450 lines
14 KiB
Rust
450 lines
14 KiB
Rust
use crate::{parsing::Document, SEMANTIC_INDEX_VERSION};
|
|
use anyhow::{anyhow, Context, Result};
|
|
use globset::GlobMatcher;
|
|
use project::Fs;
|
|
use rpc::proto::Timestamp;
|
|
use rusqlite::{
|
|
params,
|
|
types::{FromSql, FromSqlResult, ValueRef},
|
|
};
|
|
use std::{
|
|
cmp::Ordering,
|
|
collections::HashMap,
|
|
ops::Range,
|
|
path::{Path, PathBuf},
|
|
rc::Rc,
|
|
sync::Arc,
|
|
time::SystemTime,
|
|
};
|
|
|
|
#[derive(Debug)]
|
|
pub struct FileRecord {
|
|
pub id: usize,
|
|
pub relative_path: String,
|
|
pub mtime: Timestamp,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct Embedding(pub Vec<f32>);
|
|
|
|
impl FromSql for Embedding {
|
|
fn column_result(value: ValueRef) -> FromSqlResult<Self> {
|
|
let bytes = value.as_blob()?;
|
|
let embedding: Result<Vec<f32>, Box<bincode::ErrorKind>> = bincode::deserialize(bytes);
|
|
if embedding.is_err() {
|
|
return Err(rusqlite::types::FromSqlError::Other(embedding.unwrap_err()));
|
|
}
|
|
return Ok(Embedding(embedding.unwrap()));
|
|
}
|
|
}
|
|
|
|
pub struct VectorDatabase {
|
|
db: rusqlite::Connection,
|
|
}
|
|
|
|
impl VectorDatabase {
|
|
pub async fn new(fs: Arc<dyn Fs>, path: Arc<PathBuf>) -> Result<Self> {
|
|
if let Some(db_directory) = path.parent() {
|
|
fs.create_dir(db_directory).await?;
|
|
}
|
|
|
|
let this = Self {
|
|
db: rusqlite::Connection::open(path.as_path())?,
|
|
};
|
|
this.initialize_database()?;
|
|
Ok(this)
|
|
}
|
|
|
|
fn get_existing_version(&self) -> Result<i64> {
|
|
let mut version_query = self
|
|
.db
|
|
.prepare("SELECT version from semantic_index_config")?;
|
|
version_query
|
|
.query_row([], |row| Ok(row.get::<_, i64>(0)?))
|
|
.map_err(|err| anyhow!("version query failed: {err}"))
|
|
}
|
|
|
|
fn initialize_database(&self) -> Result<()> {
|
|
rusqlite::vtab::array::load_module(&self.db)?;
|
|
|
|
// Delete existing tables, if SEMANTIC_INDEX_VERSION is bumped
|
|
if self
|
|
.get_existing_version()
|
|
.map_or(false, |version| version == SEMANTIC_INDEX_VERSION as i64)
|
|
{
|
|
log::trace!("vector database schema up to date");
|
|
return Ok(());
|
|
}
|
|
|
|
log::trace!("vector database schema out of date. updating...");
|
|
self.db
|
|
.execute("DROP TABLE IF EXISTS documents", [])
|
|
.context("failed to drop 'documents' table")?;
|
|
self.db
|
|
.execute("DROP TABLE IF EXISTS files", [])
|
|
.context("failed to drop 'files' table")?;
|
|
self.db
|
|
.execute("DROP TABLE IF EXISTS worktrees", [])
|
|
.context("failed to drop 'worktrees' table")?;
|
|
self.db
|
|
.execute("DROP TABLE IF EXISTS semantic_index_config", [])
|
|
.context("failed to drop 'semantic_index_config' table")?;
|
|
|
|
// Initialize Vector Databasing Tables
|
|
self.db.execute(
|
|
"CREATE TABLE semantic_index_config (
|
|
version INTEGER NOT NULL
|
|
)",
|
|
[],
|
|
)?;
|
|
|
|
self.db.execute(
|
|
"INSERT INTO semantic_index_config (version) VALUES (?1)",
|
|
params![SEMANTIC_INDEX_VERSION],
|
|
)?;
|
|
|
|
self.db.execute(
|
|
"CREATE TABLE worktrees (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
absolute_path VARCHAR NOT NULL
|
|
);
|
|
CREATE UNIQUE INDEX worktrees_absolute_path ON worktrees (absolute_path);
