ZIm/crates/language_model/src/language_model.rs
Bennet Bo Fenner 230061a6cb
Support multiple OpenAI compatible providers (#34212)
TODO
- [x] OpenAI Compatible API Icon
- [x] Docs
- [x] Link to docs in OpenAI provider section about configuring OpenAI
API compatible providers

Closes #33992

Related to #30010

Release Notes:

- agent: Add support for adding multiple OpenAI API compatible providers

---------

Co-authored-by: MrSubidubi <dev@bahn.sh>
Co-authored-by: Danilo Leal <daniloleal09@gmail.com>
2025-07-22 12:20:07 -03:00

849 lines
29 KiB
Rust

mod model;
mod rate_limiter;
mod registry;
mod request;
mod role;
mod telemetry;
#[cfg(any(test, feature = "test-support"))]
pub mod fake_provider;
use anthropic::{AnthropicError, parse_prompt_too_long};
use anyhow::{Result, anyhow};
use client::Client;
use futures::FutureExt;
use futures::{StreamExt, future::BoxFuture, stream::BoxStream};
use gpui::{AnyElement, AnyView, App, AsyncApp, SharedString, Task, Window};
use http_client::{StatusCode, http};
use icons::IconName;
use parking_lot::Mutex;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize, de::DeserializeOwned};
use std::ops::{Add, Sub};
use std::str::FromStr;
use std::sync::Arc;
use std::time::Duration;
use std::{fmt, io};
use thiserror::Error;
use util::serde::is_default;
use zed_llm_client::{CompletionMode, CompletionRequestStatus};
pub use crate::model::*;
pub use crate::rate_limiter::*;
pub use crate::registry::*;
pub use crate::request::*;
pub use crate::role::*;
pub use crate::telemetry::*;
pub const ANTHROPIC_PROVIDER_ID: LanguageModelProviderId =
LanguageModelProviderId::new("anthropic");
pub const ANTHROPIC_PROVIDER_NAME: LanguageModelProviderName =
LanguageModelProviderName::new("Anthropic");
pub const GOOGLE_PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("google");
pub const GOOGLE_PROVIDER_NAME: LanguageModelProviderName =
LanguageModelProviderName::new("Google AI");
pub const OPEN_AI_PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("openai");
pub const OPEN_AI_PROVIDER_NAME: LanguageModelProviderName =
LanguageModelProviderName::new("OpenAI");
pub const ZED_CLOUD_PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("zed.dev");
pub const ZED_CLOUD_PROVIDER_NAME: LanguageModelProviderName =
LanguageModelProviderName::new("Zed");
pub fn init(client: Arc<Client>, cx: &mut App) {
init_settings(cx);
RefreshLlmTokenListener::register(client.clone(), cx);
}
pub fn init_settings(cx: &mut App) {
registry::init(cx);
}
/// Configuration for caching language model messages.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
pub struct LanguageModelCacheConfiguration {
pub max_cache_anchors: usize,
pub should_speculate: bool,
pub min_total_token: u64,
}
/// A completion event from a language model.
