ZIm/crates/language_model/src/language_model.rs
Richard Feldman 5405c2c2d3
Standardize on u64 for token counts (#32869)
Previously we were using a mix of `u32` and `usize`, e.g. `max_tokens:
usize, max_output_tokens: Option<u32>` in the same `struct`.

Although [tiktoken](https://github.com/openai/tiktoken) uses `usize`,
token counts should be consistent across targets (e.g. the same model
doesn't suddenly get a smaller context window if you're compiling for
wasm32), and these token counts could end up getting serialized using a
binary protocol, so `usize` is not the right choice for token counts.

I chose to standardize on `u64` over `u32` because we don't store many
of them (so the extra size should be insignificant) and future models
may exceed `u32::MAX` tokens.

Release Notes:

- N/A
2025-06-17 10:43:07 -04:00

464 lines
14 KiB
Rust

mod model;
mod rate_limiter;
mod registry;
mod request;
mod role;
mod telemetry;
#[cfg(any(test, feature = "test-support"))]
pub mod fake_provider;
use anyhow::{Context as _, Result};
use client::Client;
use futures::FutureExt;
use futures::{StreamExt, future::BoxFuture, stream::BoxStream};
use gpui::{AnyElement, AnyView, App, AsyncApp, SharedString, Task, Window};
use http_client::http::{HeaderMap, HeaderValue};
use icons::IconName;
use parking_lot::Mutex;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize, de::DeserializeOwned};
use std::fmt;
use std::ops::{Add, Sub};
use std::str::FromStr as _;
use std::sync::Arc;
use std::time::Duration;
use thiserror::Error;
use util::serde::is_default;
use zed_llm_client::{
CompletionRequestStatus, MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME,
MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME, UsageLimit,
};
pub use crate::model::*;
pub use crate::rate_limiter::*;
pub use crate::registry::*;
pub use crate::request::*;
pub use crate::role::*;
pub use crate::telemetry::*;
pub const ZED_CLOUD_PROVIDER_ID: &str = "zed.dev";
pub fn init(client: Arc<Client>, cx: &mut App) {
init_settings(cx);
RefreshLlmTokenListener::register(client.clone(), cx);
}
pub fn init_settings(cx: &mut App) {
registry::init(cx);
}
/// Configuration for caching language model messages.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct LanguageModelCacheConfiguration {
pub max_cache_anchors: usize,
pub should_speculate: bool,
pub min_total_token: u64,
}
/// A completion event from a language model.
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
pub enum LanguageModelCompletionEvent {
StatusUpdate(CompletionRequestStatus),
Stop(StopReason),
Text(String),
Thinking {
text: String,
signature: Option<String>,
},
ToolUse(LanguageModelToolUse),
StartMessage {
message_id: String,
},
UsageUpdate(TokenUsage),
}
#[derive(Error, Debug)]
pub enum LanguageModelCompletionError {
#[error("rate limit exceeded, retry after {0:?}")]
RateLimit(Duration),
#[error("received bad input JSON")]
BadInputJson {
id: LanguageModelToolUseId,
tool_name: Arc<str>,
raw_input: Arc<str>,
json_parse_error: String,
},
#[error(transparent)]
Other(#[from] anyhow::Error),
}
/// Indicates the format used to define the input schema for a language model tool.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum LanguageModelToolSchemaFormat {
/// A JSON schema, see https://json-schema.org
JsonSchema,
/// A subset of an OpenAPI 3.0 schema object supported by Google AI, see https://ai.google.dev/api/caching#Schema
JsonSchemaSubset,
}
#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum StopReason {
EndTurn,
MaxTokens,
ToolUse,
Refusal,
}
#[derive(Debug, Clone, Copy)]
pub struct RequestUsage {
pub limit: UsageLimit,
pub amount: i32,
}
impl RequestUsage {
pub fn from_headers(headers: &HeaderMap<HeaderValue>) -> Result<Self> {
let limit = headers
.get(MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME)
.with_context(|| {
