
This PR updates how we handle Ollama responses, leveraging the new [v0.9.0](https://github.com/ollama/ollama/releases/tag/v0.9.0) release. Previously, thinking text was embedded within the model's main content, leading to it appearing directly in the agent's response. Now, thinking content is provided as a separate parameter, allowing us to display it correctly within the agent panel, similar to other providers. I have tested this with qwen3:8b and works nicely. ~~We can release this once the ollama is release is stable.~~ It's released now as stable. <img width="433" alt="image" src="https://github.com/user-attachments/assets/2983ef06-6679-4033-82c2-231ea9cd6434" /> Release Notes: - Add thinking support for ollama --------- Co-authored-by: Bennet Bo Fenner <bennetbo@gmx.de>
644 lines
24 KiB
Rust
644 lines
24 KiB
Rust
use anyhow::{Result, anyhow};
|
|
use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
|
|
use futures::{Stream, TryFutureExt, stream};
|
|
use gpui::{AnyView, App, AsyncApp, Context, Subscription, Task};
|
|
use http_client::HttpClient;
|
|
use language_model::{
|
|
AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
|
|
LanguageModelRequestTool, LanguageModelToolChoice, LanguageModelToolUse,
|
|
LanguageModelToolUseId, MessageContent, StopReason,
|
|
};
|
|
use language_model::{
|
|
LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
|
|
LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
|
|
LanguageModelRequest, RateLimiter, Role,
|
|
};
|
|
use ollama::{
|
|
ChatMessage, ChatOptions, ChatRequest, ChatResponseDelta, KeepAlive, OllamaFunctionTool,
|
|
OllamaToolCall, get_models, preload_model, show_model, stream_chat_completion,
|
|
};
|
|
use schemars::JsonSchema;
|
|
use serde::{Deserialize, Serialize};
|
|
use settings::{Settings, SettingsStore};
|
|
use std::pin::Pin;
|
|
use std::sync::atomic::{AtomicU64, Ordering};
|
|
use std::{collections::BTreeMap, sync::Arc};
|
|
use ui::{ButtonLike, Indicator, List, prelude::*};
|
|
use util::ResultExt;
|
|
|
|
use crate::AllLanguageModelSettings;
|
|
use crate::ui::InstructionListItem;
|
|
|
|
const OLLAMA_DOWNLOAD_URL: &str = "https://ollama.com/download";
|
|
const OLLAMA_LIBRARY_URL: &str = "https://ollama.com/library";
|
|
const OLLAMA_SITE: &str = "https://ollama.com/";
|
|
|
|
const PROVIDER_ID: &str = "ollama";
|
|
const PROVIDER_NAME: &str = "Ollama";
|
|
|
|
#[derive(Default, Debug, Clone, PartialEq)]
|
|
pub struct OllamaSettings {
|
|
pub api_url: String,
|
|
pub available_models: Vec<AvailableModel>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
pub struct AvailableModel {
|
|
/// The model name in the Ollama API (e.g. "llama3.2:latest")
|
|
pub name: String,
|
|
/// The model's name in Zed's UI, such as in the model selector dropdown menu in the assistant panel.