|
|
",
|
|
[],
|
|
)?;
|
|
|
|
self.db.execute(
|
|
"CREATE TABLE files (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
worktree_id INTEGER NOT NULL,
|
|
relative_path VARCHAR NOT NULL,
|
|
mtime_seconds INTEGER NOT NULL,
|
|
mtime_nanos INTEGER NOT NULL,
|
|
FOREIGN KEY(worktree_id) REFERENCES worktrees(id) ON DELETE CASCADE
|
|
)",
|
|
[],
|
|
)?;
|
|
|
|
self.db.execute(
|
|
"CREATE TABLE documents (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
file_id INTEGER NOT NULL,
|
|
start_byte INTEGER NOT NULL,
|
|
end_byte INTEGER NOT NULL,
|
|
name VARCHAR NOT NULL,
|
|
embedding BLOB NOT NULL,
|
|
FOREIGN KEY(file_id) REFERENCES files(id) ON DELETE CASCADE
|
|
)",
|
|
[],
|
|
)?;
|
|
|
|
log::trace!("vector database initialized with updated schema.");
|
|
Ok(())
|
|
}
|
|
|
|
pub fn delete_file(&self, worktree_id: i64, delete_path: PathBuf) -> Result<()> {
|
|
self.db.execute(
|
|
"DELETE FROM files WHERE worktree_id = ?1 AND relative_path = ?2",
|
|
params![worktree_id, delete_path.to_str()],
|
|
)?;
|
|
Ok(())
|
|
}
|
|
|
|
pub fn insert_file(
|
|
&self,
|
|
worktree_id: i64,
|
|
path: PathBuf,
|
|
mtime: SystemTime,
|
|
documents: Vec<Document>,
|
|
) -> Result<()> {
|
|
// Write to files table, and return generated id.
|
|
self.db.execute(
|
|
"
|
|
DELETE FROM files WHERE worktree_id = ?1 AND relative_path = ?2;
|
|
",
|
|
params![worktree_id, path.to_str()],
|
|
)?;
|
|
let mtime = Timestamp::from(mtime);
|
|
self.db.execute(
|
|
"
|
|
INSERT INTO files
|
|
(worktree_id, relative_path, mtime_seconds, mtime_nanos)
|
|
VALUES
|
|
(?1, ?2, $3, $4);
|
|
",
|
|
params![worktree_id, path.to_str(), mtime.seconds, mtime.nanos],
|
|
)?;
|
|
|
|
let file_id = self.db.last_insert_rowid();
|
|
|
|
// Currently inserting at approximately 3400 documents a second
|
|
// I imagine we can speed this up with a bulk insert of some kind.
|
|
for document in documents {
|
|
let embedding_blob = bincode::serialize(&document.embedding)?;
|
|
|
|
self.db.execute(
|
|
"INSERT INTO documents (file_id, start_byte, end_byte, name, embedding) VALUES (?1, ?2, ?3, ?4, $5)",
|
|
params![
|
|
file_id,
|
|
document.range.start.to_string(),
|
|
document.range.end.to_string(),
|
|
document.name,
|
|
embedding_blob
|
|
],
|
|
)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub fn worktree_previously_indexed(&self, worktree_root_path: &Path) -> Result<bool> {
|
|
let mut worktree_query = self
|
|
.db
|
|
.prepare("SELECT id FROM worktrees WHERE absolute_path = ?1")?;
|
|
let worktree_id = worktree_query
|
|
.query_row(params![worktree_root_path.to_string_lossy()], |row| {
|
|
Ok(row.get::<_, i64>(0)?)
|
|
})
|
|
.map_err(|err| anyhow!(err));
|
|
|
|
if worktree_id.is_ok() {
|
|
return Ok(true);
|
|
} else {
|
|
return Ok(false);
|
|
}
|
|
}
|
|
|
|
pub fn find_or_create_worktree(&self, worktree_root_path: &Path) -> Result<i64> {
|
|
// Check that the absolute path doesnt exist
|
|
let mut worktree_query = self
|
|
.db
|
|
.prepare("SELECT id FROM worktrees WHERE absolute_path = ?1")?;
|
|
|
|
let worktree_id = worktree_query
|
|
.query_row(params![worktree_root_path.to_string_lossy()], |row| {
|
|
Ok(row.get::<_, i64>(0)?)
