
This PR introduces a separate backend service for making LLM calls. It exposes an HTTP interface that can be called by Zed clients. To call these endpoints, the client must provide a `Bearer` token. These tokens are issued/refreshed by the collab service over RPC. We're adding this in a backwards-compatible way. Right now the access tokens can only be minted for Zed staff, and calling this separate LLM service is behind the `llm-service` feature flag (which is not automatically enabled for Zed staff). Release Notes: - N/A --------- Co-authored-by: Marshall <marshall@zed.dev> Co-authored-by: Marshall Bowers <elliott.codes@gmail.com>
616 lines
23 KiB
Rust
616 lines
23 KiB
Rust
use super::open_ai::count_open_ai_tokens;
|
|
use crate::{
|
|
settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
|
|
LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
|
|
LanguageModelProviderState, LanguageModelRequest, RateLimiter, ZedModel,
|
|
};
|
|
use anyhow::{anyhow, Context as _, Result};
|
|
use client::{Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME};
|
|
use collections::BTreeMap;
|
|
use feature_flags::{FeatureFlag, FeatureFlagAppExt};
|
|
use futures::{future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, StreamExt};
|
|
use gpui::{AnyView, AppContext, AsyncAppContext, Model, ModelContext, Subscription, Task};
|
|
use http_client::{HttpClient, Method};
|
|
use schemars::JsonSchema;
|
|
use serde::{Deserialize, Serialize};
|
|
use serde_json::value::RawValue;
|
|
use settings::{Settings, SettingsStore};
|
|
use smol::{
|
|
io::BufReader,
|
|
lock::{RwLock, RwLockUpgradableReadGuard, RwLockWriteGuard},
|
|
};
|
|
use std::{future, sync::Arc};
|
|
use strum::IntoEnumIterator;
|
|
use ui::prelude::*;
|
|
|
|
use crate::{LanguageModelAvailability, LanguageModelProvider};
|
|
|
|
use super::anthropic::count_anthropic_tokens;
|
|
|
|
pub const PROVIDER_ID: &str = "zed.dev";
|
|
pub const PROVIDER_NAME: &str = "Zed";
|
|
|
|
#[derive(Default, Clone, Debug, PartialEq)]
|
|
pub struct ZedDotDevSettings {
|
|
pub available_models: Vec<AvailableModel>,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
#[serde(rename_all = "lowercase")]
|
|
pub enum AvailableProvider {
|
|
Anthropic,
|
|
OpenAi,
|
|
Google,
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
|
|
pub struct AvailableModel {
|
|
provider: AvailableProvider,
|
|
name: String,
|
|
max_tokens: usize,
|
|
tool_override: Option<String>,
|
|
}
|
|
|
|
pub struct CloudLanguageModelProvider {
|
|
client: Arc<Client>,
|
|
llm_api_token: LlmApiToken,
|
|
state: gpui::Model<State>,
|
|
_maintain_client_status: Task<()>,
|
|
}
|
|
|
|
pub struct State {
|
|
client: Arc<Client>,
|
|
user_store: Model<UserStore>,
|
|
status: client::Status,
|
|
_subscription: Subscription,
|
|
}
|
|
|
|
impl State {
|
|
fn is_signed_out(&self) -> bool {
|
|
self.status.is_signed_out()
|
|
}
|
|
|
|
fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
|
|
let client = self.client.clone();
|
|
cx.spawn(move |this, mut cx| async move {
|
|
client.authenticate_and_connect(true, &cx).await?;
|
|
this.update(&mut cx, |_, cx| cx.notify())
|
|
})
|
|
}
|
|
}
|
|
|
|
impl CloudLanguageModelProvider {
|
|
pub fn new(user_store: Model<UserStore>, client: Arc<Client>, cx: &mut AppContext) -> Self {
|
|
let mut status_rx = client.status();
|
|
let status = *status_rx.borrow();
|
|
|
|
let state = cx.new_model(|cx| State {
|
|
client: client.clone(),
|
|
user_store,
|
|
status,
|
|
_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
|
|
cx.notify();
|
|
}),
|
|
});
|
|
|
|
let state_ref = state.downgrade();
|
|
let maintain_client_status = cx.spawn(|mut cx| async move {
|
|
while let Some(status) = status_rx.next().await {
|
|