#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
pub enum LanguageModelCompletionEvent {
StatusUpdate(CompletionRequestStatus),
Stop(StopReason),
Text(String),
Thinking {
text: String,
signature: Option<String>,
},
RedactedThinking {
data: String,
},
ToolUse(LanguageModelToolUse),
ToolUseJsonParseError {
id: LanguageModelToolUseId,
tool_name: Arc<str>,
raw_input: Arc<str>,
json_parse_error: String,
},
StartMessage {
message_id: String,
},
UsageUpdate(TokenUsage),
}
#[derive(Error, Debug)]
pub enum LanguageModelCompletionError {
#[error("prompt too large for context window")]
PromptTooLarge { tokens: Option<u64> },
#[error("missing {provider} API key")]
NoApiKey { provider: LanguageModelProviderName },
#[error("{provider}'s API rate limit exceeded")]
RateLimitExceeded {
provider: LanguageModelProviderName,
retry_after: Option<Duration>,
},
#[error("{provider}'s API servers are overloaded right now")]
ServerOverloaded {
provider: LanguageModelProviderName,
retry_after: Option<Duration>,
},
#[error("{provider}'s API server reported an internal server error: {message}")]
ApiInternalServerError {
provider: LanguageModelProviderName,
message: String,
},
#[error("{message}")]
UpstreamProviderError {
message: String,
status: StatusCode,
retry_after: Option<Duration>,
},
#[error("HTTP response error from {provider}'s API: status {status_code} - {message:?}")]
HttpResponseError {
provider: LanguageModelProviderName,
status_code: StatusCode,
message: String,
},
// Client errors
#[error("invalid request format to {provider}'s API: {message}")]
BadRequestFormat {
provider: LanguageModelProviderName,
message: String,
},
#[error("authentication error with {provider}'s API: {message}")]
AuthenticationError {
provider: LanguageModelProviderName,
message: String,
},
#[error("permission error with {provider}'s API: {message}")]
PermissionError {
provider: LanguageModelProviderName,
message: String,
},
#[error("language model provider API endpoint not found")]
ApiEndpointNotFound { provider: LanguageModelProviderName },
#[error("I/O error reading response from {provider}'s API")]
ApiReadResponseError {
provider: LanguageModelProviderName,
#[source]
error: io::Error,
},
#[error("error serializing request to {provider} API")]
SerializeRequest {
provider: LanguageModelProviderName,
#[source]
error: serde_json::Error,
},
#[error("error building request body to {provider} API")]
BuildRequestBody {
provider: LanguageModelProviderName,
#[source]
error: http::Error,
},
#[error("error sending HTTP request to {provider} API")]
HttpSend {
provider: LanguageModelProviderName,
#[source]
error: anyhow::Error,
},
#[error("error deserializing {provider} API response")]
DeserializeResponse {
provider: LanguageModelProviderName,
#[source]
error: serde_json::Error,
},
// TODO: Ideally this would be removed in favor of having a comprehensive list of errors.
#[error(transparent)]
Other(#[from] anyhow::Error),
}
impl LanguageModelCompletionError {
fn parse_upstream_error_json(message: &str) -> Option<(StatusCode, String)> {
let error_json = serde_json::from_str::<serde_json::Value>(message).ok()?;
let upstream_status = error_json
.get("upstream_status")
.and_then(|v| v.as_u64())
.and_then(|status| u16::try_from(status).ok())
.and_then(|status| StatusCode::from_u16(status).ok())?;
let inner_message = error_json
.get("message")
.and_then(|v| v.as_str())
.unwrap_or(message)
.to_string();
Some((upstream_status, inner_message))
}
pub fn from_cloud_failure(
upstream_provider: LanguageModelProviderName,
code: String,
message: String,
retry_after: Option<Duration>,
) -> Self {
if let Some(tokens) = parse_prompt_too_long(&message) {
// TODO: currently Anthropic PAYLOAD_TOO_LARGE response may cause INTERNAL_SERVER_ERROR
// to be reported. This is a temporary workaround to handle this in the case where the
// token limit has been exceeded.
