float2(),
(1., 1.).to_float2(),
];
let unit_vertices = device.new_buffer_with_data(
unit_vertices.as_ptr() as *const c_void,
(unit_vertices.len() * mem::size_of::<shaders::vector_float2>()) as u64,
MTLResourceOptions::StorageModeManaged,
);
let instances = device.new_buffer(
INSTANCE_BUFFER_SIZE as u64,
MTLResourceOptions::StorageModeManaged,
);
let sprite_cache = SpriteCache::new(device.clone(), vec2i(1024, 768), 1., fonts.clone());
let image_cache = ImageCache::new(device.clone(), vec2i(1024, 768), 1., fonts);
let path_atlases =
AtlasAllocator::new(device.clone(), build_path_atlas_texture_descriptor());
let quad_pipeline_state = build_pipeline_state(
&device,
&library,
"quad",
"quad_vertex",
"quad_fragment",
PIXEL_FORMAT,
);
let shadow_pipeline_state = build_pipeline_state(
&device,
&library,
"shadow",
"shadow_vertex",
"shadow_fragment",
PIXEL_FORMAT,
);
let sprite_pipeline_state = build_pipeline_state(
&device,
&library,
"sprite",
"sprite_vertex",
"sprite_fragment",
PIXEL_FORMAT,
);
let image_pipeline_state = build_pipeline_state(
&device,
&library,
"image",
"image_vertex",
"image_fragment",
PIXEL_FORMAT,
);
let surface_pipeline_state = build_pipeline_state(
&device,
&library,
"surface",
"surface_vertex",
"surface_fragment",
PIXEL_FORMAT,
);
let path_atlas_pipeline_state = build_path_atlas_pipeline_state(
&device,
&library,
"path_atlas",
"path_atlas_vertex",
"path_atlas_fragment",
MTLPixelFormat::R16Float,
);
let underline_pipeline_state = build_pipeline_state(
&device,
&library,
"underline",
"underline_vertex",
"underline_fragment",
PIXEL_FORMAT,
);
let cv_texture_cache = unsafe { CVMetalTextureCache::new(device.as_ptr()).unwrap() };
Self {
layer,
command_queue: device.new_command_queue(),
sprite_cache,
image_cache,
path_atlases,
quad_pipeline_state,
shadow_pipeline_state,
sprite_pipeline_state,
image_pipeline_state,
surface_pipeline_state,
path_atlas_pipeline_state,
underline_pipeline_state,
unit_vertices,
instances,
cv_texture_cache,
}
}
pub fn layer(&self) -> &metal::MetalLayerRef {
&*self.layer
}
pub fn render(&mut self, scene: &Scene) {
let layer = self.layer.clone();
let drawable_size = layer.drawable_size();
let drawable = if let Some(drawable) = layer.next_drawable() {
drawable
} else {
log::error!(
"failed to retrieve next drawable, drawable size: {:?}",
drawable_size
);
return;
};
let command_queue = self.command_queue.clone();
let command_buffer = command_queue.new_command_buffer();
self.sprite_cache.set_scale_factor(scene.scale_factor());
self.image_cache.set_scale_factor(scene.scale_factor());
let mut offset = 0;
let path_sprites = self.render_path_atlases(scene, &mut offset, command_buffer);
self.render_layers(
scene,
path_sprites,
&mut offset,
vec2f(drawable_size.width as f32, drawable_size.height as f32),
command_buffer,
drawable.texture(),
);
self.instances.did_modify_range(NSRange {
location: 0,
length: offset as NSUInteger,
});
self.image_cache.finish_frame();
command_buffer.commit();
command_buffer.wait_until_completed();
drawable.present();
}
fn render_path_atlases(
&mut self,
scene: &Scene,
offset: &mut usize,
command_buffer: &metal::CommandBufferRef,
) -> Vec<PathSprite> {
self.path_atlases.clear();
let mut sprites = Vec::new();
let mut vertices = Vec::<shaders::GPUIPathVertex>::new();
let mut current_atlas_id = None;
for (layer_id, layer) in scene.layers().enumerate() {
for path in layer.paths() {
let origin = path.bounds.origin() * scene.scale_factor();
let size = (path.bounds.size() * scene.scale_factor()).ceil();
let path_allocation = self.path_atlases.allocate(size.to_i32());
if path_allocation.is_none() {
// Path size was likely zero.