if let Some(this) = state_ref.upgrade() {
|
|
_ = this.update(&mut cx, |this, cx| {
|
|
if this.status != status {
|
|
this.status = status;
|
|
cx.notify();
|
|
}
|
|
});
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
});
|
|
|
|
Self {
|
|
client,
|
|
state,
|
|
llm_api_token: LlmApiToken::default(),
|
|
_maintain_client_status: maintain_client_status,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProviderState for CloudLanguageModelProvider {
|
|
type ObservableEntity = State;
|
|
|
|
fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
|
|
Some(self.state.clone())
|
|
}
|
|
}
|
|
|
|
impl LanguageModelProvider for CloudLanguageModelProvider {
|
|
fn id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn icon(&self) -> IconName {
|
|
IconName::AiZed
|
|
}
|
|
|
|
fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
|
|
let mut models = BTreeMap::default();
|
|
|
|
for model in anthropic::Model::iter() {
|
|
if !matches!(model, anthropic::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::Anthropic(model));
|
|
}
|
|
}
|
|
for model in open_ai::Model::iter() {
|
|
if !matches!(model, open_ai::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::OpenAi(model));
|
|
}
|
|
}
|
|
for model in google_ai::Model::iter() {
|
|
if !matches!(model, google_ai::Model::Custom { .. }) {
|
|
models.insert(model.id().to_string(), CloudModel::Google(model));
|
|
}
|
|
}
|
|
for model in ZedModel::iter() {
|
|
models.insert(model.id().to_string(), CloudModel::Zed(model));
|
|
}
|
|
|
|
// Override with available models from settings
|
|
for model in &AllLanguageModelSettings::get_global(cx)
|
|
.zed_dot_dev
|
|
.available_models
|
|
{
|
|
let model = match model.provider {
|
|
AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
|
|
name: model.name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
tool_override: model.tool_override.clone(),
|
|
}),
|
|
AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
|
|
name: model.name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
}),
|
|
AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
|
|
name: model.name.clone(),
|
|
max_tokens: model.max_tokens,
|
|
}),
|
|
};
|
|
models.insert(model.id().to_string(), model.clone());
|
|
}
|
|
|
|
models
|
|
.into_values()
|
|
.map(|model| {
|
|
Arc::new(CloudLanguageModel {
|
|
id: LanguageModelId::from(model.id().to_string()),
|
|
model,
|
|
llm_api_token: self.llm_api_token.clone(),
|
|
client: self.client.clone(),
|
|
request_limiter: RateLimiter::new(4),
|
|
}) as Arc<dyn LanguageModel>
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn is_authenticated(&self, cx: &AppContext) -> bool {
|
|
!self.state.read(cx).is_signed_out()
|
|
}
|
|
|
|
fn authenticate(&self, _cx: &mut AppContext) -> Task<Result<()>> {
|
|
Task::ready(Ok(()))
|
|
}
|
|
|
|
fn configuration_view(&self, cx: &mut WindowContext) -> AnyView {
|
|
cx.new_view(|_cx| ConfigurationView {
|
|
state: self.state.clone(),
|
|
})
|
|
.into()
|
|
}
|
|
|
|
fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
|
|
Task::ready(Ok(()))
|
|
}
|
|
}
|
|
|
|
struct LlmServiceFeatureFlag;
|
|
|
|
impl FeatureFlag for LlmServiceFeatureFlag {
|
|
const NAME: &'static str = "llm-service";
|
|
|
|
fn enabled_for_staff() -> bool {
|
|
false
|
|
}
|
|
}
|
|
|
|
pub struct CloudLanguageModel {
|
|
id: LanguageModelId,
|
|
model: CloudModel,
|
|
llm_api_token: LlmApiToken,
|
|
client: Arc<Client>,
|
|
request_limiter: RateLimiter,
|
|
}
|
|
|
|
#[derive(Clone, Default)]
|
|
struct LlmApiToken(Arc<RwLock<Option<String>>>);
|
|
|
|
impl LanguageModel for CloudLanguageModel {
|
|
fn id(&self) -> LanguageModelId {
|
|
self.id.clone()
|
|
}
|
|
|
|
fn name(&self) -> LanguageModelName {
|
|
LanguageModelName::from(self.model.display_name().to_string())