Self::PromptTooLarge {
tokens: Some(tokens),
}
} else if code == "upstream_http_error" {
if let Some((upstream_status, inner_message)) =
Self::parse_upstream_error_json(&message)
{
return Self::from_http_status(
upstream_provider,
upstream_status,
inner_message,
retry_after,
);
}
anyhow!("completion request failed, code: {code}, message: {message}").into()
} else if let Some(status_code) = code
.strip_prefix("upstream_http_")
.and_then(|code| StatusCode::from_str(code).ok())
{
Self::from_http_status(upstream_provider, status_code, message, retry_after)
} else if let Some(status_code) = code
.strip_prefix("http_")
.and_then(|code| StatusCode::from_str(code).ok())
{
Self::from_http_status(ZED_CLOUD_PROVIDER_NAME, status_code, message, retry_after)
} else {
anyhow!("completion request failed, code: {code}, message: {message}").into()
}
}
pub fn from_http_status(
provider: LanguageModelProviderName,
status_code: StatusCode,
message: String,
retry_after: Option<Duration>,
) -> Self {
match status_code {
StatusCode::BAD_REQUEST => Self::BadRequestFormat { provider, message },
StatusCode::UNAUTHORIZED => Self::AuthenticationError { provider, message },
StatusCode::FORBIDDEN => Self::PermissionError { provider, message },
StatusCode::NOT_FOUND => Self::ApiEndpointNotFound { provider },
StatusCode::PAYLOAD_TOO_LARGE => Self::PromptTooLarge {
tokens: parse_prompt_too_long(&message),
},
StatusCode::TOO_MANY_REQUESTS => Self::RateLimitExceeded {
provider,
retry_after,
},
StatusCode::INTERNAL_SERVER_ERROR => Self::ApiInternalServerError { provider, message },
StatusCode::SERVICE_UNAVAILABLE => Self::ServerOverloaded {
provider,
retry_after,
},
_ if status_code.as_u16() == 529 => Self::ServerOverloaded {
provider,
retry_after,
},
_ => Self::HttpResponseError {
provider,
status_code,
message,
},
}
}
}
impl From<AnthropicError> for LanguageModelCompletionError {
fn from(error: AnthropicError) -> Self {
let provider = ANTHROPIC_PROVIDER_NAME;
match error {
AnthropicError::SerializeRequest(error) => Self::SerializeRequest { provider, error },
AnthropicError::BuildRequestBody(error) => Self::BuildRequestBody { provider, error },
AnthropicError::HttpSend(error) => Self::HttpSend { provider, error },
AnthropicError::DeserializeResponse(error) => {
Self::DeserializeResponse { provider, error }
}
AnthropicError::ReadResponse(error) => Self::ApiReadResponseError { provider, error },
AnthropicError::HttpResponseError {
status_code,
message,
} => Self::HttpResponseError {
provider,
status_code,
message,
},
AnthropicError::RateLimit { retry_after } => Self::RateLimitExceeded {
provider,
retry_after: Some(retry_after),
},
AnthropicError::ServerOverloaded { retry_after } => Self::ServerOverloaded {
provider,
retry_after: retry_after,
},
AnthropicError::ApiError(api_error) => api_error.into(),
}
}
}
impl From<anthropic::ApiError> for LanguageModelCompletionError {
fn from(error: anthropic::ApiError) -> Self {
use anthropic::ApiErrorCode::*;
let provider = ANTHROPIC_PROVIDER_NAME;
match error.code() {
Some(code) => match code {
InvalidRequestError => Self::BadRequestFormat {
provider,
message: error.message,
},
AuthenticationError => Self::AuthenticationError {
provider,
message: error.message,
},
PermissionError => Self::PermissionError {
provider,
message: error.message,
},
NotFoundError => Self::ApiEndpointNotFound { provider },
RequestTooLarge => Self::PromptTooLarge {
tokens: parse_prompt_too_long(&error.message),
},
RateLimitError => Self::RateLimitExceeded {
provider,
retry_after: None,
},
ApiError => Self::ApiInternalServerError {
provider,
message: error.message,
},
OverloadedError => Self::ServerOverloaded {
provider,
retry_after: None,
},
},
None => Self::Other(error.into()),
}
}
}
/// Indicates the format used to define the input schema for a language model tool.