warn!("could not allocate path texture of size {:?}", size);
continue;
}
let (alloc_id, atlas_origin) = path_allocation.unwrap();
let atlas_origin = atlas_origin.to_f32();
sprites.push(PathSprite {
layer_id,
atlas_id: alloc_id.atlas_id,
shader_data: shaders::GPUISprite {
origin: origin.floor().to_float2(),
target_size: size.to_float2(),
source_size: size.to_float2(),
atlas_origin: atlas_origin.to_float2(),
color: path.color.to_uchar4(),
compute_winding: 1,
},
});
if let Some(current_atlas_id) = current_atlas_id {
if alloc_id.atlas_id != current_atlas_id {
self.render_paths_to_atlas(
offset,
&vertices,
current_atlas_id,
command_buffer,
);
vertices.clear();
}
}
current_atlas_id = Some(alloc_id.atlas_id);
for vertex in &path.vertices {
let xy_position =
(vertex.xy_position - path.bounds.origin()) * scene.scale_factor();
vertices.push(shaders::GPUIPathVertex {
xy_position: (atlas_origin + xy_position).to_float2(),
st_position: vertex.st_position.to_float2(),
clip_rect_origin: atlas_origin.to_float2(),
clip_rect_size: size.to_float2(),
});
}
}
}
if let Some(atlas_id) = current_atlas_id {
self.render_paths_to_atlas(offset, &vertices, atlas_id, command_buffer);
}
sprites
}
fn render_paths_to_atlas(
&mut self,
offset: &mut usize,
vertices: &[shaders::GPUIPathVertex],
atlas_id: usize,
command_buffer: &metal::CommandBufferRef,
) {
align_offset(offset);
let next_offset = *offset + vertices.len() * mem::size_of::<shaders::GPUIPathVertex>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
let render_pass_descriptor = metal::RenderPassDescriptor::new();
let color_attachment = render_pass_descriptor
.color_attachments()
.object_at(0)
.unwrap();
let texture = self.path_atlases.texture(atlas_id).unwrap();
color_attachment.set_texture(Some(texture));
color_attachment.set_load_action(metal::MTLLoadAction::Clear);
color_attachment.set_store_action(metal::MTLStoreAction::Store);
color_attachment.set_clear_color(metal::MTLClearColor::new(0., 0., 0., 1.));
let path_atlas_command_encoder =
command_buffer.new_render_command_encoder(render_pass_descriptor);
path_atlas_command_encoder.set_render_pipeline_state(&self.path_atlas_pipeline_state);
path_atlas_command_encoder.set_vertex_buffer(
shaders::GPUIPathAtlasVertexInputIndex_GPUIPathAtlasVertexInputIndexVertices as u64,
Some(&self.instances),
*offset as u64,
);
path_atlas_command_encoder.set_vertex_bytes(
shaders::GPUIPathAtlasVertexInputIndex_GPUIPathAtlasVertexInputIndexAtlasSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[vec2i(texture.width() as i32, texture.height() as i32).to_float2()].as_ptr()
as *const c_void,
);
let buffer_contents = unsafe {
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUIPathVertex
};
for (ix, vertex) in vertices.iter().enumerate() {
unsafe {
*buffer_contents.add(ix) = *vertex;
}
}
path_atlas_command_encoder.draw_primitives(
metal::MTLPrimitiveType::Triangle,
0,
vertices.len() as u64,
);
path_atlas_command_encoder.end_encoding();
*offset = next_offset;
}
fn render_layers(
&mut self,
scene: &Scene,
path_sprites: Vec<PathSprite>,
offset: &mut usize,
drawable_size: Vector2F,
command_buffer: &metal::CommandBufferRef,
output: &metal::TextureRef,
) {
let render_pass_descriptor = metal::RenderPassDescriptor::new();
let color_attachment = render_pass_descriptor
.color_attachments()
.object_at(0)
.unwrap();
color_attachment.set_texture(Some(output));
color_attachment.set_load_action(metal::MTLLoadAction::Clear);
color_attachment.set_store_action(metal::MTLStoreAction::Store);
let alpha = if self.layer.is_opaque() { 1. } else { 0. };
color_attachment.set_clear_color(metal::MTLClearColor::new(0., 0., 0., alpha));
let command_encoder = command_buffer.new_render_command_encoder(render_pass_descriptor);