|
|
}
|
|
|
|
fn provider_id(&self) -> LanguageModelProviderId {
|
|
LanguageModelProviderId(PROVIDER_ID.into())
|
|
}
|
|
|
|
fn provider_name(&self) -> LanguageModelProviderName {
|
|
LanguageModelProviderName(PROVIDER_NAME.into())
|
|
}
|
|
|
|
fn telemetry_id(&self) -> String {
|
|
format!("zed.dev/{}", self.model.id())
|
|
}
|
|
|
|
fn availability(&self) -> LanguageModelAvailability {
|
|
self.model.availability()
|
|
}
|
|
|
|
fn max_token_count(&self) -> usize {
|
|
self.model.max_token_count()
|
|
}
|
|
|
|
fn count_tokens(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AppContext,
|
|
) -> BoxFuture<'static, Result<usize>> {
|
|
match self.model.clone() {
|
|
CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
|
|
CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
|
|
CloudModel::Google(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_google(model.id().into());
|
|
let request = google_ai::CountTokensRequest {
|
|
contents: request.contents,
|
|
};
|
|
async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let response = client
|
|
.request(proto::CountLanguageModelTokens {
|
|
provider: proto::LanguageModelProvider::Google as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
Ok(response.token_count as usize)
|
|
}
|
|
.boxed()
|
|
}
|
|
CloudModel::Zed(_) => {
|
|
count_open_ai_tokens(request, open_ai::Model::ThreePointFiveTurbo, cx)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn stream_completion(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
cx: &AsyncAppContext,
|
|
) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
|
|
match &self.model {
|
|
CloudModel::Anthropic(model) => {
|
|
let request = request.into_anthropic(model.id().into());
|
|
let client = self.client.clone();
|
|
|
|
if cx
|
|
.update(|cx| cx.has_flag::<LlmServiceFeatureFlag>())
|
|
.unwrap_or(false)
|
|
{
|
|
let http_client = self.client.http_client();
|
|
let llm_api_token = self.llm_api_token.clone();
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let mut token = llm_api_token.acquire(&client).await?;
|
|
let mut did_retry = false;
|
|
|
|
let response = loop {
|
|
let request = http_client::Request::builder()
|
|
.method(Method::POST)
|
|
.uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
|
|
.header("Content-Type", "application/json")
|
|
.header("Authorization", format!("Bearer {token}"))
|
|
.body(
|
|
serde_json::to_string(&PerformCompletionParams {
|
|
provider_request: RawValue::from_string(request.clone())?,
|
|
})?
|
|
.into(),
|
|
)?;
|
|
let response = http_client.send(request).await?;
|
|
if response.status().is_success() {
|
|
break response;
|
|
} else if !did_retry
|
|
&& response
|
|
.headers()
|
|
.get(EXPIRED_LLM_TOKEN_HEADER_NAME)
|
|
.is_some()
|
|
{
|
|
did_retry = true;
|
|
token = llm_api_token.refresh(&client).await?;
|
|
} else {
|
|
break Err(anyhow!(
|
|
"cloud language model completion failed with status {}",
|
|
response.status()
|
|
))?;
|
|
}
|
|
};
|
|
|
|
let body = BufReader::new(response.into_body());
|
|
|
|
let stream =
|
|
futures::stream::try_unfold(body, move |mut body| async move {
|
|
let mut buffer = String::new();
|
|
match body.read_line(&mut buffer).await {
|
|
Ok(0) => Ok(None),
|
|
Ok(_) => {
|
|
let event: anthropic::Event =
|
|
serde_json::from_str(&buffer)?;
|
|
Ok(Some((event, body)))
|
|
}
|
|
Err(e) => Err(e.into()),
|
|
}
|
|
});
|
|
|
|
Ok(anthropic::extract_text_from_events(stream))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
} else {
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let stream = client
|
|
.request_stream(proto::StreamCompleteWithLanguageModel {
|
|
provider: proto::LanguageModelProvider::Anthropic as i32,
|
|
request,
|
|
})
|
|
.await?