format!("missing {MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME:?} header")
})?;
let limit = UsageLimit::from_str(limit.to_str()?)?;
let amount = headers
.get(MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME)
.with_context(|| {
format!("missing {MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME:?} header")
})?;
let amount = amount.to_str()?.parse::<i32>()?;
Ok(Self { limit, amount })
}
}
#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize, Default)]
pub struct TokenUsage {
#[serde(default, skip_serializing_if = "is_default")]
pub input_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub output_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub cache_creation_input_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub cache_read_input_tokens: u64,
}
impl TokenUsage {
pub fn total_tokens(&self) -> u64 {
self.input_tokens
+ self.output_tokens
+ self.cache_read_input_tokens
+ self.cache_creation_input_tokens
}
}
impl Add<TokenUsage> for TokenUsage {
type Output = Self;
fn add(self, other: Self) -> Self {
Self {
input_tokens: self.input_tokens + other.input_tokens,
output_tokens: self.output_tokens + other.output_tokens,
cache_creation_input_tokens: self.cache_creation_input_tokens
+ other.cache_creation_input_tokens,
cache_read_input_tokens: self.cache_read_input_tokens + other.cache_read_input_tokens,
}
}
}
impl Sub<TokenUsage> for TokenUsage {
type Output = Self;
fn sub(self, other: Self) -> Self {
Self {
input_tokens: self.input_tokens - other.input_tokens,
output_tokens: self.output_tokens - other.output_tokens,
cache_creation_input_tokens: self.cache_creation_input_tokens
- other.cache_creation_input_tokens,
cache_read_input_tokens: self.cache_read_input_tokens - other.cache_read_input_tokens,
}
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
pub struct LanguageModelToolUseId(Arc<str>);
impl fmt::Display for LanguageModelToolUseId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> From<T> for LanguageModelToolUseId
where
T: Into<Arc<str>>,
{
fn from(value: T) -> Self {
Self(value.into())
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
pub struct LanguageModelToolUse {
pub id: LanguageModelToolUseId,
pub name: Arc<str>,
pub raw_input: String,
pub input: serde_json::Value,
pub is_input_complete: bool,
}
pub struct LanguageModelTextStream {
pub message_id: Option<String>,
pub stream: BoxStream<'static, Result<String, LanguageModelCompletionError>>,
// Has complete token usage after the stream has finished
pub last_token_usage: Arc<Mutex<TokenUsage>>,
}
impl Default for LanguageModelTextStream {
fn default() -> Self {
Self {
message_id: None,
stream: Box::pin(futures::stream::empty()),
last_token_usage: Arc::new(Mutex::new(TokenUsage::default())),
}
}
}
pub trait LanguageModel: Send + Sync {
fn id(&self) -> LanguageModelId;
fn name(&self) -> LanguageModelName;
fn provider_id(&self) -> LanguageModelProviderId;
fn provider_name(&self) -> LanguageModelProviderName;
fn telemetry_id(&self) -> String;
fn api_key(&self, _cx: &App) -> Option<String> {
None
}
/// Whether this model supports images
fn supports_images(&self) -> bool;
/// Whether this model supports tools.
fn supports_tools(&self) -> bool;
/// Whether this model supports choosing which tool to use.
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool;
/// Returns whether this model supports "burn mode";
fn supports_max_mode(&self) -> bool {
false
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
LanguageModelToolSchemaFormat::JsonSchema
}
fn max_token_count(&self) -> u64;
fn max_output_tokens(&self) -> Option<u64> {
None
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
LanguageModelCompletionError,
>,
>;
fn stream_completion_text(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<'static, Result<LanguageModelTextStream, LanguageModelCompletionError>> {
let future = self.stream_completion(request, cx);
async move {