command_encoder.set_viewport(metal::MTLViewport {
originX: 0.0,
originY: 0.0,
width: drawable_size.x() as f64,
height: drawable_size.y() as f64,
znear: 0.0,
zfar: 1.0,
});
let scale_factor = scene.scale_factor();
let mut path_sprites = path_sprites.into_iter().peekable();
for (layer_id, layer) in scene.layers().enumerate() {
self.clip(scene, layer, drawable_size, command_encoder);
self.render_shadows(
layer.shadows(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
self.render_quads(
layer.quads(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
self.render_path_sprites(
layer_id,
&mut path_sprites,
offset,
drawable_size,
command_encoder,
);
self.render_underlines(
layer.underlines(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
self.render_sprites(
layer.glyphs(),
layer.icons(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
self.render_images(
layer.images(),
layer.image_glyphs(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
self.render_surfaces(
layer.surfaces(),
scale_factor,
offset,
drawable_size,
command_encoder,
);
}
command_encoder.end_encoding();
}
fn clip(
&mut self,
scene: &Scene,
layer: &Layer,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
let clip_bounds = (layer
.clip_bounds()
.unwrap_or_else(|| RectF::new(vec2f(0., 0.), drawable_size / scene.scale_factor()))
* scene.scale_factor())
.round();
command_encoder.set_scissor_rect(metal::MTLScissorRect {
x: clip_bounds.origin_x() as NSUInteger,
y: clip_bounds.origin_y() as NSUInteger,
width: clip_bounds.width() as NSUInteger,
height: clip_bounds.height() as NSUInteger,
});
}
fn render_shadows(
&mut self,
shadows: &[Shadow],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if shadows.is_empty() {
return;
}
align_offset(offset);
let next_offset = *offset + shadows.len() * mem::size_of::<shaders::GPUIShadow>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.set_render_pipeline_state(&self.shadow_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUIShadowInputIndex_GPUIShadowInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
shaders::GPUIShadowInputIndex_GPUIShadowInputIndexShadows as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUIShadowInputIndex_GPUIShadowInputIndexUniforms as u64,
mem::size_of::<shaders::GPUIUniforms>() as u64,
[shaders::GPUIUniforms {
viewport_size: drawable_size.to_float2(),
}]
.as_ptr() as *const c_void,
);
let buffer_contents = unsafe {
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUIShadow
};
for (ix, shadow) in shadows.iter().enumerate() {
let shape_bounds = shadow.bounds * scale_factor;
let corner_radii = shadow.corner_radii * scale_factor;
let shader_shadow = shaders::GPUIShadow {
origin: shape_bounds.origin().to_float2(),
size: shape_bounds.size().to_float2(),
corner_radius_top_left: corner_radii.top_left,
corner_radius_top_right: corner_radii.top_right,
corner_radius_bottom_right: corner_radii.bottom_right,
corner_radius_bottom_left: corner_radii.bottom_left,
sigma: shadow.sigma,
color: shadow.color.to_uchar4(),
};
unsafe {
*(buffer_contents.add(ix)) = shader_shadow;
}
}
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
shadows.len() as u64,
);
*offset = next_offset;
}
fn render_quads(
&mut self,
quads: &[Quad],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if quads.is_empty() {
return;
}
align_offset(offset);
let next_offset = *offset + quads.len() * mem::size_of::<shaders::GPUIQuad>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.set_render_pipeline_state(&self.quad_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUIQuadInputIndex_GPUIQuadInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