|
|
})
|
|
.map_err(|err| anyhow!(err));
|
|
|
|
if worktree_id.is_ok() {
|
|
return worktree_id;
|
|
}
|
|
|
|
// If worktree_id is Err, insert new worktree
|
|
self.db.execute(
|
|
"
|
|
INSERT into worktrees (absolute_path) VALUES (?1)
|
|
",
|
|
params![worktree_root_path.to_string_lossy()],
|
|
)?;
|
|
Ok(self.db.last_insert_rowid())
|
|
}
|
|
|
|
pub fn get_file_mtimes(&self, worktree_id: i64) -> Result<HashMap<PathBuf, SystemTime>> {
|
|
let mut statement = self.db.prepare(
|
|
"
|
|
SELECT relative_path, mtime_seconds, mtime_nanos
|
|
FROM files
|
|
WHERE worktree_id = ?1
|
|
ORDER BY relative_path",
|
|
)?;
|
|
let mut result: HashMap<PathBuf, SystemTime> = HashMap::new();
|
|
for row in statement.query_map(params![worktree_id], |row| {
|
|
Ok((
|
|
row.get::<_, String>(0)?.into(),
|
|
Timestamp {
|
|
seconds: row.get(1)?,
|
|
nanos: row.get(2)?,
|
|
}
|
|
.into(),
|
|
))
|
|
})? {
|
|
let row = row?;
|
|
result.insert(row.0, row.1);
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
pub fn top_k_search(
|
|
&self,
|
|
query_embedding: &Vec<f32>,
|
|
limit: usize,
|
|
file_ids: &[i64],
|
|
) -> Result<Vec<(i64, f32)>> {
|
|
let mut results = Vec::<(i64, f32)>::with_capacity(limit + 1);
|
|
self.for_each_document(file_ids, |id, embedding| {
|
|
let similarity = dot(&embedding, &query_embedding);
|
|
let ix = match results
|
|
.binary_search_by(|(_, s)| similarity.partial_cmp(&s).unwrap_or(Ordering::Equal))
|
|
{
|
|
Ok(ix) => ix,
|
|
Err(ix) => ix,
|
|
};
|
|
results.insert(ix, (id, similarity));
|
|
results.truncate(limit);
|
|
})?;
|
|
|
|
Ok(results)
|
|
}
|
|
|
|
// pub fn top_k_search(
|
|
// &self,
|
|
// worktree_ids: &[i64],
|
|
// query_embedding: &Vec<f32>,
|
|
// limit: usize,
|
|
// file_ids: Vec<i64>,
|
|
// ) -> Result<Vec<(i64, PathBuf, Range<usize>)>> {
|
|
// let mut results = Vec::<(i64, f32)>::with_capacity(limit + 1);
|
|
// self.for_each_document(&worktree_ids, file_ids, |id, embedding| {
|
|
// let similarity = dot(&embedding, &query_embedding);
|
|
// let ix = match results
|
|
// .binary_search_by(|(_, s)| similarity.partial_cmp(&s).unwrap_or(Ordering::Equal))
|
|
// {
|
|
// Ok(ix) => ix,
|
|
// Err(ix) => ix,
|
|
// };
|
|
// results.insert(ix, (id, similarity));
|
|
// results.truncate(limit);
|
|
// })?;
|
|
|
|
// let ids = results.into_iter().map(|(id, _)| id).collect::<Vec<_>>();
|
|
// self.get_documents_by_ids(&ids)
|
|
// }
|
|
|
|
pub fn retrieve_included_file_ids(
|
|
&self,
|
|
worktree_ids: &[i64],
|
|
include_globs: Vec<GlobMatcher>,
|
|
exclude_globs: Vec<GlobMatcher>,
|
|
) -> Result<Vec<i64>> {
|
|
let mut file_query = self.db.prepare(
|
|
"
|
|
SELECT
|
|
id, relative_path
|
|
FROM
|
|
files
|
|
WHERE
|
|
worktree_id IN rarray(?)
