ZIm/crates/gpui/src/platform/linux/shaders.wgsl
2024-02-01 21:41:15 -08:00

183 lines
No EOL
5.6 KiB
WebGPU Shading Language

struct Bounds {
origin: vec2<f32>,
size: vec2<f32>,
}
struct Corners {
top_left: f32,
top_right: f32,
bottom_right: f32,
bottom_left: f32,
}
struct Edges {
top: f32,
right: f32,
bottom: f32,
left: f32,
}
struct Hsla {
h: f32,
s: f32,
l: f32,
a: f32,
}
struct Quad {
view_id: vec2<u32>,
layer_id: u32,
order: u32,
bounds: Bounds,
content_mask: Bounds,
background: Hsla,
border_color: Hsla,
corner_radii: Corners,
border_widths: Edges,
}
struct Globals {
viewport_size: vec2<f32>,
pad: vec2<u32>,
}
var<uniform> globals: Globals;
var<storage, read> quads: array<Quad>;
struct QuadsVarying {
@builtin(position) position: vec4<f32>,
@location(0) @interpolate(flat) background_color: vec4<f32>,
@location(1) @interpolate(flat) border_color: vec4<f32>,
@location(2) @interpolate(flat) quad_id: u32,
//TODO: use `clip_distance` once Naga supports it
@location(3) clip_distances: vec4<f32>,
}
fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
return vec4<f32>(device_position, 0.0, 1.0);
}
fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
let tl = position - clip_bounds.origin;
let br = clip_bounds.origin + clip_bounds.size - position;
return vec4<f32>(tl.x, br.x, tl.y, br.y);
}
fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
let s = hsla.s;
let l = hsla.l;
let a = hsla.a;
let c = (1.0 - abs(2.0 * l - 1.0)) * s;
let x = c * (1.0 - abs(h % 2.0 - 1.0));
let m = l - c / 2.0;
var color = vec4<f32>(m, m, m, a);
if (h >= 0.0 && h < 1.0) {
color.r += c;
color.g += x;
} else if (h >= 1.0 && h < 2.0) {
color.r += x;
color.g += c;
} else if (h >= 2.0 && h < 3.0) {
color.g += c;
color.b += x;
} else if (h >= 3.0 && h < 4.0) {
color.g += x;
color.b += c;
} else if (h >= 4.0 && h < 5.0) {
color.r += x;
color.b += c;
} else {
color.r += c;
color.b += x;
}
return color;
}
fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
let alpha = above.a + below.a * (1.0 - above.a);
let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
return vec4<f32>(color, alpha);
}
@vertex
fn vs_quads(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadsVarying {
let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
let quad = quads[instance_id];
var out = QuadsVarying();
out.position = to_device_position(unit_vertex, quad.bounds);
out.background_color = hsla_to_rgba(quad.background);
out.border_color = hsla_to_rgba(quad.border_color);
out.quad_id = instance_id;
out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
return out;
}
@fragment
fn fs_quads(input: QuadsVarying) -> @location(0) vec4<f32> {
// Alpha clip first, since we don't have `clip_distance`.
let min_distance = min(
min(input.clip_distances.x, input.clip_distances.y),
min(input.clip_distances.z, input.clip_distances.w)
);
if min_distance <= 0.0 {
return vec4<f32>(0.0);
}
let quad = quads[input.quad_id];
let half_size = quad.bounds.size / 2.0;
let center = quad.bounds.origin + half_size;
let center_to_point = input.position.xy - center;
var corner_radius = 0.0;
if (center_to_point.x < 0.0) {
if (center_to_point.y < 0.0) {
corner_radius = quad.corner_radii.top_left;
} else {
corner_radius = quad.corner_radii.bottom_left;
}
} else {
if (center_to_point.y < 0.) {
corner_radius = quad.corner_radii.top_right;
} else {
corner_radius = quad.corner_radii.bottom_right;
}
}
let rounded_edge_to_point = abs(center_to_point) - half_size + corner_radius;
let distance =
length(max(vec2<f32>(0.0), rounded_edge_to_point)) +
min(0.0, max(rounded_edge_to_point.x, rounded_edge_to_point.y)) -
corner_radius;
let vertical_border = select(quad.border_widths.left, quad.border_widths.right, center_to_point.x > 0.0);
let horizontal_border = select(quad.border_widths.top, quad.border_widths.bottom, center_to_point.y > 0.0);
let inset_size = half_size - corner_radius - vec2<f32>(vertical_border, horizontal_border);
let point_to_inset_corner = abs(center_to_point) - inset_size;
var border_width = 0.0;
if (point_to_inset_corner.x < 0.0 && point_to_inset_corner.y < 0.0) {
border_width = 0.0;
} else if (point_to_inset_corner.y > point_to_inset_corner.x) {
border_width = horizontal_border;
} else {
border_width = vertical_border;
}
var color = input.background_color;
if (border_width > 0.0) {
let inset_distance = distance + border_width;
// Blend the border on top of the background and then linearly interpolate
// between the two as we slide inside the background.
let blended_border = over(input.background_color, input.border_color);
color = mix(blended_border, input.background_color,
saturate(0.5 - inset_distance));
}
return color * vec4<f32>(1.0, 1.0, 1.0, saturate(0.5 - distance));
}