shaders::GPUIQuadInputIndex_GPUIQuadInputIndexQuads as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUIQuadInputIndex_GPUIQuadInputIndexUniforms as u64,
mem::size_of::<shaders::GPUIUniforms>() as u64,
[shaders::GPUIUniforms {
viewport_size: drawable_size.to_float2(),
}]
.as_ptr() as *const c_void,
);
let buffer_contents = unsafe {
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUIQuad
};
for (ix, quad) in quads.iter().enumerate() {
let bounds = quad.bounds * scale_factor;
let shader_quad = shaders::GPUIQuad {
origin: bounds.origin().round().to_float2(),
size: bounds.size().round().to_float2(),
background_color: quad
.background
.unwrap_or_else(Color::transparent_black)
.to_uchar4(),
border_top: quad.border.top * scale_factor,
border_right: quad.border.right * scale_factor,
border_bottom: quad.border.bottom * scale_factor,
border_left: quad.border.left * scale_factor,
border_color: quad.border.color.to_uchar4(),
corner_radius_top_left: quad.corner_radii.top_left * scale_factor,
corner_radius_top_right: quad.corner_radii.top_right * scale_factor,
corner_radius_bottom_right: quad.corner_radii.bottom_right * scale_factor,
corner_radius_bottom_left: quad.corner_radii.bottom_left * scale_factor,
};
unsafe {
*(buffer_contents.add(ix)) = shader_quad;
}
}
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
quads.len() as u64,
);
*offset = next_offset;
}
fn render_sprites(
&mut self,
glyphs: &[Glyph],
icons: &[Icon],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if glyphs.is_empty() && icons.is_empty() {
return;
}
let mut sprites_by_atlas = HashMap::new();
for glyph in glyphs {
if let Some(sprite) = self.sprite_cache.render_glyph(
glyph.font_id,
glyph.font_size,
glyph.id,
glyph.origin,
) {
// Snap sprite to pixel grid.
let origin = (glyph.origin * scale_factor).floor() + sprite.offset.to_f32();
sprites_by_atlas
.entry(sprite.atlas_id)
.or_insert_with(Vec::new)
.push(shaders::GPUISprite {
origin: origin.to_float2(),
target_size: sprite.size.to_float2(),
source_size: sprite.size.to_float2(),
atlas_origin: sprite.atlas_origin.to_float2(),
color: glyph.color.to_uchar4(),
compute_winding: 0,
});
}
}
for icon in icons {
// Snap sprite to pixel grid.
let origin = (icon.bounds.origin() * scale_factor).floor();
let target_size = (icon.bounds.size() * scale_factor).ceil();
let source_size = (target_size * 2.).to_i32();
let sprite =
self.sprite_cache
.render_icon(source_size, icon.path.clone(), icon.svg.clone());
if sprite.is_none() {
continue;
}
let sprite = sprite.unwrap();
sprites_by_atlas
.entry(sprite.atlas_id)
.or_insert_with(Vec::new)
.push(shaders::GPUISprite {
origin: origin.to_float2(),
target_size: target_size.to_float2(),
source_size: sprite.size.to_float2(),
atlas_origin: sprite.atlas_origin.to_float2(),
color: icon.color.to_uchar4(),
compute_winding: 0,
});
}
command_encoder.set_render_pipeline_state(&self.sprite_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_bytes(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexViewportSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[drawable_size.to_float2()].as_ptr() as *const c_void,
);
for (atlas_id, sprites) in sprites_by_atlas {
align_offset(offset);
let next_offset = *offset + sprites.len() * mem::size_of::<shaders::GPUISprite>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
let texture = self.sprite_cache.atlas_texture(atlas_id).unwrap();
command_encoder.set_vertex_buffer(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexSprites as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexAtlasSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[vec2i(texture.width() as i32, texture.height() as i32).to_float2()].as_ptr()
as *const c_void,
);
command_encoder.set_fragment_texture(
shaders::GPUISpriteFragmentInputIndex_GPUISpriteFragmentInputIndexAtlas as u64,
