ZIm/crates/language_model/src/provider/cloud.rs
Max Brunsfeld 8e9c2b1125
Introduce a separate backend service for LLM calls (#15831)
This PR introduces a separate backend service for making LLM calls.

It exposes an HTTP interface that can be called by Zed clients. To call
these endpoints, the client must provide a `Bearer` token. These tokens
are issued/refreshed by the collab service over RPC.

We're adding this in a backwards-compatible way. Right now the access
tokens can only be minted for Zed staff, and calling this separate LLM
service is behind the `llm-service` feature flag (which is not
automatically enabled for Zed staff).

Release Notes:

- N/A

---------

Co-authored-by: Marshall <marshall@zed.dev>
Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>
2024-08-05 20:26:21 -04:00

616 lines
23 KiB
Rust

use super::open_ai::count_open_ai_tokens;
use crate::{
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
};
use anyhow::{anyhow, Context as _, Result};
use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
use collections::BTreeMap;
use feature_flags::{FeatureFlag, FeatureFlagAppExt};
use futures::{future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, StreamExt};
use gpui::{AnyView, AppContext, AsyncAppContext, Model, ModelContext, Subscription, Task};
use http_client::{HttpClient, Method};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use serde_json::value::RawValue;
use settings::{Settings, SettingsStore};
use smol::{
io::BufReader,
lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
};
use std::{future, sync::Arc};
use strum::IntoEnumIterator;
use ui::prelude::*;
use crate::{LanguageModelAvailability, LanguageModelProvider};
use super::anthropic::count_anthropic_tokens;
pub const PROVIDER_ID: &str = "zed.dev";
pub const PROVIDER_NAME: &str = "Zed";
#[derive(Default, Clone, Debug, PartialEq)]
pub struct ZedDotDevSettings {
pub available_models: Vec<AvailableModel>,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
#[serde(rename_all = "lowercase")]
pub enum AvailableProvider {
Anthropic,
OpenAi,
Google,
}
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct AvailableModel {
provider: AvailableProvider,
name: String,
max_tokens: usize,
tool_override: Option<String>,
}
pub struct CloudLanguageModelProvider {
client: Arc<Client>,
llm_api_token: LlmApiToken,
state: gpui::Model<State>,
_maintain_client_status: Task<()>,
}
pub struct State {
client: Arc<Client>,
user_store: Model<UserStore>,
status: client::Status,
_subscription: Subscription,
}
impl State {
fn is_signed_out(&self) -> bool {
self.status.is_signed_out()
}
fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
let client = self.client.clone();
cx.spawn(move |this, mut cx| async move {
client.authenticate_and_connect(true, &cx).await?;
this.update(&mut cx, |_, cx| cx.notify())
})
}
}
impl CloudLanguageModelProvider {
pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
let mut status_rx = client.status();
let status = *status_rx.borrow();
let state = cx.new_model(|cx| State {
client: client.clone(),
user_store,
status,
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
cx.notify();
}),
});
let state_ref = state.downgrade();
let maintain_client_status = cx.spawn(|mut cx| async move {
while let Some(status) = status_rx.next().await {
if let Some(this) = state_ref.upgrade() {
_ = this.update(&mut cx, |this, cx| {
if this.status != status {
this.status = status;
cx.notify();
}
});
} else {
break;
}
}
});
Self {
client,
state,
llm_api_token: LlmApiToken::default(),
_maintain_client_status: maintain_client_status,
}
}
}
impl LanguageModelProviderState for CloudLanguageModelProvider {
type ObservableEntity = State;
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
Some(self.state.clone())
}
}
impl LanguageModelProvider for CloudLanguageModelProvider {
fn id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn icon(&self) -> IconName {
IconName::AiZed
}
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
let mut models = BTreeMap::default();
for model in anthropic::Model::iter() {
if !matches!(model, anthropic::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::Anthropic(model));
}
}
for model in open_ai::Model::iter() {
if !matches!(model, open_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::OpenAi(model));
}
}
for model in google_ai::Model::iter() {
if !matches!(model, google_ai::Model::Custom { .. }) {
models.insert(model.id().to_string(), CloudModel::Google(model));
}
}
for model in ZedModel::iter() {
models.insert(model.id().to_string(), CloudModel::Zed(model));
}
// Override with available models from settings
for model in &AllLanguageModelSettings::get_global(cx)
.zed_dot_dev
.available_models
{
let model = match model.provider {
AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
name: model.name.clone(),
max_tokens: model.max_tokens,
tool_override: model.tool_override.clone(),
}),
AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
name: model.name.clone(),
max_tokens: model.max_tokens,
}),
AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
name: model.name.clone(),
max_tokens: model.max_tokens,
}),
};
models.insert(model.id().to_string(), model.clone());
}
models
.into_values()
.map(|model| {
Arc::new(CloudLanguageModel {
id: LanguageModelId::from(model.id().to_string()),
model,
llm_api_token: self.llm_api_token.clone(),
client: self.client.clone(),
request_limiter: RateLimiter::new(4),
}) as Arc<dyn LanguageModel>
})
.collect()
}
fn is_authenticated(&self, cx: &AppContext) -> bool {
!self.state.read(cx).is_signed_out()
}
fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
cx.new_view(|_cx| ConfigurationView {
state: self.state.clone(),
})
.into()
}
fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
Task::ready(Ok(()))
}
}
struct LlmServiceFeatureFlag;
impl FeatureFlag for LlmServiceFeatureFlag {
const NAME: &'static str = "llm-service";
fn enabled_for_staff() -> bool {
false
}
}
pub struct CloudLanguageModel {
id: LanguageModelId,
model: CloudModel,
llm_api_token: LlmApiToken,
client: Arc<Client>,
request_limiter: RateLimiter,
}
#[derive(Clone, Default)]
struct LlmApiToken(Arc<RwLock<Option<String>>>);
impl LanguageModel for CloudLanguageModel {
fn id(&self) -> LanguageModelId {
self.id.clone()
}
fn name(&self) -> LanguageModelName {
LanguageModelName::from(self.model.display_name().to_string())
}
fn provider_id(&self) -> LanguageModelProviderId {
LanguageModelProviderId(PROVIDER_ID.into())
}
fn provider_name(&self) -> LanguageModelProviderName {
LanguageModelProviderName(PROVIDER_NAME.into())
}
fn telemetry_id(&self) -> String {
format!("zed.dev/{}", self.model.id())
}
fn availability(&self) -> LanguageModelAvailability {
self.model.availability()
}
fn max_token_count(&self) -> usize {
self.model.max_token_count()
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &AppContext,
) -> BoxFuture<'static, Result<usize>> {
match self.model.clone() {
CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
CloudModel::Google(model) => {
let client = self.client.clone();
let request = request.into_google(model.id().into());
let request = google_ai::CountTokensRequest {
contents: request.contents,
};
async move {
let request = serde_json::to_string(&request)?;
let response = client
.request(proto::CountLanguageModelTokens {
provider: proto::LanguageModelProvider::Google as i32,
request,
})
.await?;
Ok(response.token_count as usize)
}
.boxed()
}
CloudModel::Zed(_) => {
count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
}
}
}
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
match &self.model {
CloudModel::Anthropic(model) => {
let request = request.into_anthropic(model.id().into());
let client = self.client.clone();
if cx
.update(|cx| cx.has_flag::<LlmServiceFeatureFlag>())
.unwrap_or(false)
{
let http_client = self.client.http_client();
let llm_api_token = self.llm_api_token.clone();
let future = self.request_limiter.stream(async move {
let request = serde_json::to_string(&request)?;
let mut token = llm_api_token.acquire(&client).await?;
let mut did_retry = false;
let response = loop {
let request = http_client::Request::builder()
.method(Method::POST)
.uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
.header("Content-Type", "application/json")
.header("Authorization", format!("Bearer {token}"))
.body(
serde_json::to_string(&PerformCompletionParams {
provider_request: RawValue::from_string(request.clone())?,
})?
.into(),
)?;
let response = http_client.send(request).await?;
if response.status().is_success() {
break response;
} else if !did_retry
&& response
.headers()
.get(EXPIRED_LLM_TOKEN_HEADER_NAME)
.is_some()
{
did_retry = true;
token = llm_api_token.refresh(&client).await?;
} else {
break Err(anyhow!(
"cloud language model completion failed with status {}",
response.status()
))?;
}
};
let body = BufReader::new(response.into_body());
let stream =
futures::stream::try_unfold(body, move |mut body| async move {
let mut buffer = String::new();
match body.read_line(&mut buffer).await {
Ok(0) => Ok(None),
Ok(_) => {
let event: anthropic::Event =
serde_json::from_str(&buffer)?;
Ok(Some((event, body)))
}
Err(e) => Err(e.into()),
}
});
Ok(anthropic::extract_text_from_events(stream))
});
async move { Ok(future.await?.boxed()) }.boxed()
} else {
let future = self.request_limiter.stream(async move {
let request = serde_json::to_string(&request)?;
let stream = client
.request_stream(proto::StreamCompleteWithLanguageModel {
provider: proto::LanguageModelProvider::Anthropic as i32,
request,
})
.await?
.map(|event| Ok(serde_json::from_str(&event?.event)?));
Ok(anthropic::extract_text_from_events(stream))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
CloudModel::OpenAi(model) => {
let client = self.client.clone();
let request = request.into_open_ai(model.id().into());
let future = self.request_limiter.stream(async move {
let request = serde_json::to_string(&request)?;
let stream = client
.request_stream(proto::StreamCompleteWithLanguageModel {
provider: proto::LanguageModelProvider::OpenAi as i32,
request,
})
.await?;