|
|
",
|
|
)?;
|
|
|
|
let mut file_ids = Vec::<i64>::new();
|
|
let mut rows = file_query.query([ids_to_sql(worktree_ids)])?;
|
|
|
|
while let Some(row) = rows.next()? {
|
|
let file_id = row.get(0)?;
|
|
let relative_path = row.get_ref(1)?.as_str()?;
|
|
let included = include_globs.is_empty()
|
|
|| include_globs
|
|
.iter()
|
|
.any(|glob| glob.is_match(relative_path));
|
|
let excluded = exclude_globs
|
|
.iter()
|
|
.any(|glob| glob.is_match(relative_path));
|
|
if included && !excluded {
|
|
file_ids.push(file_id);
|
|
}
|
|
}
|
|
|
|
Ok(file_ids)
|
|
}
|
|
|
|
fn for_each_document(&self, file_ids: &[i64], mut f: impl FnMut(i64, Vec<f32>)) -> Result<()> {
|
|
let mut query_statement = self.db.prepare(
|
|
"
|
|
SELECT
|
|
id, embedding
|
|
FROM
|
|
documents
|
|
WHERE
|
|
file_id IN rarray(?)
|
|
",
|
|
)?;
|
|
|
|
query_statement
|
|
.query_map(params![ids_to_sql(&file_ids)], |row| {
|
|
Ok((row.get(0)?, row.get::<_, Embedding>(1)?))
|
|
})?
|
|
.filter_map(|row| row.ok())
|
|
.for_each(|(id, embedding)| f(id, embedding.0));
|
|
Ok(())
|
|
}
|
|
|
|
pub fn get_documents_by_ids(&self, ids: &[i64]) -> Result<Vec<(i64, PathBuf, Range<usize>)>> {
|
|
let mut statement = self.db.prepare(
|
|
"
|
|
SELECT
|
|
documents.id,
|
|
files.worktree_id,
|
|
files.relative_path,
|
|
documents.start_byte,
|
|
documents.end_byte
|
|
FROM
|
|
documents, files
|
|
WHERE
|
|
documents.file_id = files.id AND
|
|
documents.id in rarray(?)
|
|
",
|
|
)?;
|
|
|
|
let result_iter = statement.query_map(params![ids_to_sql(ids)], |row| {
|
|
Ok((
|
|
row.get::<_, i64>(0)?,
|
|
row.get::<_, i64>(1)?,
|
|
row.get::<_, String>(2)?.into(),
|
|
row.get(3)?..row.get(4)?,
|
|
))
|
|
})?;
|
|
|
|
let mut values_by_id = HashMap::<i64, (i64, PathBuf, Range<usize>)>::default();
|
|
for row in result_iter {
|
|
let (id, worktree_id, path, range) = row?;
|
|
values_by_id.insert(id, (worktree_id, path, range));
|
|
}
|
|
|
|
let mut results = Vec::with_capacity(ids.len());
|
|
for id in ids {
|
|
let value = values_by_id
|
|
.remove(id)
|
|
.ok_or(anyhow!("missing document id {}", id))?;
|
|
results.push(value);
|
|
}
|
|
|
|
Ok(results)
|
|
}
|
|
}
|
|
|
|
fn ids_to_sql(ids: &[i64]) -> Rc<Vec<rusqlite::types::Value>> {
|
|
Rc::new(
|
|
ids.iter()
|
|
.copied()
|
|
.map(|v| rusqlite::types::Value::from(v))
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
}
|
|
|
|
pub(crate) fn dot(vec_a: &[f32], vec_b: &[f32]) -> f32 {
|
|
let len = vec_a.len();
|
|
assert_eq!(len, vec_b.len());
|
|
|
|
let mut result = 0.0;
|
|
unsafe {
|
|
matrixmultiply::sgemm(
|
|
1,
|
|
len,
|
|
1,
|
|
1.0,
|
|
vec_a.as_ptr(),
|
|
len as isize,
|
|
1,
|
|
vec_b.as_ptr(),
|
|
1,
|
|
len as isize,
|
|
0.0,
|
|
&mut result as *mut f32,
|
|
1,
|
|
1,
|
|
);
|
|
}
|
|
result
|
|
}
|