Some(texture),
);
unsafe {
let buffer_contents =
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUISprite;
std::ptr::copy_nonoverlapping(sprites.as_ptr(), buffer_contents, sprites.len());
}
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
sprites.len() as u64,
);
*offset = next_offset;
}
}
fn render_images(
&mut self,
images: &[Image],
image_glyphs: &[ImageGlyph],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if images.is_empty() && image_glyphs.is_empty() {
return;
}
let mut images_by_atlas = HashMap::new();
for image in images {
let origin = image.bounds.origin() * scale_factor;
let target_size = image.bounds.size() * scale_factor;
let corner_radii = image.corner_radii * scale_factor;
let (alloc_id, atlas_bounds) = self.image_cache.render(&image.data);
images_by_atlas
.entry(alloc_id.atlas_id)
.or_insert_with(Vec::new)
.push(shaders::GPUIImage {
origin: origin.to_float2(),
target_size: target_size.to_float2(),
source_size: atlas_bounds.size().to_float2(),
atlas_origin: atlas_bounds.origin().to_float2(),
border_top: image.border.top * scale_factor,
border_right: image.border.right * scale_factor,
border_bottom: image.border.bottom * scale_factor,
border_left: image.border.left * scale_factor,
border_color: image.border.color.to_uchar4(),
corner_radius_top_left: corner_radii.top_left,
corner_radius_top_right: corner_radii.top_right,
corner_radius_bottom_right: corner_radii.bottom_right,
corner_radius_bottom_left: corner_radii.bottom_left,
grayscale: image.grayscale as u8,
});
}
for image_glyph in image_glyphs {
let origin = (image_glyph.origin * scale_factor).floor();
if let Some((alloc_id, atlas_bounds, glyph_origin)) =
self.image_cache.render_glyph(image_glyph)
{
images_by_atlas
.entry(alloc_id.atlas_id)
.or_insert_with(Vec::new)
.push(shaders::GPUIImage {
origin: (origin + glyph_origin.to_f32()).to_float2(),
target_size: atlas_bounds.size().to_float2(),
source_size: atlas_bounds.size().to_float2(),
atlas_origin: atlas_bounds.origin().to_float2(),
border_top: 0.,
border_right: 0.,
border_bottom: 0.,
border_left: 0.,
border_color: Default::default(),
corner_radius_top_left: 0.,
corner_radius_top_right: 0.,
corner_radius_bottom_right: 0.,
corner_radius_bottom_left: 0.,
grayscale: false as u8,
});
} else {
log::warn!("could not render glyph with id {}", image_glyph.id);
}
}
command_encoder.set_render_pipeline_state(&self.image_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUIImageVertexInputIndex_GPUIImageVertexInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_bytes(
shaders::GPUIImageVertexInputIndex_GPUIImageVertexInputIndexViewportSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[drawable_size.to_float2()].as_ptr() as *const c_void,
);
for (atlas_id, images) in images_by_atlas {
align_offset(offset);
let next_offset = *offset + images.len() * mem::size_of::<shaders::GPUIImage>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
let texture = self.image_cache.atlas_texture(atlas_id).unwrap();
command_encoder.set_vertex_buffer(
shaders::GPUIImageVertexInputIndex_GPUIImageVertexInputIndexImages as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUIImageVertexInputIndex_GPUIImageVertexInputIndexAtlasSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[vec2i(texture.width() as i32, texture.height() as i32).to_float2()].as_ptr()
as *const c_void,
);
command_encoder.set_fragment_texture(
shaders::GPUIImageFragmentInputIndex_GPUIImageFragmentInputIndexAtlas as u64,
Some(texture),
);
unsafe {
let buffer_contents =
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUIImage;
std::ptr::copy_nonoverlapping(images.as_ptr(), buffer_contents, images.len());
}