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum LanguageModelToolSchemaFormat {
/// A JSON schema, see https://json-schema.org
JsonSchema,
/// A subset of an OpenAPI 3.0 schema object supported by Google AI, see https://ai.google.dev/api/caching#Schema
JsonSchemaSubset,
}
#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum StopReason {
EndTurn,
MaxTokens,
ToolUse,
Refusal,
}
#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize, Default)]
pub struct TokenUsage {
#[serde(default, skip_serializing_if = "is_default")]
pub input_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub output_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub cache_creation_input_tokens: u64,
#[serde(default, skip_serializing_if = "is_default")]
pub cache_read_input_tokens: u64,
}
impl TokenUsage {
pub fn total_tokens(&self) -> u64 {
self.input_tokens
+ self.output_tokens
+ self.cache_read_input_tokens
+ self.cache_creation_input_tokens
}
}
impl Add<TokenUsage> for TokenUsage {
type Output = Self;
fn add(self, other: Self) -> Self {
Self {
input_tokens: self.input_tokens + other.input_tokens,
output_tokens: self.output_tokens + other.output_tokens,
cache_creation_input_tokens: self.cache_creation_input_tokens
+ other.cache_creation_input_tokens,
cache_read_input_tokens: self.cache_read_input_tokens + other.cache_read_input_tokens,
}
}
}
impl Sub<TokenUsage> for TokenUsage {
type Output = Self;
fn sub(self, other: Self) -> Self {
Self {
input_tokens: self.input_tokens - other.input_tokens,
output_tokens: self.output_tokens - other.output_tokens,
cache_creation_input_tokens: self.cache_creation_input_tokens
- other.cache_creation_input_tokens,
cache_read_input_tokens: self.cache_read_input_tokens - other.cache_read_input_tokens,
}
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
pub struct LanguageModelToolUseId(Arc<str>);
impl fmt::Display for LanguageModelToolUseId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> From<T> for LanguageModelToolUseId
where
T: Into<Arc<str>>,
{
fn from(value: T) -> Self {
Self(value.into())
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
pub struct LanguageModelToolUse {
pub id: LanguageModelToolUseId,
pub name: Arc<str>,
pub raw_input: String,
pub input: serde_json::Value,
pub is_input_complete: bool,
}
pub struct LanguageModelTextStream {
pub message_id: Option<String>,
pub stream: BoxStream<'static, Result<String, LanguageModelCompletionError>>,
// Has complete token usage after the stream has finished
pub last_token_usage: Arc<Mutex<TokenUsage>>,
}
impl Default for LanguageModelTextStream {
fn default() -> Self {
Self {
message_id: None,
stream: Box::pin(futures::stream::empty()),
last_token_usage: Arc::new(Mutex::new(TokenUsage::default())),
}
}
}
pub trait LanguageModel: Send + Sync {
fn id(&self) -> LanguageModelId;
fn name(&self) -> LanguageModelName;
fn provider_id(&self) -> LanguageModelProviderId;
fn provider_name(&self) -> LanguageModelProviderName;
fn upstream_provider_id(&self) -> LanguageModelProviderId {
self.provider_id()
}
fn upstream_provider_name(&self) -> LanguageModelProviderName {
self.provider_name()
}
fn telemetry_id(&self) -> String;
fn api_key(&self, _cx: &App) -> Option<String> {
None
}
/// Whether this model supports images
fn supports_images(&self) -> bool;
/// Whether this model supports tools.
fn supports_tools(&self) -> bool;
/// Whether this model supports choosing which tool to use.
fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool;
/// Returns whether this model supports "burn mode";
fn supports_burn_mode(&self) -> bool {
false
}
fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
LanguageModelToolSchemaFormat::JsonSchema
}
fn max_token_count(&self) -> u64;
/// Returns the maximum token count for this model in burn mode (If `supports_burn_mode` is `false` this returns `None`)
fn max_token_count_in_burn_mode(&self) -> Option<u64> {
None
}
fn max_output_tokens(&self) -> Option<u64> {
None
}
fn count_tokens(
&self,
request: LanguageModelRequest,
cx: &App,
) -> BoxFuture<'static, Result<u64>>;
fn stream_completion(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<
'static,
Result<
BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
LanguageModelCompletionError,
>,
>;
fn stream_completion_text(
&self,
request: LanguageModelRequest,
cx: &AsyncApp,
) -> BoxFuture<'static, Result<LanguageModelTextStream, LanguageModelCompletionError>> {
let future = self.stream_completion(request, cx);
async move {
let events = future.await?;
let mut events = events.fuse();
let mut message_id = None;
let mut first_item_text = None;
let last_token_usage = Arc::new(Mutex::new(TokenUsage::default()));
if let Some(first_event) = events.next().await {
match first_event {
Ok(LanguageModelCompletionEvent::StartMessage { message_id: id }) => {
message_id = Some(id.clone());
}
Ok(LanguageModelCompletionEvent::Text(text)) => {
first_item_text = Some(text);
}
_ => (),
}
}
let stream = futures::stream::iter(first_item_text.map(Ok))
.chain(events.filter_map({
let last_token_usage = last_token_usage.clone();
move |result| {
let last_token_usage = last_token_usage.clone();
async move {
match result {
Ok(LanguageModelCompletionEvent::StatusUpdate { .. }) => None,
Ok(LanguageModelCompletionEvent::StartMessage { .. }) => None,
Ok(LanguageModelCompletionEvent::Text(text)) => Some(Ok(text)),
Ok(LanguageModelCompletionEvent::Thinking { .. }) => None,
Ok(LanguageModelCompletionEvent::RedactedThinking { .. }) => None,
Ok(LanguageModelCompletionEvent::Stop(_)) => None,
Ok(LanguageModelCompletionEvent::ToolUse(_)) => None,
Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
..
}) => None,
Ok(LanguageModelCompletionEvent::UsageUpdate(token_usage)) => {
*last_token_usage.lock() = token_usage;
None
}
Err(err) => Some(Err(err)),
}
}
}
}))
.boxed();
Ok(LanguageModelTextStream {
message_id,
stream,
last_token_usage,
})
}
.boxed()
}
fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
None
}
#[cfg(any(test, feature = "test-support"))]
fn as_fake(&self) -> &fake_provider::FakeLanguageModel {
unimplemented!()
}
}
pub trait LanguageModelExt: LanguageModel {
fn max_token_count_for_mode(&self, mode: CompletionMode) -> u64 {
match mode {
CompletionMode::Normal => self.max_token_count(),
CompletionMode::Max => self
.max_token_count_in_burn_mode()
.unwrap_or_else(|| self.max_token_count()),
}
}
}
impl LanguageModelExt for dyn LanguageModel {}
pub trait LanguageModelTool: 'static + DeserializeOwned + JsonSchema {
fn name() -> String;
fn description() -> String;
}
/// An error that occurred when trying to authenticate the language model provider.
#[derive(Debug, Error)]
pub enum AuthenticateError {
#[error("credentials not found")]
CredentialsNotFound,
#[error(transparent)]
Other(#[from] anyhow::Error),
}
pub trait LanguageModelProvider: 'static {
fn id(&self) -> LanguageModelProviderId;
fn name(&self) -> LanguageModelProviderName;
fn icon(&self) -> IconName {
IconName::ZedAssistant
}
fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>>;
fn recommended_models(&self, _cx: &App) -> Vec<Arc<dyn LanguageModel>> {
Vec::new()
}
fn is_authenticated(&self, cx: &App) -> bool;
fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>>;
fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView;
fn must_accept_terms(&self, _cx: &App) -> bool {
false
}
fn render_accept_terms(
&self,
_view: LanguageModelProviderTosView,
_cx: &mut App,
) -> Option<AnyElement> {
None
}
fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>>;
}
#[derive(PartialEq, Eq)]
pub enum LanguageModelProviderTosView {
/// When there are some past interactions in the Agent Panel.
ThreadEmptyState,
/// When there are no past interactions in the Agent Panel.