|
|
pub display_name: Option<String>,
|
|
/// The Context Length parameter to the model (aka num_ctx or n_ctx)
|
|
pub max_tokens: usize,
|
|
/// The number of seconds to keep the connection open after the last request
|
|
pub keep_alive: Option<KeepAlive>,
|
|
/// Whether the model supports tools
|
|
pub supports_tools: Option<bool>,
|
|
/// Whether to enable think mode
|
|
pub supports_thinking: Option<bool>,
|
|
}
|
|
|
|
pub struct OllamaLanguageModelProvider {
|
|
http_client: Arc<dyn HttpClient>,
|
|
state: gpui::Entity<State>,
|
|
}
|
|
|
|
pub struct State {
|
|
http_client: Arc<dyn HttpClient>,
|
|
available_models: Vec<ollama::Model>,
|
|
fetch_model_task: Option<Task<Result<()>>>,
|
|
_subscription: Subscription,
|
|
}
|
|
|
|
impl State {
|
|
fn is_authenticated(&self) -> bool {
|
|
!self.available_models.is_empty()
|
|
}
|
|
|
|
fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).ollama;
|
|
let http_client = Arc::clone(&self.http_client);
|
|
let api_url = settings.api_url.clone();
|
|
|
|
// As a proxy for the server being "authenticated", we'll check if its up by fetching the models
|
|
cx.spawn(async move |this, cx| {
|
|
let models = get_models(http_client.as_ref(), &api_url, None).await?;
|
|
|
|
let tasks = models
|
|
.into_iter()
|
|
// Since there is no metadata from the Ollama API
|
|
// indicating which models are embedding models,
|
|
// simply filter out models with "-embed" in their name
|
|
.filter(|model| !model.name.contains("-embed"))
|
|
.map(|model| {
|
|
let http_client = Arc::clone(&http_client);
|
|
let api_url = api_url.clone();
|
|
async move {
|
|
let name = model.name.as_str();
|
|
let capabilities = show_model(http_client.as_ref(), &api_url, name).await?;
|
|
let ollama_model = ollama::Model::new(
|
|
name,
|
|
None,
|
|
None,
|
|
Some(capabilities.supports_tools()),
|
|
Some(capabilities.supports_thinking()),
|
|
);
|
|
Ok(ollama_model)
|
|
}
|
|
});
|
|
|
|
// Rate-limit capability fetches
|
|
// since there is an arbitrary number of models available
|
|
let mut ollama_models: Vec<_> = futures::stream::iter(tasks)
|
|
.buffer_unordered(5)
|
|
.collect::<Vec<Result<_>>>()
|
|
.await
|
|
.into_iter()
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
ollama_models.sort_by(|a, b| a.name.cmp(&b.name));
|
|
|
|
this.update(cx, |this, cx| {
|
|
this.available_models = ollama_models;
|
|
cx.notify();
|
|
})
|
|
})
|
|
}
|
|
|
|
fn restart_fetch_models_task(&mut self, cx: &mut Context<Self>) {
|
|
let task = self.fetch_models(cx);
|
|
self.fetch_model_task.replace(task);
|
|
}
|
|
|
|
fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
|
|
if self.is_authenticated() {
|
|
return Task::ready(Ok(()));
|
|
}
|
|
|
|
let fetch_models_task = self.fetch_models(cx);
|
|
cx.spawn(async move |_this, _cx| Ok(fetch_models_task.await?))
|
|
}
|
|
}
|
|
|
|
impl OllamaLanguageModelProvider {
|
|
pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
|
|
let this = Self {
|
|
http_client: http_client.clone(),
|
|
state: cx.new(|cx| {
|
|
let subscription = cx.observe_global::<SettingsStore>({
|
|
let mut settings = AllLanguageModelSettings::get_global(cx).ollama.clone();
|
|
move |this: &mut State, cx| {
|
|
let new_settings = &AllLanguageModelSettings::get_global(cx).ollama;
|
|
if &settings != new_settings {
|
|
settings = new_settings.clone();
|
|
this.restart_fetch_models_task(cx);
|
|
cx.notify();
|
|
}
|
|
}
|
|
});
|
|
|
|
State {
|
|
http_client,
|
|
available_models: Default::default(),
|
|
fetch_model_task: None,
|
|
_subscription: subscription,
|
|
}
|
|
}),
|
|
};
|
|
this.state
|
|
.update(cx, |state, cx| state.restart_fetch_models_task(cx));
|
|
this
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProviderState for OllamaLanguageModelProvider {
|
|
type ObservableEntity = State;
|
|
|
|
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
|
|
Some(self.state.clone())
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProvider for OllamaLanguageModelProvider {