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
images.len() as u64,
);
*offset = next_offset;
}
}
fn render_surfaces(
&mut self,
surfaces: &[Surface],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if surfaces.is_empty() {
return;
}
command_encoder.set_render_pipeline_state(&self.surface_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUISurfaceVertexInputIndex_GPUISurfaceVertexInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_bytes(
shaders::GPUISurfaceVertexInputIndex_GPUISurfaceVertexInputIndexViewportSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[drawable_size.to_float2()].as_ptr() as *const c_void,
);
for surface in surfaces {
let origin = surface.bounds.origin() * scale_factor;
let source_size = vec2i(
surface.image_buffer.width() as i32,
surface.image_buffer.height() as i32,
);
let target_size = surface.bounds.size() * scale_factor;
assert_eq!(
surface.image_buffer.pixel_format_type(),
core_video::kCVPixelFormatType_420YpCbCr8BiPlanarFullRange
);
let y_texture = unsafe {
self.cv_texture_cache
.create_texture_from_image(
surface.image_buffer.as_concrete_TypeRef(),
ptr::null(),
MTLPixelFormat::R8Unorm,
surface.image_buffer.plane_width(0),
surface.image_buffer.plane_height(0),
0,
)
.unwrap()
};
let cb_cr_texture = unsafe {
self.cv_texture_cache
.create_texture_from_image(
surface.image_buffer.as_concrete_TypeRef(),
ptr::null(),
MTLPixelFormat::RG8Unorm,
surface.image_buffer.plane_width(1),
surface.image_buffer.plane_height(1),
1,
)
.unwrap()
};
align_offset(offset);
let next_offset = *offset + mem::size_of::<shaders::GPUISurface>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.set_vertex_buffer(
shaders::GPUISurfaceVertexInputIndex_GPUISurfaceVertexInputIndexSurfaces as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUISurfaceVertexInputIndex_GPUISurfaceVertexInputIndexAtlasSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[source_size.to_float2()].as_ptr() as *const c_void,
);
command_encoder.set_fragment_texture(
shaders::GPUISurfaceFragmentInputIndex_GPUISurfaceFragmentInputIndexYAtlas as u64,
Some(y_texture.as_texture_ref()),
);
command_encoder.set_fragment_texture(
shaders::GPUISurfaceFragmentInputIndex_GPUISurfaceFragmentInputIndexCbCrAtlas
as u64,
Some(cb_cr_texture.as_texture_ref()),
);
unsafe {
let buffer_contents = (self.instances.contents() as *mut u8).add(*offset)
as *mut shaders::GPUISurface;
std::ptr::write(
buffer_contents,
shaders::GPUISurface {
origin: origin.to_float2(),
target_size: target_size.to_float2(),
source_size: source_size.to_float2(),
},
);
}
command_encoder.draw_primitives(metal::MTLPrimitiveType::Triangle, 0, 6);
*offset = next_offset;
}
}
fn render_path_sprites(
&mut self,
layer_id: usize,
sprites: &mut Peekable<vec::IntoIter<PathSprite>>,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
command_encoder.set_render_pipeline_state(&self.sprite_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_bytes(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexViewportSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[drawable_size.to_float2()].as_ptr() as *const c_void,
);
let mut atlas_id = None;
let mut atlas_sprite_count = 0;
align_offset(offset);
while let Some(sprite) = sprites.peek() {
if sprite.layer_id != layer_id {
break;
}
let sprite = sprites.next().unwrap();
if let Some(atlas_id) = atlas_id.as_mut() {
if sprite.atlas_id != *atlas_id {
self.render_path_sprites_for_atlas(
offset,
*atlas_id,
atlas_sprite_count,
command_encoder,
);
*atlas_id = sprite.atlas_id;
atlas_sprite_count = 0;
align_offset(offset);
}
} else {
atlas_id = Some(sprite.atlas_id);
}
unsafe {
let buffer_contents =
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUISprite;