ThreadFreshStart,
TextThreadPopup,
Configuration,
}
pub trait LanguageModelProviderState: 'static {
type ObservableEntity;
fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>>;
fn subscribe<T: 'static>(
&self,
cx: &mut gpui::Context<T>,
callback: impl Fn(&mut T, &mut gpui::Context<T>) + 'static,
) -> Option<gpui::Subscription> {
let entity = self.observable_entity()?;
Some(cx.observe(&entity, move |this, _, cx| {
callback(this, cx);
}))
}
}
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd, Serialize, Deserialize)]
pub struct LanguageModelId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelName(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelProviderId(pub SharedString);
#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
pub struct LanguageModelProviderName(pub SharedString);
impl LanguageModelProviderId {
pub const fn new(id: &'static str) -> Self {
Self(SharedString::new_static(id))
}
}
impl LanguageModelProviderName {
pub const fn new(id: &'static str) -> Self {
Self(SharedString::new_static(id))
}
}
impl fmt::Display for LanguageModelProviderId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl fmt::Display for LanguageModelProviderName {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl From<String> for LanguageModelId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderId {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<String> for LanguageModelProviderName {
fn from(value: String) -> Self {
Self(SharedString::from(value))
}
}
impl From<Arc<str>> for LanguageModelProviderId {
fn from(value: Arc<str>) -> Self {
Self(SharedString::from(value))
}
}
impl From<Arc<str>> for LanguageModelProviderName {
fn from(value: Arc<str>) -> Self {
Self(SharedString::from(value))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_from_cloud_failure_with_upstream_http_error() {
let error = LanguageModelCompletionError::from_cloud_failure(
String::from("anthropic").into(),
"upstream_http_error".to_string(),
r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers. reset reason: connection timeout","upstream_status":503}"#.to_string(),
None,
);
match error {
LanguageModelCompletionError::ServerOverloaded { provider, .. } => {
assert_eq!(provider.0, "anthropic");
}
_ => panic!(
"Expected ServerOverloaded error for 503 status, got: {:?}",
error
),
}
let error = LanguageModelCompletionError::from_cloud_failure(
String::from("anthropic").into(),
"upstream_http_error".to_string(),
r#"{"code":"upstream_http_error","message":"Internal server error","upstream_status":500}"#.to_string(),
None,
);
match error {
LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
assert_eq!(provider.0, "anthropic");
assert_eq!(message, "Internal server error");
}
_ => panic!(
"Expected ApiInternalServerError for 500 status, got: {:?}",
error
),
}
}
#[test]
fn test_from_cloud_failure_with_standard_format() {
let error = LanguageModelCompletionError::from_cloud_failure(
String::from("anthropic").into(),
"upstream_http_503".to_string(),
"Service unavailable".to_string(),
None,
);
match error {
LanguageModelCompletionError::ServerOverloaded { provider, .. } => {
assert_eq!(provider.0, "anthropic");
}
_ => panic!("Expected ServerOverloaded error for upstream_http_503"),
}
}
#[test]
fn test_upstream_http_error_connection_timeout() {
let error = LanguageModelCompletionError::from_cloud_failure(
String::from("anthropic").into(),
"upstream_http_error".to_string(),
r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers. reset reason: connection timeout","upstream_status":503}"#.to_string(),
None,
);
match error {
LanguageModelCompletionError::ServerOverloaded { provider, .. } => {
assert_eq!(provider.0, "anthropic");
}
_ => panic!(
"Expected ServerOverloaded error for connection timeout with 503 status, got: {:?}",
error
),
}
let error = LanguageModelCompletionError::from_cloud_failure(
String::from("anthropic").into(),
"upstream_http_error".to_string(),
r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers. reset reason: connection timeout","upstream_status":500}"#.to_string(),
None,
);
match error {
LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
assert_eq!(provider.0, "anthropic");
assert_eq!(
message,
"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers. reset reason: connection timeout"
);
}
_ => panic!(
"Expected ApiInternalServerError for connection timeout with 500 status, got: {:?}",
error
),
}
}
}