|
|
fn id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn icon(&self) -> IconName {
|
|
IconName::AiOllama
|
|
}
|
|
|
|
fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
self.provided_models(cx).into_iter().next()
|
|
}
|
|
|
|
fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
|
|
self.default_model(cx)
|
|
}
|
|
|
|
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
|
|
let mut models: BTreeMap<String, ollama::Model> = BTreeMap::default();
|
|
|
|
// Add models from the Ollama API
|
|
for model in self.state.read(cx).available_models.iter() {
|
|
models.insert(model.name.clone(), model.clone());
|
|
}
|
|
|
|
// Override with available models from settings
|
|
for model in AllLanguageModelSettings::get_global(cx)
|
|
.ollama
|
|
.available_models
|
|
.iter()
|
|
{
|
|
models.insert(
|
|
model.name.clone(),
|
|
ollama::Model {
|
|
name: model.name.clone(),
|
|
display_name: model.display_name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
keep_alive: model.keep_alive.clone(),
|
|
supports_tools: model.supports_tools,
|
|
supports_thinking: model.supports_thinking,
|
|
},
|
|
);
|
|
}
|
|
|
|
models
|
|
.into_values()
|
|
.map(|model| {
|
|
Arc::new(OllamaLanguageModel {
|
|
id: LanguageModelId::from(model.name.clone()),
|
|
model: model.clone(),
|
|
http_client: self.http_client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
}) as Arc<dyn LanguageModel>
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn load_model(&self, model: Arc<dyn LanguageModel>, cx: &App) {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).ollama;
|
|
let http_client = self.http_client.clone();
|
|
let api_url = settings.api_url.clone();
|
|
let id = model.id().0.to_string();
|
|
cx.spawn(async move |_| preload_model(http_client, &api_url, &id).await)
|
|
.detach_and_log_err(cx);
|
|
}
|
|
|
|
fn is_authenticated(&self, cx: &App) -> bool {
|
|
self.state.read(cx).is_authenticated()
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
|
|
self.state.update(cx, |state, cx| state.authenticate(cx))
|
|
}
|
|
|
|
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
|
|
let state = self.state.clone();
|
|
cx.new(|cx| ConfigurationView::new(state, window, cx))
|
|
.into()
|
|
}
|
|
|
|
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
|
|
self.state.update(cx, |state, cx| state.fetch_models(cx))
|
|
}
|
|
}
|
|
|
|
pub struct OllamaLanguageModel {
|
|
id: LanguageModelId,
|
|
model: ollama::Model,
|
|
http_client: Arc<dyn HttpClient>,
|
|
request_limiter: RateLimiter,
|
|
}
|
|
|
|
impl OllamaLanguageModel {
|
|
fn to_ollama_request(&self, request: LanguageModelRequest) -> ChatRequest {
|
|
ChatRequest {
|
|
model: self.model.name.clone(),
|
|
messages: request
|
|
.messages
|
|
.into_iter()
|
|
.map(|msg| match msg.role {
|
|
Role::User => ChatMessage::User {
|
|
content: msg.string_contents(),
|
|
},
|
|
Role::Assistant => {
|
|
let content = msg.string_contents();
|
|
let thinking = msg.content.into_iter().find_map(|content| match content {
|
|
MessageContent::Thinking { text, .. } if !text.is_empty() => Some(text),
|
|
_ => None,
|
|
});
|
|
ChatMessage::Assistant {
|
|
content,
|
|
tool_calls: None,
|
|
thinking,
|
|
}
|
|
}
|
|
Role::System => ChatMessage::System {
|
|
content: msg.string_contents(),
|
|
},
|
|
})
|
|
.collect(),
|
|
keep_alive: self.model.keep_alive.clone().unwrap_or_default(),
|
|
stream: true,
|
|
options: Some(ChatOptions {
|
|
num_ctx: Some(self.model.max_tokens),
|
|
stop: Some(request.stop),
|
|
temperature: request.temperature.or(Some(1.0)),
|
|
..Default::default()
|
|
}),
|
|
think: self.model.supports_thinking,
|
|
tools: request.tools.into_iter().map(tool_into_ollama).collect(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LanguageModel for OllamaLanguageModel {
|
|
fn id(&self) -> LanguageModelId {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelName {
|
|