*buffer_contents.add(atlas_sprite_count) = sprite.shader_data;
}
atlas_sprite_count += 1;
}
if let Some(atlas_id) = atlas_id {
self.render_path_sprites_for_atlas(
offset,
atlas_id,
atlas_sprite_count,
command_encoder,
);
}
}
fn render_path_sprites_for_atlas(
&mut self,
offset: &mut usize,
atlas_id: usize,
sprite_count: usize,
command_encoder: &metal::RenderCommandEncoderRef,
) {
let next_offset = *offset + sprite_count * mem::size_of::<shaders::GPUISprite>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.set_vertex_buffer(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexSprites as u64,
Some(&self.instances),
*offset as u64,
);
let texture = self.path_atlases.texture(atlas_id).unwrap();
command_encoder.set_fragment_texture(
shaders::GPUISpriteFragmentInputIndex_GPUISpriteFragmentInputIndexAtlas as u64,
Some(texture),
);
command_encoder.set_vertex_bytes(
shaders::GPUISpriteVertexInputIndex_GPUISpriteVertexInputIndexAtlasSize as u64,
mem::size_of::<shaders::vector_float2>() as u64,
[vec2i(texture.width() as i32, texture.height() as i32).to_float2()].as_ptr()
as *const c_void,
);
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
sprite_count as u64,
);
*offset = next_offset;
}
fn render_underlines(
&mut self,
underlines: &[Underline],
scale_factor: f32,
offset: &mut usize,
drawable_size: Vector2F,
command_encoder: &metal::RenderCommandEncoderRef,
) {
if underlines.is_empty() {
return;
}
align_offset(offset);
let next_offset = *offset + underlines.len() * mem::size_of::<shaders::GPUIUnderline>();
assert!(
next_offset <= INSTANCE_BUFFER_SIZE,
"instance buffer exhausted"
);
command_encoder.set_render_pipeline_state(&self.underline_pipeline_state);
command_encoder.set_vertex_buffer(
shaders::GPUIUnderlineInputIndex_GPUIUnderlineInputIndexVertices as u64,
Some(&self.unit_vertices),
0,
);
command_encoder.set_vertex_buffer(
shaders::GPUIUnderlineInputIndex_GPUIUnderlineInputIndexUnderlines as u64,
Some(&self.instances),
*offset as u64,
);
command_encoder.set_vertex_bytes(
shaders::GPUIUnderlineInputIndex_GPUIUnderlineInputIndexUniforms as u64,
mem::size_of::<shaders::GPUIUniforms>() as u64,
[shaders::GPUIUniforms {
viewport_size: drawable_size.to_float2(),
}]
.as_ptr() as *const c_void,
);
let buffer_contents = unsafe {
(self.instances.contents() as *mut u8).add(*offset) as *mut shaders::GPUIUnderline
};
for (ix, underline) in underlines.iter().enumerate() {
let origin = underline.origin * scale_factor;
let mut height = underline.thickness;
if underline.squiggly {
height *= 3.;
}
let size = vec2f(underline.width, height) * scale_factor;
let shader_underline = shaders::GPUIUnderline {
origin: origin.round().to_float2(),
size: size.round().to_float2(),
thickness: underline.thickness * scale_factor,
color: underline.color.to_uchar4(),
squiggly: underline.squiggly as u8,
};
unsafe {
*(buffer_contents.add(ix)) = shader_underline;
}
}
command_encoder.draw_primitives_instanced(
metal::MTLPrimitiveType::Triangle,
0,
6,
underlines.len() as u64,
);
*offset = next_offset;
}
}
fn build_path_atlas_texture_descriptor() -> metal::TextureDescriptor {
let texture_descriptor = metal::TextureDescriptor::new();
texture_descriptor.set_width(2048);
texture_descriptor.set_height(2048);
texture_descriptor.set_pixel_format(MTLPixelFormat::R16Float);
texture_descriptor
.set_usage(metal::MTLTextureUsage::RenderTarget | metal::MTLTextureUsage::ShaderRead);
texture_descriptor.set_storage_mode(metal::MTLStorageMode::Private);
texture_descriptor
}
fn align_offset(offset: &mut usize) {
let r = *offset % 256;
if r > 0 {
*offset += 256 - r; // Align to a multiple of 256 to make Metal happy
}
}
fn build_pipeline_state(
device: &metal::DeviceRef,
library: &metal::LibraryRef,
label: &str,