Ok(open_ai::extract_text_from_events(
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
CloudModel::Google(model) => {
let client = self.client.clone();
let request = request.into_google(model.id().into());
let future = self.request_limiter.stream(async move {
let request = serde_json::to_string(&request)?;
let stream = client
.request_stream(proto::StreamCompleteWithLanguageModel {
provider: proto::LanguageModelProvider::Google as i32,
request,
})
.await?;
Ok(google_ai::extract_text_from_events(
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
CloudModel::Zed(model) => {
let client = self.client.clone();
let mut request = request.into_open_ai(model.id().into());
request.max_tokens = Some(4000);
let future = self.request_limiter.stream(async move {
let request = serde_json::to_string(&request)?;
let stream = client
.request_stream(proto::StreamCompleteWithLanguageModel {
provider: proto::LanguageModelProvider::Zed as i32,
request,
})
.await?;
Ok(open_ai::extract_text_from_events(
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
))
});
async move { Ok(future.await?.boxed()) }.boxed()
}
}
}
fn use_any_tool(
&self,
request: LanguageModelRequest,
tool_name: String,
tool_description: String,
input_schema: serde_json::Value,
_cx: &AsyncAppContext,
) -> BoxFuture<'static, Result<serde_json::Value>> {
match &self.model {
CloudModel::Anthropic(model) => {
let client = self.client.clone();
let mut request = request.into_anthropic(model.tool_model_id().into());
request.tool_choice = Some(anthropic::ToolChoice::Tool {
name: tool_name.clone(),
});
request.tools = vec![anthropic::Tool {
name: tool_name.clone(),
description: tool_description,
input_schema,
}];
self.request_limiter
.run(async move {
let request = serde_json::to_string(&request)?;
let response = client
.request(proto::CompleteWithLanguageModel {
provider: proto::LanguageModelProvider::Anthropic as i32,
request,
})
.await?;
let response: anthropic::Response =
serde_json::from_str(&response.completion)?;
response
.content
.into_iter()
.find_map(|content| {
if let anthropic::Content::ToolUse { name, input, .. } = content {
if name == tool_name {
Some(input)
} else {
None
}
} else {
None
}
})
.context("tool not used")
})
.boxed()
}
CloudModel::OpenAi(_) => {
future::ready(Err(anyhow!("tool use not implemented for OpenAI"))).boxed()
}
CloudModel::Google(_) => {
future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
}
CloudModel::Zed(_) => {
future::ready(Err(anyhow!("tool use not implemented for Zed models"))).boxed()
}
}
}
}
impl LlmApiToken {
async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
let lock = self.0.upgradable_read().await;
if let Some(token) = lock.as_ref() {
Ok(token.to_string())
} else {
Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, &client).await
}
}
async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
Self::fetch(self.0.write().await, &client).await
}
async fn fetch<'a>(
mut lock: RwLockWriteGuard<'a, Option<String>>,
client: &Arc<Client>,
) -> Result<String> {
let response = client.request(proto::GetLlmToken {}).await?;
*lock = Some(response.token.clone());
Ok(response.token.clone())
}
}
struct ConfigurationView {
state: gpui::Model<State>,
}
impl ConfigurationView {
fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
self.state.update(cx, |state, cx| {
state.authenticate(cx).detach_and_log_err(cx);
});
cx.notify();
}
}
impl Render for ConfigurationView {
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
const ZED_AI_URL: &str = "https://zed.dev/ai";
const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
let is_connected = !self.state.read(cx).is_signed_out();
let plan = self.state.read(cx).user_store.read(cx).current_plan();
let is_pro = plan == Some(proto::Plan::ZedPro);
if is_connected {
v_flex()
.gap_3()
.max_w_4_5()
.child(Label::new(
if is_pro {
"You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
} else {
"You have basic access to models from Anthropic, OpenAI, Google and more through the Zed AI Free plan."
}))
.child(
if is_pro {
h_flex().child(
Button::new("manage_settings", "Manage Subscription")
.style(ButtonStyle::Filled)
.on_click(cx.listener(|_, _, cx| {
cx.open_url(ACCOUNT_SETTINGS_URL)
})))
} else {
h_flex()
.gap_2()
.child(
Button::new("learn_more", "Learn more")
.style(ButtonStyle::Subtle)
.on_click(cx.listener(|_, _, cx| {
cx.open_url(ZED_AI_URL)
})))
.child(
Button::new("upgrade", "Upgrade")
.style(ButtonStyle::Subtle)
.color(Color::Accent)
.on_click(cx.listener(|_, _, cx| {
cx.open_url(ACCOUNT_SETTINGS_URL)
})))
},
)
} else {
v_flex()
.gap_6()
.child(Label::new("Use the zed.dev to access language models."))
.child(
v_flex()
.gap_2()
.child(
Button::new("sign_in", "Sign in")
.icon_color(Color::Muted)
.icon(IconName::Github)
.icon_position(IconPosition::Start)
.style(ButtonStyle::Filled)
.full_width()
.on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
)
.child(
div().flex().w_full().items_center().child(
Label::new("Sign in to enable collaboration.")
.color(Color::Muted)
.size(LabelSize::Small),
),
),
)
}
}
}