let events = future.await?;
let mut events = events.fuse();
let mut message_id = None;
let mut first_item_text = None;
let last_token_usage = Arc::new(Mutex::new(TokenUsage::default()));
if let Some(first_event) = events.next().await {
match first_event {
Ok(LanguageModelCompletionEvent::StartMessage { message_id: id }) => {
message_id = Some(id.clone());
}
Ok(LanguageModelCompletionEvent::Text(text)) => {
first_item_text = Some(text);
}
_ => (),
}
}
let stream = futures::stream::iter(first_item_text.map(Ok))
.chain(events.filter_map({
let last_token_usage = last_token_usage.clone();
move |result| {
let last_token_usage = last_token_usage.clone();
async move {
match result {
Ok(LanguageModelCompletionEvent::StatusUpdate { .. }) => None,
Ok(LanguageModelCompletionEvent::StartMessage { .. }) => None,
Ok(LanguageModelCompletionEvent::Text(text)) => Some(Ok(text)),
Ok(LanguageModelCompletionEvent::Thinking { .. }) => None,
Ok(LanguageModelCompletionEvent::Stop(_)) => None,
Ok(LanguageModelCompletionEvent::ToolUse(_)) => None,
Ok(LanguageModelCompletionEvent::UsageUpdate(token_usage)) => {
*last_token_usage.lock() = token_usage;
None
}
Err(err) => Some(Err(err)),
}
}
}
}))
.boxed();
Ok(LanguageModelTextStream {
message_id,
stream,
last_token_usage,
})
}
.boxed()
}
fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
None
}
#[cfg(any(test, feature = "test-support"))]
fn as_fake(&self) -> &fake_provider::FakeLanguageModel {
unimplemented!()
}
}
#[derive(Debug, Error)]
pub enum LanguageModelKnownError {
#[error("Context window limit exceeded ({tokens})")]
ContextWindowLimitExceeded { tokens: u64 },
}
pub trait LanguageModelTool: 'static + DeserializeOwned + JsonSchema {
fn name() -> String;
fn description() -> String;
}
/// An error that occurred when trying to authenticate the language model provider.
#[derive(Debug, Error)]
pub enum AuthenticateError {
#[error("credentials not found")]
CredentialsNotFound,
#[error(transparent)]
Other(#[from] anyhow::Error),
}
pub trait LanguageModelProvider: 'static {
fn id(&self) -> LanguageModelProviderId;
fn name(&self) -> LanguageModelProviderName;
fn icon(&self) -> IconName {
IconName::ZedAssistant
}
fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>>;
fn recommended_models(&self, _cx: &App) -> Vec<Arc<dyn LanguageModel>> {
Vec::new()
}
fn is_authenticated(&self, cx: &App) -> bool;
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>>;
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView;
fn must_accept_terms(&self, _cx: &App) -> bool {
false
}
fn render_accept_terms(
&self,
_view: LanguageModelProviderTosView,
_cx: &mut App,
) -> Option<AnyElement> {
None
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>>;
}
#[derive(PartialEq, Eq)]
pub enum LanguageModelProviderTosView {
/// When there are some past interactions in the Agent Panel.
ThreadtEmptyState,
/// When there are no past interactions in the Agent Panel.
ThreadFreshStart,
PromptEditorPopup,
Configuration,
}
pub trait LanguageModelProviderState: 'static {
type ObservableEntity;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>>;
fn subscribe<T: 'static>(
&self,
cx: &mut gpui::Context<T>,
callback: impl Fn(&mut T, &mut gpui::Context<T>) + 'static,
) -> Option<gpui::Subscription> {
let entity = self.observable_entity()?;
Some(cx.observe(&entity, move |this, _, cx| {
callback(this, cx);
}))
}
}
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd, Serialize, Deserialize)]
pub struct LanguageModelId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelName(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelProviderId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelProviderName(pub SharedString);
impl fmt::Display for LanguageModelProviderId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<String> for LanguageModelId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}