vertex_fn_name: &str,
fragment_fn_name: &str,
pixel_format: metal::MTLPixelFormat,
) -> metal::RenderPipelineState {
let vertex_fn = library
.get_function(vertex_fn_name, None)
.expect("error locating vertex function");
let fragment_fn = library
.get_function(fragment_fn_name, None)
.expect("error locating fragment function");
let descriptor = metal::RenderPipelineDescriptor::new();
descriptor.set_label(label);
descriptor.set_vertex_function(Some(vertex_fn.as_ref()));
descriptor.set_fragment_function(Some(fragment_fn.as_ref()));
let color_attachment = descriptor.color_attachments().object_at(0).unwrap();
color_attachment.set_pixel_format(pixel_format);
color_attachment.set_blending_enabled(true);
color_attachment.set_rgb_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_alpha_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_source_rgb_blend_factor(metal::MTLBlendFactor::SourceAlpha);
color_attachment.set_source_alpha_blend_factor(metal::MTLBlendFactor::One);
color_attachment.set_destination_rgb_blend_factor(metal::MTLBlendFactor::OneMinusSourceAlpha);
color_attachment.set_destination_alpha_blend_factor(metal::MTLBlendFactor::One);
device
.new_render_pipeline_state(&descriptor)
.expect("could not create render pipeline state")
}
fn build_path_atlas_pipeline_state(
device: &metal::DeviceRef,
library: &metal::LibraryRef,
label: &str,
vertex_fn_name: &str,
fragment_fn_name: &str,
pixel_format: metal::MTLPixelFormat,
) -> metal::RenderPipelineState {
let vertex_fn = library
.get_function(vertex_fn_name, None)
.expect("error locating vertex function");
let fragment_fn = library
.get_function(fragment_fn_name, None)
.expect("error locating fragment function");
let descriptor = metal::RenderPipelineDescriptor::new();
descriptor.set_label(label);
descriptor.set_vertex_function(Some(vertex_fn.as_ref()));
descriptor.set_fragment_function(Some(fragment_fn.as_ref()));
let color_attachment = descriptor.color_attachments().object_at(0).unwrap();
color_attachment.set_pixel_format(pixel_format);
color_attachment.set_blending_enabled(true);
color_attachment.set_rgb_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_alpha_blend_operation(metal::MTLBlendOperation::Add);
color_attachment.set_source_rgb_blend_factor(metal::MTLBlendFactor::One);
color_attachment.set_source_alpha_blend_factor(metal::MTLBlendFactor::One);
color_attachment.set_destination_rgb_blend_factor(metal::MTLBlendFactor::One);
color_attachment.set_destination_alpha_blend_factor(metal::MTLBlendFactor::One);
device
.new_render_pipeline_state(&descriptor)
.expect("could not create render pipeline state")
}
mod shaders {
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use crate::{
color::Color,
geometry::vector::{Vector2F, Vector2I},
};
use std::mem;
include!(concat!(env!("OUT_DIR"), "/shaders.rs"));
pub trait ToFloat2 {
fn to_float2(&self) -> vector_float2;
}
impl ToFloat2 for (f32, f32) {
fn to_float2(&self) -> vector_float2 {
unsafe {
let mut output = mem::transmute::<_, u32>(self.1.to_bits()) as vector_float2;
output <<= 32;
output |= mem::transmute::<_, u32>(self.0.to_bits()) as vector_float2;
output
}
}
}
impl ToFloat2 for Vector2F {
fn to_float2(&self) -> vector_float2 {
unsafe {
let mut output = mem::transmute::<_, u32>(self.y().to_bits()) as vector_float2;
output <<= 32;
output |= mem::transmute::<_, u32>(self.x().to_bits()) as vector_float2;
output
}
}
}
impl ToFloat2 for Vector2I {
fn to_float2(&self) -> vector_float2 {
self.to_f32().to_float2()
}
}
impl Color {
pub fn to_uchar4(&self) -> vector_uchar4 {
let mut vec = self.a as vector_uchar4;
vec <<= 8;
vec |= self.b as vector_uchar4;
vec <<= 8;
vec |= self.g as vector_uchar4;
vec <<= 8;
vec |= self.r as vector_uchar4;
vec
}
}
}