ZIm/crates/language_models/src/language_models.rs
邻二氮杂菲 29bfb56739
Add DeepSeek support (#23551)
- Added support for DeepSeek as a new language model provider in Zed
Assistant
- Implemented streaming API support for real-time responses from
DeepSeek models.
- Added a configuration UI for DeepSeek API key management and settings.
- Updated documentation with detailed setup instructions for DeepSeek
integration.
- Added DeepSeek-specific icons and model definitions for seamless
integration into the Zed UI.
- Integrated DeepSeek into the language model registry, making it
available alongside other providers like OpenAI and Anthropic.

Release Notes:

- Added support for DeepSeek to the Assistant.

---------

Co-authored-by: Marshall Bowers <git@maxdeviant.com>
2025-01-27 13:40:59 -05:00

87 lines
2.9 KiB
Rust

use std::sync::Arc;
use client::{Client, UserStore};
use fs::Fs;
use gpui::{App, Context, Entity};
use language_model::{LanguageModelProviderId, LanguageModelRegistry, ZED_CLOUD_PROVIDER_ID};
use provider::deepseek::DeepSeekLanguageModelProvider;
mod logging;
pub mod provider;
mod settings;
use crate::provider::anthropic::AnthropicLanguageModelProvider;
use crate::provider::cloud::CloudLanguageModelProvider;
pub use crate::provider::cloud::LlmApiToken;
pub use crate::provider::cloud::RefreshLlmTokenListener;
use crate::provider::copilot_chat::CopilotChatLanguageModelProvider;
use crate::provider::google::GoogleLanguageModelProvider;
use crate::provider::lmstudio::LmStudioLanguageModelProvider;
use crate::provider::ollama::OllamaLanguageModelProvider;
use crate::provider::open_ai::OpenAiLanguageModelProvider;
pub use crate::settings::*;
pub use logging::report_assistant_event;
pub fn init(user_store: Entity<UserStore>, client: Arc<Client>, fs: Arc<dyn Fs>, cx: &mut App) {
crate::settings::init(fs, cx);
let registry = LanguageModelRegistry::global(cx);
registry.update(cx, |registry, cx| {
register_language_model_providers(registry, user_store, client, cx);
});
}
fn register_language_model_providers(
registry: &mut LanguageModelRegistry,
user_store: Entity<UserStore>,
client: Arc<Client>,
cx: &mut Context<LanguageModelRegistry>,
) {
use feature_flags::FeatureFlagAppExt;
RefreshLlmTokenListener::register(client.clone(), cx);
registry.register_provider(
AnthropicLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OpenAiLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
OllamaLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
LmStudioLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
DeepSeekLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(
GoogleLanguageModelProvider::new(client.http_client(), cx),
cx,
);
registry.register_provider(CopilotChatLanguageModelProvider::new(cx), cx);
cx.observe_flag::<feature_flags::LanguageModels, _>(move |enabled, cx| {
let user_store = user_store.clone();
let client = client.clone();
LanguageModelRegistry::global(cx).update(cx, move |registry, cx| {
if enabled {
registry.register_provider(
CloudLanguageModelProvider::new(user_store.clone(), client.clone(), cx),
cx,
);
} else {
registry.unregister_provider(
LanguageModelProviderId::from(ZED_CLOUD_PROVIDER_ID.to_string()),
cx,
);
}
});
})
.detach();
}