|
|
.map(|event| Ok(serde_json::from_str(&event?.event)?));
|
|
Ok(anthropic::extract_text_from_events(stream))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
}
|
|
CloudModel::OpenAi(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_open_ai(model.id().into());
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let stream = client
|
|
.request_stream(proto::StreamCompleteWithLanguageModel {
|
|
provider: proto::LanguageModelProvider::OpenAi as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
Ok(open_ai::extract_text_from_events(
|
|
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
|
|
))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
CloudModel::Google(model) => {
|
|
let client = self.client.clone();
|
|
let request = request.into_google(model.id().into());
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let stream = client
|
|
.request_stream(proto::StreamCompleteWithLanguageModel {
|
|
provider: proto::LanguageModelProvider::Google as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
Ok(google_ai::extract_text_from_events(
|
|
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
|
|
))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
CloudModel::Zed(model) => {
|
|
let client = self.client.clone();
|
|
let mut request = request.into_open_ai(model.id().into());
|
|
request.max_tokens = Some(4000);
|
|
let future = self.request_limiter.stream(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let stream = client
|
|
.request_stream(proto::StreamCompleteWithLanguageModel {
|
|
provider: proto::LanguageModelProvider::Zed as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
Ok(open_ai::extract_text_from_events(
|
|
stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
|
|
))
|
|
});
|
|
async move { Ok(future.await?.boxed()) }.boxed()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn use_any_tool(
|
|
&self,
|
|
request: LanguageModelRequest,
|
|
tool_name: String,
|
|
tool_description: String,
|
|
input_schema: serde_json::Value,
|
|
_cx: &AsyncAppContext,
|
|
) -> BoxFuture<'static, Result<serde_json::Value>> {
|
|
match &self.model {
|
|
CloudModel::Anthropic(model) => {
|
|
let client = self.client.clone();
|
|
let mut request = request.into_anthropic(model.tool_model_id().into());
|
|
request.tool_choice = Some(anthropic::ToolChoice::Tool {
|
|
name: tool_name.clone(),
|
|
});
|
|
request.tools = vec![anthropic::Tool {
|
|
name: tool_name.clone(),
|
|
description: tool_description,
|
|
input_schema,
|
|
}];
|
|
|
|
self.request_limiter
|
|
.run(async move {
|
|
let request = serde_json::to_string(&request)?;
|
|
let response = client
|
|
.request(proto::CompleteWithLanguageModel {
|
|
provider: proto::LanguageModelProvider::Anthropic as i32,
|
|
request,
|
|
})
|
|
.await?;
|
|
let response: anthropic::Response =
|
|
serde_json::from_str(&response.completion)?;
|
|
response
|
|
.content
|
|
.into_iter()
|
|
.find_map(|content| {
|
|
if let anthropic::Content::ToolUse { name, input, .. } = content {
|
|
if name == tool_name {
|
|
Some(input)
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
.context("tool not used")
|
|
})
|
|
.boxed()
|
|
}
|
|
CloudModel::OpenAi(_) => {
|
|
future::ready(Err(anyhow!("tool use not implemented for OpenAI"))).boxed()
|
|
}
|
|
CloudModel::Google(_) => {