LanguageModelName::from(self.model.display_name().to_string())
|
|
}
|
|
|
|
fn provider_id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn provider_name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn supports_tools(&self) -> bool {
|
|
self.model.supports_tools.unwrap_or(false)
|
|
}
|
|
|
|
fn supports_images(&self) -> bool {
|
|
false
|
|
}
|
|
|
|
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
|
|
match choice {
|
|
LanguageModelToolChoice::Auto => false,
|
|
LanguageModelToolChoice::Any => false,
|
|
LanguageModelToolChoice::None => false,
|
|
}
|
|
}
|
|
|
|
fn telemetry_id(&self) -> String {
|
|
format!("ollama/{}", self.model.id())
|
|
}
|
|
|
|
fn max_token_count(&self) -> usize {
|
|
self.model.max_token_count()
|
|
}
|
|
|
|
fn count_tokens(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
_cx: &App,
|
|
) -> BoxFuture<'static, Result<usize>> {
|
|
// There is no endpoint for this _yet_ in Ollama
|
|
// see: https://github.com/ollama/ollama/issues/1716 and https://github.com/ollama/ollama/issues/3582
|
|
let token_count = request
|
|
.messages
|
|
.iter()
|
|
.map(|msg| msg.string_contents().chars().count())
|
|
.sum::<usize>()
|
|
/ 4;
|
|
|
|
async move { Ok(token_count) }.boxed()
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AsyncApp,
|
|
) -> BoxFuture<
|
|
'static,
|
|
Result<
|
|
BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
|
|
>,
|
|
> {
|
|
let request = self.to_ollama_request(request);
|
|
|
|
let http_client = self.http_client.clone();
|
|
let Ok(api_url) = cx.update(|cx| {
|
|
let settings = &AllLanguageModelSettings::get_global(cx).ollama;
|
|
settings.api_url.clone()
|
|
}) else {
|
|
return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
|
|
};
|
|
|
|
let future = self.request_limiter.stream(async move {
|
|
let stream = stream_chat_completion(http_client.as_ref(), &api_url, request).await?;
|
|
let stream = map_to_language_model_completion_events(stream);
|
|
Ok(stream)
|
|
});
|
|
|
|
future.map_ok(|f| f.boxed()).boxed()
|
|
}
|
|
}
|
|
|
|
fn map_to_language_model_completion_events(
|
|
stream: Pin<Box<dyn Stream<Item = anyhow::Result<ChatResponseDelta>> + Send>>,
|
|
) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
|
|
// Used for creating unique tool use ids
|
|
static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
|
|
|
|
struct State {
|
|
stream: Pin<Box<dyn Stream<Item = anyhow::Result<ChatResponseDelta>> + Send>>,
|
|
used_tools: bool,
|
|
}
|
|
|
|
// We need to create a ToolUse and Stop event from a single
|
|
// response from the original stream
|
|
let stream = stream::unfold(
|
|
State {
|
|
stream,
|
|
used_tools: false,
|
|
},
|
|
async move |mut state| {
|
|
let response = state.stream.next().await?;
|
|
|
|
let delta = match response {
|
|
Ok(delta) => delta,
|
|
Err(e) => {
|
|
let event = Err(LanguageModelCompletionError::Other(anyhow!(e)));
|
|
return Some((vec![event], state));
|
|
}
|
|
};
|
|
|
|
let mut events = Vec::new();
|
|
|
|
match delta.message {
|
|
ChatMessage::User { content } => {
|
|
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
|
}
|
|
ChatMessage::System { content } => {
|
|
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
|
}
|
|
ChatMessage::Assistant {
|
|
content,
|
|
tool_calls,
|
|
thinking,
|
|
} => {
|
|
if let Some(text) = thinking {
|
|
events.push(Ok(LanguageModelCompletionEvent::Thinking {
|
|
text,
|
|
signature: None,
|
|
}));
|
|
}
|
|
|
|
if let Some(tool_call) = tool_calls.and_then(|v| v.into_iter().next()) {
|
|
match tool_call {
|
|
OllamaToolCall::Function(function) => {
|
|
let tool_id = format!(
|
|
"{}-{}",
|
|
&function.name,
|
|
TOOL_CALL_COUNTER.fetch_add(1, Ordering::Relaxed)
|
|
);
|
|
let event =
|
|
LanguageModelCompletionEvent::ToolUse(LanguageModelToolUse {
|
|
id: LanguageModelToolUseId::from(tool_id),
|
|
name: Arc::from(function.name),
|
|
raw_input: function.arguments.to_string(),
|
|
input: function.arguments,