|
|
future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
|
|
}
|
|
CloudModel::Zed(_) => {
|
|
future::ready(Err(anyhow!("tool use not implemented for Zed models"))).boxed()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl LlmApiToken {
|
|
async fn acquire(&self, client: &Arc<Client>) -> Result<String> {
|
|
let lock = self.0.upgradable_read().await;
|
|
if let Some(token) = lock.as_ref() {
|
|
Ok(token.to_string())
|
|
} else {
|
|
Self::fetch(RwLockUpgradableReadGuard::upgrade(lock).await, &client).await
|
|
}
|
|
}
|
|
|
|
async fn refresh(&self, client: &Arc<Client>) -> Result<String> {
|
|
Self::fetch(self.0.write().await, &client).await
|
|
}
|
|
|
|
async fn fetch<'a>(
|
|
mut lock: RwLockWriteGuard<'a, Option<String>>,
|
|
client: &Arc<Client>,
|
|
) -> Result<String> {
|
|
let response = client.request(proto::GetLlmToken {}).await?;
|
|
*lock = Some(response.token.clone());
|
|
Ok(response.token.clone())
|
|
}
|
|
}
|
|
|
|
struct ConfigurationView {
|
|
state: gpui::Model<State>,
|
|
}
|
|
|
|
impl ConfigurationView {
|
|
fn authenticate(&mut self, cx: &mut ViewContext<Self>) {
|
|
self.state.update(cx, |state, cx| {
|
|
state.authenticate(cx).detach_and_log_err(cx);
|
|
});
|
|
cx.notify();
|
|
}
|
|
}
|
|
|
|
impl Render for ConfigurationView {
|
|
fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
|
|
const ZED_AI_URL: &str = "https://zed.dev/ai";
|
|
const ACCOUNT_SETTINGS_URL: &str = "https://zed.dev/account";
|
|
|
|
let is_connected = !self.state.read(cx).is_signed_out();
|
|
let plan = self.state.read(cx).user_store.read(cx).current_plan();
|
|
|
|
let is_pro = plan == Some(proto::Plan::ZedPro);
|
|
|
|
if is_connected {
|
|
v_flex()
|
|
.gap_3()
|
|
.max_w_4_5()
|
|
.child(Label::new(
|
|
if is_pro {
|
|
"You have full access to Zed's hosted models from Anthropic, OpenAI, Google with faster speeds and higher limits through Zed Pro."
|
|
} else {
|
|
"You have basic access to models from Anthropic, OpenAI, Google and more through the Zed AI Free plan."
|
|
}))
|
|
.child(
|
|
if is_pro {
|
|
h_flex().child(
|
|
Button::new("manage_settings", "Manage Subscription")
|
|
.style(ButtonStyle::Filled)
|
|
.on_click(cx.listener(|_, _, cx| {
|
|
cx.open_url(ACCOUNT_SETTINGS_URL)
|
|
})))
|
|
} else {
|
|
h_flex()
|
|
.gap_2()
|
|
.child(
|
|
Button::new("learn_more", "Learn more")
|
|
.style(ButtonStyle::Subtle)
|
|
.on_click(cx.listener(|_, _, cx| {
|
|
cx.open_url(ZED_AI_URL)
|
|
})))
|
|
.child(
|
|
Button::new("upgrade", "Upgrade")
|
|
.style(ButtonStyle::Subtle)
|
|
.color(Color::Accent)
|
|
.on_click(cx.listener(|_, _, cx| {
|
|
cx.open_url(ACCOUNT_SETTINGS_URL)
|
|
})))
|
|
},
|
|
)
|
|
} else {
|
|
v_flex()
|
|
.gap_6()
|
|
.child(Label::new("Use the zed.dev to access language models."))
|
|
.child(
|
|
v_flex()
|
|
.gap_2()
|
|
.child(
|
|
Button::new("sign_in", "Sign in")
|
|
.icon_color(Color::Muted)
|
|
.icon(IconName::Github)
|
|
.icon_position(IconPosition::Start)
|
|
.style(ButtonStyle::Filled)
|
|
.full_width()
|
|
.on_click(cx.listener(move |this, _, cx| this.authenticate(cx))),
|
|
)
|
|
.child(
|
|
div().flex().w_full().items_center().child(
|
|
Label::new("Sign in to enable collaboration.")
|
|
.color(Color::Muted)
|
|
.size(LabelSize::Small),
|
|
),
|
|
),
|
|
)
|
|
}
|
|
}
|
|
}
|