|
|
is_input_complete: true,
|
|
});
|
|
events.push(Ok(event));
|
|
state.used_tools = true;
|
|
}
|
|
}
|
|
} else if !content.is_empty() {
|
|
events.push(Ok(LanguageModelCompletionEvent::Text(content)));
|
|
}
|
|
}
|
|
};
|
|
|
|
if delta.done {
|
|
if state.used_tools {
|
|
state.used_tools = false;
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
|
|
} else {
|
|
events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
|
|
}
|
|
}
|
|
|
|
Some((events, state))
|
|
},
|
|
);
|
|
|
|
stream.flat_map(futures::stream::iter)
|
|
}
|
|
|
|
struct ConfigurationView {
|
|
state: gpui::Entity<State>,
|
|
loading_models_task: Option<Task<()>>,
|
|
}
|
|
|
|
impl ConfigurationView {
|
|
pub fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
|
|
let loading_models_task = Some(cx.spawn_in(window, {
|
|
let state = state.clone();
|
|
async move |this, cx| {
|
|
if let Some(task) = state
|
|
.update(cx, |state, cx| state.authenticate(cx))
|
|
.log_err()
|
|
{
|
|
task.await.log_err();
|
|
}
|
|
this.update(cx, |this, cx| {
|
|
this.loading_models_task = None;
|
|
cx.notify();
|
|
})
|
|
.log_err();
|
|
}
|
|
}));
|
|
|
|
Self {
|
|
state,
|
|
loading_models_task,
|
|
}
|
|
}
|
|
|
|
fn retry_connection(&self, cx: &mut App) {
|
|
self.state
|
|
.update(cx, |state, cx| state.fetch_models(cx))
|
|
.detach_and_log_err(cx);
|
|
}
|
|
}
|
|
|
|
impl Render for ConfigurationView {
|
|
fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
|
|
let is_authenticated = self.state.read(cx).is_authenticated();
|
|
|
|
let ollama_intro =
|
|
"Get up & running with Llama 3.3, Mistral, Gemma 2, and other LLMs with Ollama.";
|
|
|
|
if self.loading_models_task.is_some() {
|
|
div().child(Label::new("Loading models...")).into_any()
|
|
} else {
|
|
v_flex()
|
|
.gap_2()
|
|
.child(
|
|
v_flex().gap_1().child(Label::new(ollama_intro)).child(
|
|
List::new()
|
|
.child(InstructionListItem::text_only("Ollama must be running with at least one model installed to use it in the assistant."))
|
|
.child(InstructionListItem::text_only(
|
|
"Once installed, try `ollama run llama3.2`",
|
|
)),
|
|
),
|
|
)
|
|
.child(
|
|
h_flex()
|
|
.w_full()
|
|
.justify_between()
|
|
.gap_2()
|
|
.child(
|
|
h_flex()
|
|
.w_full()
|
|
.gap_2()
|
|
.map(|this| {
|
|
if is_authenticated {
|
|
this.child(
|
|
Button::new("ollama-site", "Ollama")
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _, cx| cx.open_url(OLLAMA_SITE))
|
|
.into_any_element(),
|
|
)
|
|
} else {
|
|
this.child(
|
|
Button::new(
|
|
"download_ollama_button",
|
|
"Download Ollama",
|
|
)
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _, cx| {
|
|
cx.open_url(OLLAMA_DOWNLOAD_URL)
|
|
})
|
|
.into_any_element(),
|
|
)
|
|
}
|
|
})
|
|
.child(
|
|
Button::new("view-models", "All Models")
|
|
.style(ButtonStyle::Subtle)
|
|
.icon(IconName::ArrowUpRight)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon_color(Color::Muted)
|
|
.on_click(move |_, _, cx| cx.open_url(OLLAMA_LIBRARY_URL)),
|
|
),
|
|
)
|
|
.map(|this| {
|
|
if is_authenticated {
|
|
this.child(
|
|
ButtonLike::new("connected")
|
|
.disabled(true)
|
|
.cursor_style(gpui::CursorStyle::Arrow)
|
|
.child(
|
|
h_flex()
|
|
.gap_2()
|
|
.child(Indicator::dot().color(Color::Success))
|
|
.child(Label::new("Connected"))
|
|
.into_any_element(),
|
|
),
|
|
)
|
|
} else {
|
|
this.child(
|
|
Button::new("retry_ollama_models", "Connect")
|
|
.icon_position(IconPosition::Start)
|
|
.icon_size(IconSize::XSmall)
|
|
.icon(IconName::Play)
|
|
.on_click(cx.listener(move |this, _, _, cx| {
|
|
this.retry_connection(cx)
|
|
})),
|
|
)
|
|
}
|
|
})
|
|
)
|
|
.into_any()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn tool_into_ollama(tool: LanguageModelRequestTool) -> ollama::OllamaTool {
|
|
ollama::OllamaTool::Function {
|
|
function: OllamaFunctionTool {
|
|
name: tool.name,
|
|
description: Some(tool.description),
|
|
parameters: Some(tool.input_schema),
|
|
},
|
|
}
|
|
}
|